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NEW SHOCK DETECTOR AND IMPROVED CONTROL

FUNCTION FOR SHOCK-BOUNDARY LAYER INTERACTION

CHAOQUN LIU, HUANKUN FU, AND PING LU

Abstract. Standard compact scheme or upwind compact scheme have high order accuracy and
high resolution, but cannot capture the shock without oscillations. In this paper, modified compact
scheme is developed by using an effective shock detector to block upwinding compact scheme to
cross the shock, a control function, and an adaptive scheme which uses some WENO flux near
the shock. The new scheme makes the original upwinding compact scheme able to capture the
shock sharper than WENO and, more important, keep high order accuracy and high resolution in
the smooth area which is particularly important for shock, shock boundary layer interaction and
shock acoustic interaction. The scheme is robust and has no case-related coefficients.
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1. Introduction

The flow field is in general governed by the Navier-Stokes system which is a sys-
tem of time dependent partial differential equations. However, for external flows,
the viscosity is important largely only in the boundary layers. The main flow can
still be considered as inviscid and the governing system can be dominated by the
time dependent Euler equations which are hyperbolic. The difficult problem with
numerical solution is the shock capturing which can be considered as a disconti-
nuity or mathematical singularity (no classical unique solution and no bounded
derivatives). In the shock area, continuity and differentiability of the governing
Euler equations are lost and only the weak solution in an integration form can
be obtained. The shock can be developed in some cases because the Euler equa-
tion is non-linear and hyperbolic. On the other hand, the governing Navier-Stokes
system presents parabolic type behavior and is therefore dominated by viscosity
or second order derivatives in the boundary layer. One expects that the equation
should be solved by a high order compact scheme to get high order accuracy and
high resolution. High order of accuracy is critical in resolving small length scales
in flow transition and turbulence processes. However, for hyperbolic systems, the
analysis already shows the existence of characteristic lines and Riemann invariants.
Apparently, the upwind finite difference scheme coincides with the physics for a
hyperbolic system. History has shown the great success of upwind technologies.
From the point of view of shocks, it makes no sense to use high order compact
schemes for shock capturing. High order compact schemes use all gird points on
one grid line to calculate the derivative by solving a tri-diagonal or penta-diagonal
linear system. However, the shock does not have finite derivatives and downstream
quantities cannot cross shock to affect the upstream points. From the point of view
of the above statements, upwind scheme is appropriate for the hyperbolic system.
Many upwind or bias upwind schemes have achieved great success in capturing the
shocks sharply, such as Godunov [4], Roe [15], MUSCL [19], TVD [5], ENO [6] and
WENO [12, 7]. All these shock-capturing schemes are based on upwind or bias
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upwind technology, which is nice for hyperbolic systems, but is not favorable to the
N-S system which presents parabolic equation behavior. The small length scale is
very important in the flow transition and turbulence process and thus very sensi-
tive to any artificial numerical dissipation. High order compact schemes [10, 20]
are more appropriate for simulation of flow transition and turbulence because it is
central and non-dissipative with high order accuracy and high resolution.

Unfortunately, the shock-boundary layer interaction, which is important to high
speed flow, is a mixed type problem which has shock (discontinuity), boundary
layer (viscosity), separation, transition, expansion fans, fully developed turbulence,
and reattachment. In the case of shock-boundary layer interaction, there are elliptic
(parabolic for time dependent problems) areas (separation, transition, turbulence)
and hyperbolic areas (main flow, shocks, expansion fans), which makes the accu-
rate numerical simulation extremely difficult if not impossible. We may divide the
computational domain into several parts: the elliptic (parabolic for time dependent
problems), hyperbolic, and mixed. The division or detection can be performed
by a switch function automatically such as shock detectors which simply sets for
the shock area and for the rest. The switch function may give good results for
shock-boundary layer interaction, but it will have too many logical statements in
the code which may slow down the computation. The switch function could also be
case-related and very difficult to adjust. It would also slow down the convergence
for steady problems.

A combination of compact and WENO schemes should be desirable. There
are some efforts to combine WENO with standard central [9, 1] and WENO with
upwinding compact (UCS) schemes [14, 22]. Their mixing function is still some
kind complex and has a number of case related adjustable coefficients.

In order to overcome the drawback of the CS scheme, we need to achieve local
dependency in shock regions and recover the global dependency in smooth regions.
This fundamental idea will naturally lead to a combination of a local dependent
scheme, e.g. WENO and global dependent compact schemes which we call ”Modi-
fied Compact Scheme” (MCS).

