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THE SEMI-CONVERGENCE OF GENERALIZED SSOR METHOD

FOR SINGULAR AUGMENTED SYSTEMS

JIAN-LEI LI, TING-ZHU HUANG, AND DANG LUO

Abstract. Recently, Zhang and Lu proposed the generalized symmetric SOR (GSSOR) method
for solving the nonsingular augmented systems and studied the convergence of the GSSOR method.
In this paper, we prove the semi-convergence of the GSSOR method when it is applied to solve
the singular augmented systems, which is the generalization of the GSSOR iteration method.
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1. Introduction

We consider the following augmented systems of the form:

(1)

(
A B

BT 0

)(
x

y

)
=

(
f

g

)
,

where A ∈ R
m×m is a symmetric positive definite matrix, B ∈ R

m×n is a matrix of
rank r with n ≤ m, i.e., rank B = r , 0 < r ≤ n. f ∈ R

m and g ∈ R
n are two given

vectors. Denote BT as the transpose of the matrix B. When r = n, note that the
coefficient matrix is nonsingular and the linear systems (1) have a unique solution.
When r < n, the coefficient matrix is singular, in such case, we assume that the
linear systems (1) are consistent. Such systems are also referred to as saddle point
problems or Karush-Kuhn-Tucker (KKT) systems. The augmented systems (1) are
important and arise in a large number of scientific and engineering applications,
such as the field of computational fluid dynamics [2], constrained and weighted
least squares problems [3], interior point methods in constrained optimization [4],
mixed finite element approximations of elliptic partial differential equations (PDEs)
[5]. Especially, see [1] for a comprehensive survey.

For the nonsingular augmented systems (1), many efficient iterative methods
based on matrix splitting as well as their numerical properties have been studied
in the literature. The preconditioned iterative methods [8, 9], the inexact Uzawa
methods [6, 10], the SOR-like method [7], the general SOR (GSOR) method [13],
the symmetric SOR (SSOR) method [15, 16] and the modified SSOR (MSSOR)
method [17] for solving the nonsingular augmented systems (1) were proposed and
analyzed, respectively. Furthermore, the general symmetric SOR (GSSOR) method
[18] was presented. In most cases, the matrix B is full column rank in scientific
computing and engineering applications, but not always. If r < n, the augmented
systems become the singular linear systems. When the linear systems are consistent,
Zheng, Bai and Yang [12] show that the GSOR method proposed in [13] can be
used to solve the singular augmented systems (1), and it is semi-convergent.

In this paper, the GSSOR method for solving singular linear augmented systems
(1) is further investigated and the semi-convergence conditions are proposed, which
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generalize the result of Zhang and Lu [18] for the nonsingular augmented systems
to the singular augmented systems.

2. The semi-convergence of the GSSOR method

Before the semi-convergence of the GSSOR method is given, we first give some
basic concepts and lemmas for latter use.

For a matrix A ∈ R
m×m, the splitting A = M −N is a nonsingular splitting if

M is nonsingular. Denote σ(A) and ρ(A) as the spectrum and spectral radius of a
square matrix A, respectively. I is the identity matrix with appropriate dimension.
Let T = M−1N , then solving linear systems Ax = c is equivalent to considering
the following iterative scheme

(2) xi+1 = Txi +M−1c, k = 0, 1, 2....

It is well known that for nonsingular systems the iterative scheme (2) is convergent if
and only if ρ(T ) < 1. But for the singular systems, we have 1 ∈ σ(T ) and ρ(T ) ≥ 1,
so that one can require only the semi-convergence of the iterative method (2). By
[14], the iterative scheme (2) is semi-convergent if and only if the following three
conditions are satisfied:

(1) ρ(T ) = 1;
(2)Elementary divisors associated with λ = 1 ∈ σ(T ) are linear, i.e., rank(I −

T )2 = rank(I − T );
(3)If λ ∈ σ(T ) with |λ| = 1, then λ = 1, i.e.,

ϑ(T ) = max{|λ|, λ ∈ σ(T ), λ 6= 1} < 1.

