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ADAPTIVE TRADEOFF IN METADATA-BASED SMALL FILE

OPTIMIZATIONS FOR A CLUSTER FILE SYSTEM

XIUQIAO LI, BIN DONG, LIMIN XIAO, AND LI RUAN

Abstract. Metadata-based optimizations are the common methods to improve small files per-
formance in local file systems. However, serval problems will be introduced when applying the
similar optimizations for small files in cluster file systems. In this paper, we study the tradeoffs
between the performance of metadata and small files in metadata-based optimizations for a cluster
file system. Our method aims to guarantee the metadata performance by adaptively migrating
small files among file system nodes. We establish a theory model to analyze the small files load
need to be migrated. To compute the migrated load in advance, a novel forecasting method is
devised to accurately predict the one-step-ahead load of metadata and small files on a MDS. Then
we propose a adaptive small file threshold model to decide the small files to be migrated. In the
model, we consider the long-term and short-term tradeoffs respectively. To reduce the migration

overhead, we discuss the migration tradeoffs for small files and present methods and schemes to
eliminate unnecessary overheads. Finally, experiments are performed on a cluster file system and
the results show the efficiency of our method in terms of promoting the load forecasting accuracy,
trading off the performance of metadata and small files, and reducing migration overhead.

Key words. metadata-based small files optimization, adaptive tradeoff, load forecasting, cluster
file systems

1. Introduction

Recently, the small files problem in cluster file systems has aroused wide concern
[1, 2, 3] in the high performance computing area. Modern cluster file systems
such as PVFS2 [4] and Lustre [5] exploit a similar client/server architecture, which
divides file system nodes into three roles: client, metadata server (MDS) and I/O
server (IOS). Current design of cluster file systems mainly focus on optimizing large
file I/O, which improve performance by distributing files among multiple IOSs to
increase parallelism. However, network overheads are introduced as clients require
to connect a MDS to retrieve the file layout information before transferring file
data. Compared with large file accesses, small files accesses cannot benefit from
the parallel I/O due to the small amount of data. According to one study [6] on
access patterns in scientific computing, small file requests account for more than
90% of total requests while only contributing to less than 10% of total I/O data.
Therefore, the performance of small files becomes one of the bottlenecks for cluster
file systems.

In local file systems, metadata-based optimizations [2, 7] are common techniques
to reduce disk accesses and improve small file I/O performance. This type of
optimizations store a small file with its file metadata. Thus the file data can be
fetched in a single disk access. Cluster file systems can also apply the similar
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ideas to eliminate the bottleneck of small files. Compared with local file systems,
however, serval problems will be introduced when small files are stored with their
file metadata on MDSs in cluster file systems.

1) MDS overload
When large amount of small files are placed on MDSs, the small files will defi-

nitely increase server load and degrade the performance of metadata. According to
the studies on file system traces, metadata requests account for up to 83 percent
of the total number of I/O requests in many large scale file systems [6]. Therefore,
the performance of metadata cannot be guaranteed when the small files accesses
overload the MDS in file system.

2) Migration overhead
Another problem introduced by metadata-based optimizations is that small files

need to be migrated to IOSs as the file size is increasing. Clients need to wait for
the completion of migration before performing subsequent I/O requests. Moreover,
small files can be concurrently accessed by multiple clients in many workloads,
such as Web applications and scientific applications. In this case, the application
performance can be significantly affected by the migration overhead. To the best of
our knowledge, no substantial research is conducted on this problem at this time.

In this paper, we study the adaptive tradeoff between the performance of meta-
data and small files in metadata-based optimizations for a cluster file system. Our
method can guarantee the metadata performance when the load of small files on
MDSs are heavy. The small files are dynamically migrated among MDSs and IOSs.

First, we model the load of MDSs when enabling metadata-based optimizations
for small files and analyze the theoretical tradeoffs for the cases of multiple MDSs
and a single MDS in a cluster file system. Second, we present a novel forecasting
method to predict the one-step-ahead load of metadata and small files on a MDS.
Then we propose a adaptive small file threshold model to decide the files stored on
a MDS dynamically. The model considers serval factors, such as the spare storage
capacity, and the load of a MDS. Third, we present the methods of selecting small
files to migrate in order to reduce the small file load to guarantee the metadata
performance on the MDS. Moreover, we also propose serval methods and schemes
to reduce the migration overhead.

