
INTERNATIONAL JOURNAL OF c© 2012 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 9, Number 2, Pages 257–269

PARALLEL DATA PARTITIONING STRATEGY IN SOLVING

LARGE SCALE ELECTROMAGNETIC SCATTERING

PROBLEMS

YUE HU, WEIQIN TONG, XINGANG WANG, AND XIAOLI ZHI

Abstract. The multilevel fast multipole algorithm (MLFMA) has shown great efficiency in

solving large scale electromagnetic scattering problems. However, when unknowns become up to
tens of millions, it is not trivial to keep high performance because of the complicated structure

and calculation of MLFMA. In order to get rid of the bottleneck caused by load balancing, a

parallel data partitioning strategy is proposed based on the hierarchical structure of an oct-tree
of MLFMA. We present our data partitioning strategy in the light of different layers’ properties

including the processing of three kinds of layers in the tree and a fine-grained decomposition.

We also put forward a solution of a coexisting data correlating problem, using a transition layer.
Meanwhile, with the purpose of minimizing communication time in distributed memory system, a

redundant technique is applied in the distributed layer. Parallel efficiency analysis demonstrates

that the computational cost in parallelization of MLFMA can be asymptotically cut, and a high
parallel efficiency can be obtained in our implementation.

Key words. Multilevel Fast Multipole Algorithm (MLFMA), Parallel Data Partitioning Strategy,
Hierarchical Structure, Data Correlating Problem, and Redundant Technique.

1. Introduction

To achieve the fast computing characteristic of large scale electromagnetic prob-
lems, the Multilevel Fast Multipole Method (MLFMA) is applied, as well as Message
Passing Interface (MPI) for network communications among processors. MLFMA
was optimized by Song and Chew [1] in 1995, which has been widely used in re-
cent years. Song and Chew implemented the MLFMA with O(NlogN) complexity,
where N is the number of unknowns, and the memory requirement using translation,
interpolation, anterpolation (adjoint interpolation), and a grid-tree data structure.

For the actual demand, we hope to develop a program to solute a full-sized
aircraft problem that could run concurrently from single workstations to network-
linked clusters. For the sake of a full-sized airplane, unknowns could be up to tens
of millions. Although MLFMA has shown its high performance in reducing the
computational complexity and the memory complexity of Matrix Vector Multipli-
cations (MVMs) from O(N2) to O(NlogN) , when N extends to millions, several
encumbrances have to be faced. And simple parallelization strategies usually fail to
provide efficient solutions, owing to massive communications, poor load-balancing
and necessary duplications. Advanced parallelization techniques have been pro-
posed to improve the parallelization of MLFMA by using preconditioning strategies
[2], extensively investigate the parallelization of MLFMA, identify the bottlenecks
and provide remedial procedures [3], and even a novel method called nondirective
stable plane wave multilevel fast multipole algorithm is developed to evaluate the
low-frequency interactions which cannot be managed by MLFMA [4]. Especially

Received by the editors November 9, 2009 and, in revised form, June 21, 2010.

2000 Mathematics Subject Classification. 35R35, 49J40, 60G40.
This research was supported by Aviation Industry Information Center of China (No.J50103),

and the Graduate Innovation Fund of Shanghai University, Shanghai Leading Academic Discipline

Project (No.SHUCX101062).
257



258 Y. HU, W. TONG, X. WANG, AND X. ZHI

after answered the question that whether 10 million is big [5], Velamparambil and
Chew analyzed the communication pattern, computational behavior and studied
the scalability of a distributed memory implementation of MLFMA called ScaleME
[6].

Recently, we developed a hierarchical partitioning strategy to fit for the multi-
level structure of MLFMA. With this method an enhanced load-balancing is ob-
tained, parallelization of MLFMA is improved significantly, and it has become
possible for us to solve a three-dimensional full aircraft discretized up to 10 million
unknowns with optimal parallel efficiency. In this paper, we present the details of a
parallel MLFMA data partitioning implementation including investigating the par-
allelization procedure by focusing on different parts of an oct-tree and identifying
a fine-grained data decomposition. Our approach involves the partitioning strate-
gies to distribute tasks equally among processors and minimize the interprocessor
communications.