Last year, we use WENO to improve 7th order upwinding compact scheme as
we called as ”modified upwinding compact scheme (MUCS)”, which uses a new
shock detector to find the shock location and a new control function to mix up-
winding compact scheme with WENO. The mixing function is designed in following
ways: the new scheme automatically becomes bias when approaching the shock, but
rapidly recovers to be upwinding compact, with high order of accuracy and high
resolution.

However, the mixing function must be improved for high efficiency. It is required
that the mixing function must be smooth (not a switch function), keeps up-winding
for shock, keeps enough dissipation before and after shock, and maintain high ac-
curacy in the smooth region.

2. Modified Compact Scheme

Compact scheme is great to resolve small length scales, but cannot be used for
the cases when a shock or discontinuity is involved. Our new modified compact
scheme is an effort to remove the weakness by introducing WENO flux when the
computation is approaching the shock.

2.1. Effective New Shock Detector. A very effective shock detector (Oliveira,
Lu, Liu and Liu, 2009) [13] has been proposed by C. Liu. The detector has two
steps. The first step is to check the ratio of the truncation errors on the coarse
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and fine grids and the second step is to check the local ratio of the left and right
hand slopes. The currently popular shock/discontinuity detectors such as Harten’s,
Jameson’s and WENO can detect shocks, but mistake high frequency waves and
critical points as shocks. The schemes then damp the physically important high
frequency waves. Preliminary results show that the new shock/discontinuity de-
tector is very delicate. The new detector can detect all shocks including strong,
weak and oblique shocks or discontinuities in function and first, second, and third
order derivatives without artificial case related constants. However the new de-
tector never mistakes high frequency waves, critical points and expansion waves
as shock. This will overcome the bottle neck problem with numerical simulation
for the shock-boundary layer interaction, shock-acoustic interaction, image process,
porous media flow, multiple phase flow, detonation wave and anywhere the high
frequency waves are important, but discontinuity exists and is mixed with high
frequency waves. To introduce our new two step shock/discontinuity detector, we
need to introduce some popular shock detectors first.

Harten’s Switch Function and Jameson’s Shock Detector. Harten (1978)
defined an automatic switch function that is able to detect large changes in the
variation of the function values fi. It generates values between 0 and 1, where 0 is
considered smooth and 1 is considered non-smooth.
The switch is defined as:

θj+ 1
2
= max(θ̂j , θ̂j+1) (2.1)

with
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ation in f . Jameson’s (1981) shock detector is similar, which can be described
as:
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(2.2)

which is related to the second order derivative of the pressure.

WENO The WENO weights use smoothness measurements that evaluate the
changes in the variation of the function values fi. Assuming that the three weights
have equal contribution, we can determine that a function is smooth if all values
are approximately 1/3.
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New Two Step Shock/Discontinuity Locator(Oliveira, Lu, Liu, Liu, 2009).
This new shock detector consists of two main steps: a multigrid truncation error

ratio check and a local slope ratio check.

Step 1: Determine the multigrid ratio of the approximation of the sum of the 4th,
5th and 6th truncation errors for [F = f + smooth sine wave of small amplitude]
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and select the points where the ratio is smaller than 4. Theoretically, the ratio
of the 4th order truncation error of coarse and fine grids should be 16, but any
function that has a ratio of 4 will be considered smooth and passing the test. The
points which have a ratio less than 4 will be picked out for the second left and right
hand slope ratio check.

The multigrid truncation error ratio check is:

MR (i, h) =
TC (i, h)

TF (i, h) + ε
, (2.4)

where
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where TF (i, h) is the truncation error sum (4th, 5th, and 6th) calculated at the
fine grid with n points, TC(i, h) is the truncation error sum calculated at the coarse
grid with n/2 points by Taylor expansion. TF (i, h) and TC(i, h) have 4th, 5th, and
6th order derivatives which are all calculated by a 6th order compact scheme.

Step 2: Calculate the local left and right slope ratio check only at the points
which have first ratio less than 4.

The new local left and right slope ratio check is:
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where f ′
R = 3fi − 4fi+1 + fi+2, f

′
L = 3fi − 4fi−1 + fi−2 and ε is a small number

to avoid division by zero.
Optional step 3: Use a cutoff value of 0.8 to create a 0/1 switch function on the

result of Step 2. If the value is zero, f is considered locally smooth, and if the value
is one, f is a shock/discontinuity at that point.