The main feature of our method is that file migration can be performed adap-
tively and dynamically. Therefore, the shortcomings of metadata-based optimiza-
tions can be overcome with our method. The performance of small files can be
traded off without degrading the metadata performance. We evaluate our method
in a well-known cluster file system PVFS2 [4] to show the merits.

The rest of this paper is presented as follows. Section 2 describes the overview
and design objectives of our method. Section 3 gives the theory model analysis
of tradeoffs in metadata-based optimization for small files. Section 4 presents the
details of our method. Section 5 reports the results of our method with serval
experiments. Related work and Concluding remarks are provided in Sections 6 and
7, respectively.

2. Method overview and design objectives

The design of PVFS2 emphasizes on improving large file I/O while little con-
sideration is made for the performance of small files. The file metadata in PVFS2
contains two types of attributes: common attributes, file objects related attributes
and extended attributes. Common attributes contains Unix-like file attributes, such
as create time, file type, and credentials. The second one includes special attributes
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Figure 1. Overview of proposed method in PVFS2

related to file objects, such as data distribution and datafile handles. We store the
file data as a separate datafile on the MDS located by the file metadata. Figure 1
gives the overview of our method implemented on PVFS2. First, a load forecasting
module is implemented on each MDS to predict one-step-ahead load of metadata
and small files, respectively. Second, a adaptive migration threshold module is re-
sponsible for deciding the files need to be migrated dynamically. Third, the MDS
relies on a migration module to proceed the migration actions, such as the selec-
tion of the migration target, the selection of migration methods and schemes and
response to concurrent clients.

Our method aims to guarantee the metadata performance while improving small
files performance with the metadata-based optimization. The main design objec-
tives are as follows.

1) Guarantee metadata performance
Metadata-based optimizations store the file data of a small file with its file meta-

data on the same MDS. Hence, the I/O performance of small files can be improved
without interacting datafiles on mutiple IOSs. However, the small files accesses
increase the load of MDS and degrade the metadata performance when the load of
small files is heavy. Our method promotes the priority of metadata operations on
MDSs and aims to guarantee the metadata performance by reducing the small files
load adaptively.

2) Trade off small files performance
In order to guarantee metadata performance, our method migrates small files

from a MDS to other MDSs or IOSs. The methods to trade off the small files
performance are studied in cluster file systems with different amount of MDSs.

3) Reduce migration overhead
Migration of small files will introduce overhead and affect the performance of

concurrent accesses. Our method intends to reduce the migration cost by eliminat-
ing unnecessary overhead.

3. Model analysis

In this section, we model the performance tradeoffs of migrating small files among
file system nodes in theory. Many cluster file systems can be configured with more
than one MDS to balance the metadata load. We consider the cases of both a single
MDS and mutiple MDSs in a cluster file system respectively.

3.1. Case 1: Single MDS. The I/O load on a MDS are measured at a predefined
interval. We define the load of metadata and small files at time Ti as Lmeta,i and
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Lio,i, respectively. The maximum bandwidth ofMDSj is given as Blogic, which can
be measured by experiments. Then, the load efficiency of MDSj can be defined as:

(1) E(MDSj, Ti) =
Lmeta,i + Lio,i

Blogic

.

Apparently, the total load of metadata and small files cannot exceed the maxi-
mum bandwidth:

(2) Blogic ≥ Lmeta,i + Lio,i.

However, the disk on the MDS can only served for one request at the same time.
When the metadata accesses or the small file accesses are heavy, the two workloads
need to compete to be served by the disk. We define the load of metadata and
small files on the non-compete MDSj as L

′

io and L
′

meta,i, respectively. In order to

guarantee the metadata performance, Lmeta,i should be equal to L
′

meta,i. Hence,
in this case, the load of small files on MDSj need to be limited as:

(3) Lio,i = ρL
′

io,i.

According to Equation 2, we have the following:

(4) ρ =
E(MDSj , Ti)Blogic − Lmeta

L
′

io,i

.

Let E(MDSj, Ti) is 1 and we can get the theoretical solution ρ to guarantee the
metedata performance at time Ti. That is, the small files load needs to be reduced
to (1− ρ)L

′

io,i at least.