The rest of the paper is organized as follows. In section 2, the MLFMA equations
we use are briefly described, as well as a data collecting scheme and the layout of the
oct-tree of MLFMA in our implementation. Section 3 narrates a fine-grained data
decomposition, followed by the detail partitioning strategies of each layer of the
oct-tree in section 4. The results are analyzed in section 5, and section 6 introduces
our conclusion and future work.

2. Background

2.1. Multilevel Fast Multipole Algorithm (MLFMA). For the solution of
the electromagnetic scattering problems involving three-dimensional conducting
bodies with arbitrary shapes, Multilevel Fast Multipole Algorithm, which is detailed
in [7]-[10], performs efficiently together with the Fast Multipole Method (FMM) [11]
and a large problem can be solved iteratively, where the required Matrix-Vector
Multiplications (MVMs) are involved. The application of boundary conditions for
the electric filed and the magnetic field on the surface of an object leads to the
Electric Field Integral Equation (EFIE) and the Magnetic Field Integral Equation
(MFIE), respectively. For closed surfaces, EFIE and MFIE can be combined to
obtain the Combined Field Integral Equation (CFIE). These three equations are
briefly described as follows and considered as the point of departure in our work.

• EFIE

(1) n̂× L(
−→
J ) = n̂×

−→
E ′.

where

L(
−→
J ) = −

−→
E s = jkη

∫
s

[
−→
J ((−→r )′)G+

1

k2
5′ ·
−→
J ((−→r )′)5G]ds′.

• MFIE

(2)
1

2
J(r) +−→n ×K(

−→
J ) = −→n ×

−→
H i.

where

K(
−→
J ) =

∫
s

−→
J (−→r )×5Gds′.

• CFIE



PARALLEL DATA PARTITIONING STRATEGY IN ELECTROMAGNETIC SCATTERING 259

(3) −α−→n ×−→n × L(
−→
J ) + (1− α)η[

1

2
J(r) +−→n ×K(

−→
J )]

= −α−→n ×−→n × Ei(−→r ) + (1− α)η−→n ×Hi(−→r ).

Here −→n , Ei and Hi denote any unit tangent vector on s, the incoming electric
field vector and the incoming magnetic field. For the solution of problems involving
closed surfaces, CFIE is preferable since it is free of the internal-resonance problem
and provides better-conditional matrix equations than EFIE and MFIE. We at-
tribute this favorable quality of CFIF to its linear combination of EFIE and MFIE
and equation (3) can be reformulated as (4).

(4) CFIE = αEFIE + (1− α)ηMFIE.

The combination parameter α ranges from 0 to 1.
Furthermore, MLFMA splits the Matrix-Vector Multiplications (MVMs) re-

quired by the iterative solvers as (5).

(5)
−→
Z × x =

−→
Z N × x+

−→
Z F × x.

In formula (5), the first term
−→
Z N is the contributions from the near-neighbor

field, which is calculated directly and stored in memory, while the second term
−→
Z F is

the interactions of the far-neighbor field under FMM, which are computed intri-
cately in a group-by-group manner. So the computing field can be divided into
two parts, i.e. the near-neighbor field and the far-neighbor field. There is the load
balancing of the near-neighbor field [12], and in what follows, the load balancing
and data partitioning of the far-neighbor field would be narrated. In MLFMA, the
interactions of the far-neighbor field are calculated in a multilevel strategy using
an oct-tree structure constructed from geometry data, which is derived from three-
dimensional conducting bodies. As shown in Fig.1, the entire object is first nested
into a large cube [1], which can just enclose it and its edge length is 2n times of the
half wave length, where n = 0, 1, 2...N . The cube then be divided into eight smaller
cubes, and each sub-cube would be recursively subdivided into smaller ones until
the edge length of the finest cube is about half of the wavelength.

In order to organize these cubs, a distributed oct-tree is constructed using Morton
Ordering, as depicted in Fig.2, the nodes and leaves in the tree are labeled by the
Morton Key numbers. Because Morton Ordering perfectly implies the topology
structure of MLFMA and can minimize the efficiency loss during pointer conversion,
owning to its convenience in representing a distributed tree in distributed memory
architecture.

2.2. Parallel Oct-Tree Layout. The oct-tree works as the basic architecture
and is built in a bottom-to-up approach initially to denote at which level a certain
cube is. Several approaches have been discussed in the literatures [13, 14] for the
tree’s construction, but we construct it in a more flexible way, for more information
in Section 4.