Note that Liu’s first step always checks f + σ sin (kπx + ϕ) instead of f, where
σ is a small number. Since all derivatives are calculated by a subroutine with a
standard compact scheme, the cost of two step checks is relatively inexpensive.

In order to find a universal formula, we need to normalize the data set, u(i), i =
1, · · · , n :

udiff = |umax − umin| , ū = (u− umin)/udiff

Here,umax and umin are the maximum and minimum values of u respectively and
ū is normalized. For simplicity, we disregard the hat of u and use u(i) as the
normalized data set. However, this normalization is for finding the shock locator
only and not for the function itself which we calculate for derivatives.

2.2. Control function for usingWENO to improve CS and UCS. Although
the new shock detector can provide accurate location of shock including weak shock,
strong shock, oblique shock and discontinuity in function, first, second and third
order derivatives, it is a switch function and give one in shock and zero for others.
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As we mentioned above, a switch function cannot be directly used to mix CS and
WENO and we must develop a rather smooth function to mix CS (2.6) and WENO
(2.7):
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where F is the original function and H is a primitive function of F and H ′ is the
flux F̂ = H ′ . We defined a new control function Ω:

(1− Ω) ∗ CS +Ω ∗WENO (2.8)

This will lead a tri-diagonal matrix system which is the core of our new scheme:
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When Ω = 0.0, the equation become a standard sixth order compact scheme,
but when Ω = 1.0 the scheme is a standard WENO scheme.

For the modified upwinding compact scheme (MUCS), the final matrix becomes:
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Our origin control function is

Ω = min[1.0,8.0/MR(i, h)]× LR(i, h) (2.11)

in which MR is the multigrid global truncation error ratio and LR is local ratio
of left and right side angle ratio. If the shock is met, MR is small, LR is near 1
and , the WENO will be used and the CS is fully blocked. If the area is smooth,
MR should be around 16.0 and LR is close to zero (left and right angle are same).
Additional requirement is set that any point must compare with left and right
neighboring points and we pick the largest among the three neighboring points.

The reason we pick 8.0 is that we treat the fourth order continuous function as
smooth function and only need half of LR for Ω. It is easy to find there are no case
related adjustable coefficients which is quite different from many other published
hybrid schemes. However, as the mixing function, sometimes its value is too small
for the shock location, and the scheme smears too much. Our new control function,
which is in the following, is better:

Define A(i, h) =
√

min[1.0, 4.0/MR(i, h)]× LR(i, h) (2.12)
We set

Ω = (A(i − 1, h) +A(i, h) +A(i+ 1, h))/3.0.
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For A(i, h), we have the square root because min[1.0 , 4.0/MR(i, h)]×LR(i, h) is
the product of two values and both of them are smaller than one. The consequent
value becomes too small for the shock area. Therefore we use the square root
to ”recover” the value to be near 1.0 as much as we can. We use the average
of the three consecutive values as the final weight of WENO because the average
can reduce the possibility of misjudgments and makes the control function much
smoother. Following is the result of using our new control function, and we made
some comparison between the new scheme and the pure WENO.

3. Computational Results by New MUCS

3.1. New MUCS for 2-D Euler Equations. An incident shock case with an
inflow Mach number of 2 and attach angle of ϑ = 35.2410 was chosen as a sample
problem to compare the WENO and MUCS results with the exact solution. Since
the incident shock has exact solution, it is a good prototype problem for scheme
validation and comparison. It is also a difficult problem to get sharp shock without
visible oscillation for any high order scheme since it has oblique shocks involved.
The computational domain is x=2.0 and y=1.1 and a uniform grids was used. We
find that modified compact scheme (MCS) worked well on coarse and middle size
grids, but has oscillations on the fine grids (129 × 129). While modified upwind-
ing compact scheme or MUCS does not have serious oscillation, even better than
WENO after the second shock. On the other hand MUCS captured shock sharper
than WENO for all grids. The control (mixing) function did use WENO (red and
yellow: WENO dominated) to block the UCS and used UCS for smooth area (blue
area: UCS dominated). All of the comparisons are made by using same code and
same boundary treatment but different subroutines (WENO or MUCS) for deriva-
tives only. The fine grids (129 × 129 ) results are depicted on Figures 1-3 From
these figures we can find the 7th order MUCS results are very comparable with
exact solution and are better than that obtained by 5th order WENO scheme. Fig-
ure 2 (b) shows that our shock detector works pretty well and captures the shock
accurately. Our new control function (mixing function) also gives good weights for
WENO and UCS, which indicates that when the shock is met, WENO becomes
dominant gradually, but in smooth area, the scheme is dominated by UCS. Figures
3 (a) and (b) give us the comparison of pressure on the wall between our numerical
solution and exact solution, which shows that our result is very near the exact so-
lution although it is a little overshooting after the second shock. In Figures 3 (c),
(d), (e), (f) and (g), the comparisons of pressure on the wall and K=30 between our
new scheme and pure WENO are given. Figures 3 (e), (f), (g) are locally enlarged
for comparison. As seen, for pressure on the wall, although both of our new scheme
and WENO have a little overshooting and oscillation immediately after the second
shock (Figure 3.3 (f)), the pure WENO smears flow a lot. This smearing also occurs
in all other level, e.g. K=30 (Figures 3 (d) and (g)). We know the smearing should
be avoided for small length scales, especially for turbulence. Therefore, our new
scheme is much more favorable for small length scales.
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(a) (b)