3.2. Case 2: Multiple MDSs. In case of multiple MDSs, a small file on an
overloaded MDS can be migrated to other low load MDSs rather than IOSs to
guarantee its I/O performance. However, it need to decide how much load can be
migrated to other MDSs or IOSs. A greedy solution is that all MDSs are sorted
by their load and the overloaded MDS migrates its load to the left MDSs with the
lowest load one by one. However, as multiple MDSs may request to migrate their
own load at the same time, this solution will make MDSs with low load overloaded
quickly. Therefore, in this paper, only one MDS can be selected for an overloaded
MDS to migrate its load. The left load that cannot be served by the selected MDS
is migrated to IOSs.

As we discussed in Section 3.1, the total migrated load of MDSj can be given

as ML(MDSj) = (1 − ρ)L
′

io,i. Let MDS
′

j be the selected migration target. The

maximum available load can be served by MDS
′

j can be computed as:

(5) ML(MDSj,MDS
′

j) = (1− E(MDSj , Ti))Blogic.

Then the left load that needs to be migrated to IOSs is given by:

(6) ML(MDSj, IOS) = ML(MDSj)−ML(MDSj,MDS
′

j);

4. Our approach

In this section, we presents the details of our approach to adaptively and dy-
namically migrate the load of small files.
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4.1. Load forecasting. The hypothesis of the theoretical model presented in Sec-
tion 3 is the load of metadata and small files is known in advance. Hence, a forecast-
ing method needs to be adopted to predict the approximate values for the load. In
time series analysis, exponential smoothing methods (ESM) are the common short-
term forecasting techniques applied in many fields [9]. The methods are suitable
for on-line prediction, because they are easy to be implemented and both the data
storage and computing requirements are minimal. In this paper, we devise a new
forecasting method based on ESM by the collaborate effort of the I/O scheduler
on the MDS. We first briefly introduce one of the simplest ESM method, and then
presents the details of our method.

4.1.1. Exponential smoothing method (ESM). ESM is based on the argu-
ment that the new observed value contains more information about the trend and
should have larger weight than old observed values. One of the simplest ESM is
the single exponential smoothing method (SESM). In SESM, the forecast value Fi

at time Ti can be calculated as the following:

(7) Fi = αOi−1 + (1 − α)Fi−1,

where Oi−1 is the observed value at time Ti−1 and α is the smoothing parameter
between 0 and 1.

If we rewritten the equation 7 by replacing the Fi−1 recursively, we can easily find
that the value of Fi is the accumulation of previous observed values with different
weights. The forecast accuracy of SESM depends on the value of the smoothing
parameter. Therefore, a lot of previous studies [10, 11] focused on how to adaptively
specific the proper parameter during forecasting.

4.1.2. Burst-aware exponential smoothing method (BA-ESM). In the con-
text of cluster file systems, the I/O load often exhibits the burst characteristic as
the scale of concurrent clients is hundreds and even thousands. One of the example
is the checkpoint applications in supercomputing systems, where every processor
core create or write its own file in the same directory at the same time [12]. In
order to guarantee metadata performance, the forecast method must predict the
burst load as early as possible. However, the design hypothesis of ESM is that
the forecast values should fluctuate with a constant range or change slowly over
time. Hence, the original ESM cannot capture such wide fluctuations of burst load
required by our problem.

We present a new forecasting method BA-ESM based on SESM to predict the
burst load more accurately. The basic idea of our method is that the amount of
the I/O requests blocked in I/O scheduler imply the information of possible burst
load in future. We can use the information to adjust certain forecasting values to
keep pace with the variation of burst load.

The I/O scheduler on a MDS is used to decide the service order of I/O requests
from clients with specific algorithm and block requests in a queue. Hence, we can
infer the burstiness of the load from the length of the queue. A request monitor
functionality is added to the I/O scheduler on MDSs to record and analyze the pos-
sibility of load burstiness. The monitor collects and counts the amount of requests
and their access size for both metadata and small files requests, respectively. First,
we compute the total amount of requests being served for metadata and small files
during interval between Ti−2 and Ti−1 as:

(8) TDmeta,i−1 =

Cmeta,i−1∑

k=0

(Smeta,i−1,k),
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(9) TDio,i−1 =

Cio,i−1∑

k
′
=0

(Sio,i−1,k
′ ),

where TD is the total amount of requested data, C is the count of blocked requests
in the queue and S is the access size of a request.