MLFMA has a property that at lower levels there are more Morton Keys with
fewer samples, whereas fewer Morton Keys but more samples at higher levels. [15]
puts forward a hierarchical partitioning strategy based on partitioning both clusters
and field samples among processors at all levels of the multilevel tree structure, that
is much different to our scheme. In our approach, Morton Keys are partitioned in
the lower levels (distributed layer) and samples in the higher levels (shared layer).To



260 Y. HU, W. TONG, X. WANG, AND X. ZHI

Figure 1. Hierarchical group division of MLFMA

Figure 2. The layout of the oct-tree

decompose the Morton Keys and samples among participating processors, a fine-
grained decomposing strategy is considered in section 3.

3. Fine-grained Decomposing Strategy

The objects to be partitioned are named as computing units in this paper, such
as the Morton Keys and samples, etc. No.0 processor is the master node who fig-
ures out the total computing units and arranges each processor’s task equals to
the quotient initially. If some computing units remained, the master node would
adjusts certain processors’ task by adding one, from the processor who has the
biggest id value until there are no computing units. Finally, a global communica-
tion is used to tell each processor’s calculating section, processors then fulfill their
computing queues’ loading.

The dividing process can be obtained by lucid math computing, the code in our
implementation using C++ programming language is:

num my work = total number / mpi num procs;
remainder = total number % mpi num procs;
begin my work = mpi my id * num my work;
if((mpi my id-mpi num procs) > -remainder)
{

num my work++;



PARALLEL DATA PARTITIONING STRATEGY IN ELECTROMAGNETIC SCATTERING 261

begin my work += mpi my id - mpi num procs + re-
mainder;
}

Using this approach, the maximum load balancing gap between all the pro-
cessors is only one computing unit, and the master processor is passed over to
minimize its workload. Moreover, the data are monotonous in every processor and
so as these data among processors, which means that the data in the processors
whose id numbers are smaller must be bigger or smaller than those in the processors
whose id value are bigger. That is vital for the following computing.

4. Data Partitioning Strategy of the Far-neighbor Field’s Oct-tree

Due to the fact that solving large scale scattering problems is time-consuming,
the critical task of parallelization of MLFMA is the load balancing and economic
usage of memory. We propose an automatic load-balancing method based on a
compressed oct-tree using parallel domain subdivision algorithm to effectively avoid
the load balance problem between different processors. In this section, the details
of the oct-tree partitioning implementation of MLFMA are based on Fig.2.

• A. Distributed Layer

One method we used to use is detailed in [16], but there were some deficiencies.

† First, because of the limitation of load balancing strategy in the
distributed layer, there were two global communications between
processors in pre-constructing and during constructing this layer,
respectively;

† Second, in order to compensate this deficiency, three global com-
munications were added after the distributed layer’s construction.

For this problem, our new approach requires all processors to construct the
global tree concurrently for an easy way to establish the reciprocal distribution of
each local tree and minimize communications. The distributed layer is concurrently
divided in a top-to-bottom approach just on the contrary way of [16]. At the top
level of this layer, the clustering algorithm is applied to reduce storage requirement
and communications, which means that the near-neighbor Morton Keys are loaded
in the same node. Then children of all the Morton Keys’ at the lower levels are
recursively assigned to the same node. Thus, only one broadcast is needed by
the master node to tell other processors the finest level’s Morton Keys for their
constructing of the global tree and the distributed layer.

Moreover, a redundant layer can be employed in the distributed layer to store
the far-neighbor grids, so the communications to fetch the far-neighbor grids’ ag-
gregations can be further cut down in the redundant layer.

• B. Redundant Layer

In the distributed layer, because of the data partition in view of load balancing,
some of the far neighbors of Morton Keys may be dispersed in other processors, and
some communications are unavoidably needed. The communication establishing
scheme is carefully considered.

Let L(l) denotes the data set at lth level. We define Fi,j(P ) as Morton Key i′s jth
far neighbors, who is belonging to L(l) at processor P, and the set {{Pi, Pj}, ..., {Pk, Pl}} de-
notes the communication pairs.