In this situation, the associated convergence factor is ϑ(T ). We call a matrix T

is semi-convergent provided it satisfies the above three conditions, and iterative
method (2) is semi-convergent if T is a semi-convergent matrix. On the semi-
convergence of the iterative method for solving general singular linear systems
Ax = b, for more details, one can see [11, 14, 19, 20, 21, 22]. When A is singular,
the following two lemmas give the semi-convergence property about the iteration
method (2).

Lemma 2.1 [14, 22] Let A = M −N with M nonsingular, T = M−1N . Then
for any initial vector x0, the iterative scheme (2) is semi-convergent to a solution
x of linear equations Ax = c if and only if the matrix T is semi-convergent.

Lemma 2.2 [11, 12] Let H ∈ R
l×l with positive integers l. Then the partitioned

matrix

T =

(
H 0
L I

)

is semi-convergent if and only if either of the following conditions holds true:
(1) L = 0 and H is semi-convergent;
(2) ρ(H) < 1.

Before the semi-convergence of the GSSOR method is discussed, now, we review
the GSSOR method presented in [18]. In fact, the augmented systems (1) can be
written as the following equivalent form

(3)

(
A B

−BT 0

)(
x

y

)
=

(
f

−g

)
.
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Considering the following matrix splitting:

(4) A =

(
A B

−BT 0

)
= D −AL −AU ,

where

D =

(
A 0
0 Q

)
, AL =

(
0 0
BT 0

)
, AU =

(
0 −B

0 Q

)
,

and Q ∈ R
n×n is a nonsingular symmetric matrix. Denote I as an identity matrix

with appropriate dimension. Let

L = D−1AL, U = D−1AU , Ω =

(
ωIm 0
0 τIn

)
,

where ω and τ are two nonzero real numbers. The GSSOR method is defined as
follows:

(5)

(
x(i+1)

y(i+1)

)
= H(ω, τ)

(
xi

yi

)
+M(ω, τ)

(
f

−g

)
,

where

H(ω, τ) = U(ω, τ)L(ω, τ) =

(
H11 H12

H21 H22

)

=




(1− ω)2I − ωτ(2−τ)(1−ω)
1−τ

[A−1 [−ω(2− ω)I + ω2τ(2−τ)
1−τ

×BQ−1BT ] ×A−1BQ−1BT ]A−1B
τ(2−τ)(1−ω)

1−τ
Q−1BT I − ωτ(2−τ)

1−τ
Q−1BTA−1B


 ,(6)

and

M(ω, τ) = (I − ΩU)−1(2I − Ω)(I − ΩL)−1D−1Ω,

U(ω, τ) = (I − ΩU)−1[(I − Ω) + ΩL],

L(ω, τ) = (I − ΩL)−1[(I − Ω) + ΩU ].

Thus, the GSSORmethod takes the following iterative scheme (τ 6= 1, k = 0, 1, 2, ...):
{

yi+1 = yi +
τ(2−τ)
(1−τ) Q

−1BT [(1− ω)xi − ωA−1Byi + ωA−1f ]− τ(2−τ)
(1−τ) Q

−1,

xi+1 = (1− ω)2xi − ωA−1B[yi+1 + (1− ω)yi] + ω(2− ω)A−1f.

Here Q is an approximate matrix of the Schur complement matrix BTA−1B.

When the augmented systems (1) are nonsingular, the convergence of GSSOR
method is studied in [18]. When r < n, the matrix A is singular. The following
theorem describes the semi-convergence property when the GSSOR method is ap-
plied to solve the singular augmented systems (1).

Theorem 2.1 Assume that r < n, Q is a symmetric positive definite matrix,
denote the maximum eigenvalue of Q−1BTA−1B by µmax, then the GSSOR method
(5) is semi-convergent to a solution x of the singular augmented systems (1) if ω
satisfies 0 < ω < 2 and τ satisfies the following condition:

(7) 0 < τ < min{τ1, 1} or 2 < τ < τ1 + 2,

where τ1 = 2+2(ω−1)2

ω(2−ω)µmax

.