Similarly, we can compute the data amount of the metadata and small files

requests blocked in the queue. We refer the two values to T̂Dmeta,i−1 and T̂Dio,i−1,
respectively. To be noticed, the values cannot exceed the logical I/O capability
provided by the MDS and should be reduced to a predefined value if it is too large.

Based on the above information, we now can infer the possibility of burstiness
at time Ti by computing the following:

(10) Ratiometa,i−1 =
T̂Dmeta,i−1

TDmeta,i−1

,

(11) Ratioio,i−1 =
T̂Dio,i−1

TDio,i−1

,

where Ratiometa,i−1 and Ratioio,i−1 are the data amount ratios between future
requests and served requests at time Ti−1. Clearly, the larger the ratios are, the
larger possibilities of I/O burstiness occurs, and vice versa. Therefore, we can use
the ratios to guide the correction of the forecast load. The forecast value at time
Ti in our method is given by the following formula:
(12)

Fi =

{
(Ratioi−1 − 1 + α)Oi−1 + (1− α)Fi−1 if Ratioi−1 < β or Ratioi−1 > γ

αOi−1 + (1− α)Fi−1 if β < Ratioi−1 < γ
,

where β and γ are the low and high thresholds of the ratio for recognizing the begin
and end time of the burst period.

4.2. Adaptive small file threshold model. The small file threshold decides
whether a file belongs to a “small” one. To trade off the performance for both
metadata and small files workloads, we propose a dynamic migration threshold
model to adaptively migrate certain files among MDSs and IOSs. On one hand,
the model generates small files threshold dynamically for long-term tradeoff by
considering the conditions of the MDS. On the other hand, for short-term tradeoff,
the model adjust the threshold for certain files to migrate their load in time to
guarantee the metadata performance.

4.2.1. Long-term tradeoff. Four factors are considered to decide the thresh-
old for long-term tradeoff: (1)the spare capacity on the MDS; (2)the load of the
MDS; (3)the frequency of file migration; (4)the maximum threshold. Besides, the
threshold in our model is generated on a file basis. Hence, the threshold of specific
file depends on two parameters, namely global threshold and fine tuning parame-
ter. The first two factors contribute to the global threshold and the third one is
considered to tune threshold for a specific file with the purpose to avoid frequent
migrations. The fourth factor limits upper threshold of small files that can be
stored on a MDS.

We briefly introduce the process of deciding the threshold for small files with
our model. First, the MDS collects the information of spare capacity and the
load dynamically at a given interval. The spare capacity Psg is calculated by
the proportion of available space in the total disk capacity on a MDS. Similarly,
the total load Pld can be computed by the proportion of current bandwidth in the
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theoretical maximum bandwidth of the MDS. We use the observed load rather than
forecast one for long-term tradeoff. Then the global threshold can be computed by
the following equation:

(13) Thglobal =





(1− p)Thold if Psg ≥ Thsg

max((1 + q)Thold, Thmax) if Pld < Th
′

ld, Psg < Thsg

(1− q)Thold if Pld > Thld, Psg < Thsg

,

where Thglobal is the global migration threshold, p and q are adjustment parameters,

Thsg is the threshold of spare capacity, Thld, Th
′

ld are the low and high thresholds of
the load, Thold is the final threshold of last round and Thmax is the given maximum
threshold.

In our model, the factor of spare capacity is given the highest priority, because the
MDS should always provide available space for metadata storage. Once the small
files storage exceeds the threshold Thsg, we choose to migrate the least accessed
small files and decrease the small file threshold. For the factor of MDS load, the
model relies on the values of Thld and Th

′

ld to decide whether the small file threshold
should be increased or decreased. The purpose of this adjustment is to reduce the
chance of overloading a MDS.

In order to avoid unnecessary migration, we maintain a fine-tuned field in the
file metadata to record the migration frequency for each small file. Thus, the final
threshold of a file is chosen from the larger one between Thmax and the fine-tuned
threshold by the following equation:

(14) Thfinal = max((1 +MF · δ) · Thglobal, Thmax),

where MF is the migration frequency of the file, and δ is the penalizing weight for
migration frequency.