Theorem 1. The communication pair {Pi, Pj} can be confirmed iff the following
condition is met,



262 Y. HU, W. TONG, X. WANG, AND X. ZHI

Table 1. The total computing time and communication time in experiments

Total Time(s) Communication Time(s) Proportion

28.902 5.918734 28.3%
31.481 18.136484 57.6%
261.721 111.754554 42.7%
524.630 353.109776 67.3%

(6) ∃k ∈ Fi, l(Pj) ∩ k ∈ Pj ∩ k ∈ L(l) ∩ i ∈ L(l)for alli ∈ Pj .

So the set {{P0, Pi}, ..., {P0, Pj}} indicates the processors with whom processor P0 needs
to communicate.

However, as listed in Table 1, from our experiments in computing different prob-
lems, communication in distributed memory system plays an important part in
parallel computing. And when the total computing time increases, a rapid increase
in the proportion of communication time to the total computing time can be noted.
To exploit the parallel efficiency potentiality, a compromise between communica-
tion and calculation plus storage is of great value. In view of this problem, we
make use of the redundant technique to optimize, and levels using this technique
are uniformly called redundant layer .

In order to make best use of this skill, the redundant layer starts from the finest
level as depicted in Fig.2, where the initial geometry data are read assuming the
data at each level of this layer have been well divided. In this layer, all the data are
selected by the communication set {{Pi, Pm}, ..., {Pi, Pn}} , where Pi is the local
processor and m < n .

We note that as the number of levels in redundant layer increases, memory oc-
cupancy in each processor becomes asymptotically more. In a certain parallel com-
puting system, if there is little memory available, we hope to reduce the redundant
levels, otherwise, increase them to minimize communications. For a better adapting
to different systems, this layer is implemented in a flexible way that its top level
can range from the lowest to the highest level of the distributed layer, even there
can be no redundant layer at all. Before running our program, the only thing the
users need to do is inputting the number RN of redundant levels, where RN ≥ 0 .
If RN is bigger than the maximum value DN , which is the number of distributed
levels, the top level of the redundant layer would be automatically arranged at the
highest level of the distributed layer. In this case, the whole distributed layer would
use the redundant technique.

• C. Shared Layer

The decomposition of shared layer is from bottom to up as illustrated in Fig.2.
In this layer, the parallelization is used to decompose the sample matrix. Samples
on the unit sphere generated by the composite Gauss-Trapezoidal Rule are viewed
as a 2-D array. Usually, a Gaussian Quadrature Rule is used along the θ direction
and a Trapezoidal Quadrature Rule along the φ direction. Let Nθ,l be the order of
the Gaussian Quadrature, Nφ,l the order of the Trapezoidal Rule, and Dl the cube
size at level l, their relationships are shown in equation (7) and (8).

(7) Nθ,l ≈ kDl.



PARALLEL DATA PARTITIONING STRATEGY IN ELECTROMAGNETIC SCATTERING 263

Figure 3. Block communication division in θ and φ directions

Figure 4. Block communication division in θ direction

(8) Nφ,l = 2Nθ,l.

It is figured that the best partitioning scheme for this layer is to minimize the
communication volume and decrease the number of processors with whom the local
processor needs to communicate. For such purpose, we propose block communica-
tion [18] making use of the interpolation theory in this section. The implementation
process is as follows.

Step 1— The Arrangement of Processors: Processors should be arranged
in both θ and φ directions, which is referred to equation (8). As presented in Fig.3,
the total number of processors and the number of processors in θ and φ directions are
denoted by PN , Pθ and Pφ , respectively, which satisfy the following requirements,

(9) Pφ = 2n, n = 1, 2, .., N.

(10) Pφ × Pθ = PN .

(11) Pφ : Pθ = 2 : 1.

Since Pφ is an even number, so is PN . But once PN is confirmed, the third
criterion maybe cannot be satisfied except for PN = 2 × N2, where N ≥ 1. In
this case, in order to make use of resources, the third rule can be ignored, but the
former two must be fulfilled.

Step 2— The Arrangement of Processors: In the shared layer, samples
are partitioned in two directions.