Figure 1. Numerical test for 2D incident Shock on fine
grids (a) Grids (129×129) (b) Pressure contour

(a) (b)

Figure 2. Numerical test for 2D incident Shock on fine
grids (a) Mach number (b) Control function (red and yellow:
WENO dominated; blue: UCS dominated)

(a) (b)



SHOCK DETECTOR AND FOR SHOCK-BOUNDARY LAYER INTERACTION 283

(c) (d)

(e) (f)

(g)

Figure 3. Numerical test for 2D incident Shock on fine
grids (a) 7th order MUCS (b) MUCS and Exact (c) 7th order
MUCS , 5th order WENO and exact solution (d) Pressure on the
level K=30 (e) (f) (g) Locally enlarged comparisons



284 C. LIU, H. FU, AND P. LU

3.2. New MUCS for 2-D incident shock-boundary layer interaction. In
order to compare the performance of our MUCS scheme with standard WENO, we
select an incident shock case with Mach number 3 and Reynolds numberRe = 3×104

and the attack angleϑ = 32.240 (Figure 4). The grids 129× 129 and 257× 257 are
selected.

Figure 5 (b), Figure 6 (b) give distribution contours for pressure with stream
track for grid 129 × 129 and 257 × 257, respectively. The incident shock, leading
shock, separation shock, expansion waves and reflecting shock are all clearly cap-
tured. A structure of separation bubble with 5 vertexes is captured. Figure 5 (d) (e)
and Figure 6 (d) (e) depict the distribution of control function of OMGX and OMGZ
in x- and z- directions, respectively. We can find that the new scheme capture the
shock sharply. The blue area is the area where compact scheme is dominated and
the yellow area represents the area where the WENO scheme is dominated. We also
did some comparison between our new scheme and pure WENO which is depicted
in Figure 5 (f) (g) and Figure 6 (f) (g) (h) (i). From Figure 5 (f) (g) and Figure 6
(f) (g) (h) (i), we found the pure WENO has a result with a lot of oscillations and
smearing, while our new MUCS is much better.

 

(a)

Figure 4. Sketch of incident shock-boundary layer interaction

(a) (b)
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(c) (d)

(e) (f)

(g)

Figure 5. Numerical results for grids 129× 129 (a) grids of
129 × 129 (b) pressure distribution (c) Locally enlarged pressure
distribution (d) Omega in x direction (e) Omega in z direction (f)
comparison of pressure on the wall between MUCS and WENO (g)
comparison of pressure at K=50 between MUCS and WENO
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i)

Figure 6. Numerical results for grids 257× 257 (a) grids of
257 × 257 (b) pressure distribution (c) Locally enlarged pressure
distribution (d) Omega in x direction (e) Omega in z direction (f)
comparison of pressure on the wall between MUCS and WENO (g)
comparison of pressure at K=100 between MUCS and WENO (h)
locally enlarged pressure at K=1 (i)locally enlarged pressure at
K=100

4. Conclusion

1. Modified up-winding compact scheme (MUCS) with a new shock detector
and new mixing function, which uses WENO to improve upwind compact scheme,
can be used for Euler and Navier-Stokes equations for sharp shock capturing and
high resolution for small length scales.

2. The new scheme, MUCS, does not have case- related parameters.
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