Finally, when a client requests a small file stored on a MDS, the MDS first fetches
the global threshold and the migration frequency of the file and then computed the
final threshold using equation 14. If the file size of the file exceeds the threshold,
migration operations will be invoked to migrate the file to other IOSs. Reversely,
when the MDS detecting a file stored on IOSs is truncated to a size below the
threshold, the migration will be invoked to migrate the file back to the MDS.
Therefore, the performance of small files can be traded off according to the system
condition of the MDS.

4.2.2. Short-term tradeoff. Although the model in Section 4.2.1 can adaptively
trade off small file performance by altering the threshold, the metadata performance
cannot be guaranteed in case of burst I/O occurs. Both the metadata and small
files workloads can introduce burst load on a MDS and the threshold model in
Section 4.2.1 cannot react to the burstiness instantly.

We address the problem by migrating the files that are heavily accessed in ad-
vance according to the forecasting load. We adopt the proposed BA-ESM to forecast
the value of Lmeta,i and Lio,i. Then, according to the model analysis in Section 3,
the load needs to be migrated on MDSj at time Ti can be coined as ML(MDSj).
Therefore, the key to the problem is how to choose files to be migrated.

In theory, we should choose from the files that are accessed at time Ti. However,
it is complex and costly to forecast load for each small file, especially in large file
systems. Many studies show that the accessed files in large file systems have a
skew to a small portion of files. Meanwhile, the accesses on a file often follow a
determinate access pattern. In this paper, we choose to select files according to
the load of files at time Ti−1 instead. Hence, it is possible that the load delivers
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by the selected files cannot meet the load requirement. In order to guarantee the
metadata performance, the short-term tradeoffs can be two folds. On one hand,
on each MDS, the load of accessed small files is recorded in a list and updated
periodically. The MDS will choose serval files to migrate load from the list when
ML(MDSj) is greater than zero. On the other hand, we monitor the I/O scheduler
on the MDS and block the requests on small files when the actual load of small files
exceeds ML(MDSj).

We now describe the selection methods for migrated files with different configu-
rations of MDSs.

1)Single MDS
In this case, the selected small files are all migrated to IOSs. In order to reduce

the migration overhead, the candidate files should have a small size and a heavy
load. Hence, the files in the list is sorted by the migration profits(MP ), which can
be defined as the ratio between the file load and the file size. Then, the MDS selects
migrated files from the list with the following steps.

(1) Sort the accessed files by their MP on MDSj . The total load of selected
files is recorded as TL.

(2) Query the file fi with the largest MP and update TL with the load of fi.
If TL exceeds ML(MDSj) or the amount of selected file exceeds N , the
selection is complete. Otherwise, this step is repeated.

2)Multiple MDSs
In this case, the selection of migrated files is the same with the case of a single

MDS. However, we need to tradeoff the small file performance by choosing the
migration targets. As we discussed in Section 3, only one MDS can be selected as
the migration target. The selection rule is based on the load efficiency of a MDS.
We briefly introduce the load migration as the following steps.

(1) The migrated files on MDSj is selected by the same steps. The total load
of selected files is recorded as TL.

(2) MDSj contacts other MDSs to request their available load. Then, we
greedily select the MDS that can satisfy the migration load as the migra-
tion target by min

j
′

(TL − ML(MDSj,MDS
′

j)). After that, the files that

migrated to MDS
′

j are chosen as the files with heavy load from the mi-
grated files as many as possible. If no MDS can be selected or the target
MDS cannot served all required load, go to Step 3.

In order to avoid overwhelming a low load MDS, we set a threshold for
the load efficiency of a MDS and the MDS can exclude from the candidates
of migration target. Furthermore, a MDS can only be selected as migration
target by one MDS during a time interval.

(3) The left migrated files are migrated to IOSs.

4.3. Migration issues. In this section, we presents the methods and schemes to
reduce migration overhead.

4.3.1. Migration methods. Migration of small files will introduce network over-
head inevitably. We presents two kinds of migration methods to reduce the overhead
of transmitting data. As we discussed in Section 4.2.1, the migration process will
be invoked when the file size exceeds the threshold. The total amount of data need
to transfer over network can be given as:

(15) TD = 2 ·RD + FD,
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where RD is the amount of data written by the request, and FD is the file size
before serving the request. It is clear that the data written by the request will be
transferred two times over network. For most of small files, this extra overhead can
be ignored since the access size of the requests is rather small. However, for large
file accesses, the overhead will increase significantly when transferring the large
amount of data duplicately.