Proof. By Lemma 2.1, we only need to describe the semi-convergence of the
iteration matrix H(ω, τ) defined by equation (6) of the GSSOR method.
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Let B = U(Br, 0)V ∗ be the singular value decomposition of B, where Br =
(Σr, 0)

T ∈ R
m×r with Σr = diag(σ1, σ2, ..., σr), U, V are unitary matrices. Then

P =

(
U 0
0 V

)

is an (m + n)-by-(m + n) unitary matrix. Define Ĥ(ω, τ) = P ∗H(ω, τ)P , here
P ∗ denote the conjugate transpose of P , then the matrix H(ω, τ) has the same

eigenvalues with matrix Ĥ(ω, τ). Hence, we only need to demonstrate the semi-

convergence of the matrix Ĥ(ω, τ).
Define matrices

Â = U∗AU, B̂ = U∗BV and Q̂ = V∗QV.

Then it holds that B̂ = (Br, 0) and

Q̂−1 =

(
V ∗
1 Q

−1V1 V ∗
1 Q

−1V2

V ∗
2 Q

−1V1 V ∗
2 Q

−1V2

)

with appropriate partitioned matrix V = (V1, V2). Denote Q1 = (V ∗
1 Q

−1V1)
−1

and Q2 = (V ∗
2 Q

−1V1)
−1. By simple computation, we have

Ĥ(ω, τ) =

(
U∗H11U U∗H12V

V ∗H21U V ∗H22V

)
,

U∗A−1BQ−1BTU = (U∗A−1U)(U∗BV )(V ∗Q−1V )(V ∗BTU)

= Â−1(Br, 0)Q̂
−1(Br, 0)

T

= Â−1BrQ
−1
1 BT

r ,

U∗A−1BV = (U∗A−1U)(U∗BV ) = Â−1(Br, 0) = (Â−1Br, 0),

V ∗Q−1BTU = (V ∗Q−1V )(V ∗BTU) =

(
Q−1

1 BT
r

Q−1
2 BT

r

)
,

and

V ∗Q−1BTA−1BV = (V ∗Q−1V )(V ∗BTU)(U∗A−1U)(U∗BV )

= Q̂−1(Br, 0)
T Â−1(Br, 0)

= Q̂−1

(
BT

r Â
−1Br 0
0 0n−r

)
.(8)

Thus

Ĥ(ω, τ) =

(
Ĥ1(ω, τ) 0

L̂(ω, τ) In−r

)
,

where

Ĥ1(ω, τ) =




(1− ω)2Im − ωτ(2−τ)(1−ω)
1−τ

[Â−1 [−ω(2− ω)I + ω2τ(2−τ)
1−τ

×BrQ
−1
1 BT

r ] ×Â−1BrQ
−1
1 BT

r ]Â
−1Br

τ(2−τ)(1−ω)
1−τ

Q−1
1 BT

r Ir −
ωτ(2−τ)

1−τ
Q−1

1 BT
r Â

−1Br




and

L̂(ω, τ) =
(

τ(2−τ)(1−ω)
1−τ

Q−1
2 BT

r , −ωτ(2−τ)
1−τ

Q−1
2 BT

r Â
−1Br

)
.

As L̂(ω, τ) 6= 0, From Lemma 2.2 we know that the matrix Ĥ(ω, τ) is semi-

convergent if ρ(Ĥ1(ω, τ)) < 1.
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When the GSSOR method is applied to solve the following nonsingular saddle
point problem

(9)

(
Â Br

BT
r 0

)(
x̂

ŷ

)
=

(
f̂

ĝ

)
,

with the preconditioning matrix Q1, and vectors ŷ, ĝ ∈ R
r, then the correspond-

ing iterative matrix of the GSSOR method is Ĥ1(ω, τ). By (8), µmax is also the

maximum eigenvalue of Q−1
1 BT

r Â
−1Br. From Theorem 3.2 of [18], we know that

ρ(Ĥ1(ω, τ)) < 1 if 0 < ω < 2 and τ satisfy (7). By the above analysis, the proof of
the theorem is completed. �

3. Conclusion

In this paper, the GSSOR method for solving singular linear augmented systems
(1) is further investigated and the semi-convergence analysis are given under certain
conditions, which generalize the result of Zhang and Lu [18] for the nonsingular
augmented systems to the singular augmented systems.
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