The basic idea of our methods is that migration can be invoked by a client or
a MDS. The first method, namely, active migration, is that a MDS migrates a file
to IOSs when the file size exceeds current threshold. This method is suitable for
the case of the migration invoked by small accesses. The second method, namely,
passive migration, is that clients can take the initiative to trigger the migration on
a MDS when the amount of written data exceeds current threshold. This method
could avoid large amount of data being transferred more than onetime. The client
will transfer the written data to IOSs in parallel after received the acknowledgement
of migration completion from the MDS.

4.3.2. Latency hiding. There are two steps to migrate a file from a MDS to IOSs.
First, the MDS need to create datafiles on each IOS to store file data. Second, the
file data are transferred to IOSs and stored in the datafiles. However, the creation
of datafiles will spend rather expensive time and the data flow of transferring data
introduce large network overhead [13, 14]. In order to reduce the side effects, two
latency hiding schemes are proposed to reduce the overhead.

1)Latency hiding for datafile creation
We add a pre-migration threshold parameter on MDSs. When the small file size

exceeds this threshold, the MDS create datafiles on IOSs to overlap the process of
file writing. By setting this threshold carefully, the overhead of datafile creation
can be hidden perfectly. Figure 2a show the process.

2)Latency hiding for file migration
Clients need to wait for the completion of migration on a MDS before completion.

As Figure 2b shows, the migration in cluster file systems requires an extra network
round to get the file size of datafiles. However, this step can be bypassed since all
datafiles are empty.

Client

1 2a…
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2b

Hidden by

IOS

1.Write    < pre-migation threshold 

2a.Write  > pre-migation threshold

2b Create datafile handles on IOSs

Hidden by
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2b. Create datafile handles on IOSs

(a) Datafile creation

Cli t
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2

3

Hidden

2b Create datafile handles on IOSs
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(b) File migration

Figure 2. Latency hiding schemes
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4.3.3. Migration response. Cluster file systems support concurrent accesses
from multiple clients. It is possible that there are other clients request the files
being migrated by the MDS. To guarantee the consistency, the file need to be
locked by setting a special flag in metadata attributes, which definitely affects the
performance. We propose three response strategies depending on the request types.

(1) Revoke file migration when the client requests involve modification or dele-
tion of small files data in order to avoid unnecessary files migration.

(2) Notify clients to retry at a reasonable interval for read or write requests.
(3) Proceed other requests that do not request the file data.

5. Results

In this section, we report the results of our method with serval experiments. We
implement the metadata-based small file optimization and our method in PVFS2
and the metadata-based optimization is used as a baseline for comparison. Our
experiment platform consists of 7 Lenovo X86 servers. Each node has four In-
tel Xeon5160 processors with 4Gb DDR2 memory and connects with other nodes
with 1Gbps Ethernet. Table 1 shows the configuration of our method used in the
experiments.

Table 1. Parameters of adaptive threshold model

Thsg Thld Th
′

ld p q δ Thmax

0.8 0.8 0.2 0.05 0.05 0.05 2MB

First, we introduce the simulation methods to evaluate the benefits of our method.
Then, we examines the forecasting accuracy of proposed BA-ESM by comparing
with the case of SESM. Third, we conduct performance experiments to show the
tradeoffs between metadata and small files workloads when applying metadata-
based optimizations for small files. At last, we examine the benefits of reducing
migration overhead with our method.

5.1. Simulation methods. To evaluate that our method can guarantee metadata
performance, a simulation architecture was designed to generate metadata work-
loads with various load. The basic idea is to directly post metadata requests to the
I/O scheduler on a MDS rather issuing requests from clients. Therefore, we can
simulate the burstiness and various metadata load in very large cluster file systems
by customizing the arrival intervals among metadata requests.

Our simulation for metadata workloads consists of two phases: trace generation
and replay. In the first phase, we generate the metadata trace to simulate the
steady and burst metadata accesses [16]. The configuration of generating metadata
workloads is controlled by the parameters represented as a tuple < φ,ϕ >, where φ
is the number of accesses, and ϕ is the arrival interval among the accesses. Besides,
we can specify the repetitions to increase the simulation scale. In the second phase,
we post the metadata requests of the generated trace to I/O scheduler with given
arrival intervals. We implement a special routine to serve these requests and bypass
the process of the response to clients. Each request write a 1KB metadata entry on
a MDS. By relaying the traces, we can compare the results between our method and
the original metadata-based optimization with the same conditions of experiments.

For small files workloads, we adopt the IOR benchmark [15] to access small files
on a MDS. This is because pervious studies show that the benchmark can generate
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burst I/O requests [6]. By configuring the amount of clients, we can simulate the
small file workloads with various load.

5.2. Accuracy of load forecasting. In this section, we compare the forecast-
ing accuracy of proposed BA-ESM with the SESM method. Table 2 shows the
parameters of generating the tested metadata workload using our simulator.

Table 2. Simulation parameters for metadata workload

Steady accesses Busty accesses
Repetitions

φ ϕ φ ϕ

5000 1ms 10000 0.1ms 1000

Figure 4 shows the forecasting results of the two methods with an example of
the steady and burst metadata workload. The parameters of BA-ESM in equation
12 are chosen as β = 0.9 and γ = 1.1. For both two methods, we choose α = 0.1 as
the smoothing parameter.

From Figure 4, we can observe that the two methods forecast roughly the same
load series. This is due to the steady workload generates load with little fluctuation.
There is no need to correct the forecasting load since the value of ratio in equation
12 is always around one. However, from Figure 3, we can observe that BA-ESM can
predict the trend of wide fluctuation more accurately than SESM. Furthermore, the
forecasting load in SESM is apparently lagged in capturing the large load variation.
The reason is that SESM can only predict the load with little fluctuation without
a priori knowledge. For our method, however, we can infer the bustiness of load by
monitoring the requests blocked in the queue of the I/O scheduler.
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Figure 3. Comparison of forecasting results between BA-ESM
and SESM

To quantize the comparison of forecasting accuracy, we adopts the mean absolute
error(MAE) to measure the forecasting error of the two methods. MAE is computed
as the following equation:

(16) MAE =

∑n

i=1 |Fi −Oi|

n
,

where n is the total amount of forecasting values. Table 3 gives the results of BA-
ESM and SESM on forecasting load of tested metadata workload. We choose the
smoothing parameter as 0.1 for BA-ESM. The forecasting accuracy of BA-ESM is
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higher than all the results of SESM with different values of smoothing parameter.
For metadata workload, the forecasting results is more accurate than the cases of
small files workload. The reason is that the load fluctuations of IOR benchmark is
more wide than metadata workload. As the requests of IOR are issued by remote
clients, there is undetermined network latency among the requests from different
clients. For metadata workload, the requests are simulated and issued by the MDS
with pre-defined arrival intervals.

Table 3. Comparison of forecasting accuracy in terms of MAE

Method BA-ESM SESM
α 0.1 0.1 0.6 0.9

Metadata workload 0.53 0.68 0.69 1.05
Small files workload 3.89 7.27 7.94 9.82

5.3. Performance results.

5.3.1. Metadata and small files performance. In this subsection, we shows
the performance results of metadata and small files workloads with our method. To
examine the effect of adaptive tradeoff, we configure the IOR benchmark to write
small files on a MDS with different amount of clients.
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Figure 4. Comparison of the performance of metadata and small
files workloads on a MDS

First, we examine the case of a single MDS in a file system. Figure 4 shows
the comparison of metadata and small files performance with our method and the
baseline optimization. The baseline metadata performance is comparable with the
one of our method when only one or two clients accessing small files on the MDS.
The MDS can afford the load of metadata and small files workloads and there is little
interference between the two kinds of requests. However, with the scale of current
clients increased, the small file accesses become intensive and affect the performance
of metadata accesses. As shown in Figure 4a, the metadata performance decreases
66.7% in case of 16 processes compared with only one process accessing small files.
The similar results can be seen from the performance of small files, which is shown
in Figure 4b. As more requests concurrently issuing from clients, there is more
chance of completing for the disk on the MDS for the metadata and small files
accesses.
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Compared with baseline performance, our method produce more steady meta-
data performance and scalable small files performance. This can be explained by
two reasons. On one hand, our method can migrate the load of small files to IOSs
according to the forecasting load of proposed BA-ESMmethod. The requests on the
migrated small files can be served by IOSs rather than MDS. Hence, the interfer-
ence of heavy metadata and small files accesses can be reduced. On the other hand,
our method adopts a adaptive small files threshold model to adjust the amount of
small files on the MDS according to the system conditions. By the adjustment, the
file system can approaching better long-term tradeoffs for small files and metadata
performance.
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Figure 5. Effect of MDSs on the performance of metadata and
small files workloads

Second, we examine the case of multiple MDSs in a file system. Figure 5 shows
the performance of metadata and small files workloads under different amount of
MDSs. Compared with the case of single MDS, the metadata performance increases
about 3% with multiple MDSs. The migrated small files can be migrated to other
MDSs rather than IOSs. As the metadata of these files are also migrated to other
MDSs, the interference of the metadata accesses on these files can be avoided. For
small files, the performance is also improved in case of multiple MDSs. The reason
is that other MDSs have the higher priority to be the migration target than IOSs
and the performance of small files on MDS is better than on IOSs.

5.3.2. Migration overhead. In this subsection, we reports the results of the
experiments on migration overhead. We configure the IOR benchmark to create
1000 files on a MDS and then writing data to these files with various access size. The
small file threshold is fixed to 1MB and the functionality of the adaptive model in
Section 4.2.1 is turned off. The experiments are repeated when proposed migration
methods and schemes are turned off to evaluate the improvements. The migration
times are recorded and the average migration cost is reported in Figure 6.

For the migration invoked by small accesses, the active migration method is
chosen to migrate the file data after proceeding the I/O access. The baseline mi-
gration also adopts the same method and produces identical overhead. However,
for the migration invoked by large accesses, the passive migration method can bring
substantial benefits by avoiding to transfer large amount of data duplicately. This
can be proved by the results when the access size of the requests is 1MB or 4MB.
Compared with the baseline method, the proposed latency hiding schemes can save
the network overhead for the migrations invoked by both small and large accesses.
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6. Related work

Small files optimization: Metadata-based optimizations are the natural meth-
ods to optimize small files performance. Carns et al. [2] implemented a metadata
stuffing method to optimize small file performance in PVFS2. They placed the
files with size smaller than the first stripe size on a MDS and do not span file data
among multiple servers. Then, if a client attempts to access beyond the first stripe,
the client sends a unstuff request to create datafiles on IOSs. However, this method
can be enabled only when the MDS acts as a IOS. Hence, the metadata and data
I/O are mixed on the same server and no mechanisms are adopted to guarantee the
metadata performance, especially when experiencing burst metadata load. Direc-
tory hint method presented in [17] is designed for directory with large amounts of
small files. The method provided a special directory hint no metadata to store file
metadata and data in a single datafile for files in the directory. Thus, clients can
get the metadata and file size with one round message exchange. In this method,
the IOS acts as a MDS only for small files at the same time. Hence, there is no
impact on the metadata performance. However, the directory restriction limits its
applying scope to a directory level. Thus only few applications can benefit from
the method.

Compared with the above methods, our method can exploit the full performance
potential of the cluster file system for both metadata and small files workloads. The
small files can be adaptively migrated among file system servers according to the
condition of MDSs and the burstiness of metadata load. Hence, both metadata and
small files performance can be traded off.

Load forecasting: There are many short-term forecasting methods available
in literature. Li et al. [11] summarized the advantages and disadvantages of several
typical methods for traffic predictions. Their application requirements are similar
with the load forecasting in this paper. That is, the forecasting methods should
have little requirements of data storage and computing for runtime forecasting.
Thus, the exponential smoothing methods are the proper methods to be used due
to their simplicity of implementation. Lee et al. [10] proposed a OPHB (On-
Line Parameter History Bank) mechanism to adaptively choose proper smoothing
parameter for simple exponential smoothing method. The method is targeted for
disk I/O load prediction and can capture the actual I/O behavior. However, their
method is still based on history information and cannot predict the burst load,
which is required by our problem. In contrast, our method can infer possible burst
load from the I/O scheduler, which contains the information about future accesses.
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7. Conclusion

This paper studied the tradeoffs in metadata-based optimization for small files
in a cluster file system. We propose a novel forecasting method to predict one-step-
ahead load accurately. Based on the load predictions, the performance of metadata
and small files can be traded off by the proposed adaptive small files threshold
model. Furthermore, the proposed migration methods and schemes can reduce the
migration cost by eliminating unnecessary overhead. Experiments show our method
can guarantee the metadata performance and reduce the migration overhead when
applying metadata-based optimizations for small files in cluster file systems.
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