� In the θ direction: Owning to the fact of random distribution
for samples in this direction, we utilize the relationship between



264 Y. HU, W. TONG, X. WANG, AND X. ZHI

fathers and children in the interpolation method to minimize the
data size during communication and optimize the block commu-
nication. First, samples are equally divided according to the fine-
grained decomposition at the top level, i.e. the third level, since we
can directly compute without too much complexity at level three
(the level number begins from one). Second, the lower levels are
recursively partitioned according to their fathers. That is, the chil-
dren whose values are smaller than the last sample Father’s value
at the upper level, are assigned to the same processor with which
Father in.

In this way, an optimal load balancing is obtained. Moreover,
each processor is assigned task, which means that the abnormal
termination in this direction by zero-load in some processors dur-
ing the global communications can be avoided. Take Fig.4 as an
example, assume father has been assigned in processor P0, and the
son in its lower level is the last one, whose valve is smaller than
the father. The son would be arranged in processor P0 either, as
well as those before it in the son’s level.

� In the φ direction: Samples are equidistantly located along this
direction and the computing region is [0, 2 π ], so we equally di-
vide this region into parts at each level of this layer, according to
the fine-grained decomposition. These subregions are then succes-
sively assigned to the processors, which are arranged in this direc-
tion. Thus samples in every processor are almost the same and the
interpolation communications in this direction can be guaranteed.

• D. Transition Layer

The processing of the far-neighbor field involves three steps called the upward
pass or the aggregation phase, the translation phase and the downward pass or the
disaggregation phase [17]. The distributed layer and the shared layer run through
this process, and they need to collaborate with each other.

In order to reduce complexity and form a clear boundary, we introduce a tran-
sition layer as shown in Fig.2. This layer bears the interface of the distributed
layer and the shared layer. In this layer, Morton Keys and samples are redistributed
and some work should be done to avoid.

(1) The communications between ghost boxes from distributed layer to transi-
tion layer in the aggregation phase;

(2) The interpolating communications from transition layer to shared layer in
the aggregation phase;

(3) The communications between ghost boxes from transition layer to dis-
tributed layer in the disaggregation phase;

(4) The communications of transfer factors from transition layer to distributed
layer in the disaggregation phase.

To implement it as clear and flexible as possible, this layer is set at different
levels. As illustrated in Fig.5, in the aggregation phase, it is at the top level of
the distributed layer, and in the disaggregation phase, at the bottom level of the
shared layer.



PARALLEL DATA PARTITIONING STRATEGY IN ELECTROMAGNETIC SCATTERING 265

Figure 5. The transition layer is at different levels during the
aggregation phase and disaggregation phase

Table 2. The detail information of two testing problems in experiments

Testing Model Frequency NU NL NCA SL

Diamond937 9.375 887,514 9 11 5
Diamond577 5.7752 240,417 8 51 3-7

5. Experimental Results and Discussions

In this section, numerical results are listed for two electromagnetic scattering
objects to demonstrate the validity of the parallel strategy proposed in this paper.
The geometries considered include two diamonds, whose outlines are very similar to
aircrafts. The detail testing information of the two objects are described in Table 2,
where the notations NU, NL, NCA and SL represent the number of unknowns,
number of levels, number of computing angles and initial level of the shared layer,
respectively.

The tests were conducted at Shanghai Super Computing Center and Aviation
Industry Development Research Center of China. The inner super computer Dawn-
ing 5000A at Shanghai Super Computer Center has two nodes, each node contains
16 AMD Barcelona (2.0GHz) processors and 64G memory. The super computer at
Aviation Industry Development Research Center of China is a cluster. For the sake
of secret, parameters are not detailed here.

In this section, we would show the experimental results from three aspects, i.e.
the effect of the redundant layer, the parallel efficiency and the memory requirement
varying with different initial levels of the shared layer on four processors.

The parallelization efficiency is defined as

(12) ηm =
Tn/Tm
m/n

× 100% =
Tn

m
n × Tm

× 100%,m > n.

where Tn and Tm are the processing time with n and m processors, respectively.
This equation is used owning to the impossibility to compute the diamond model
with a single processor, and our parallel computing ultimate target is that the
processing time can be reduced to 100× n/m percent of Tn , which indicates that
m/n can be the parallel standard. Meanwhile, once n equals to 1, equation (12) is
just the canonical formula T1/(p× Tp) , and in this paper we choose n as 4.

• The Effect of the Redundant Layer

In order to evaluate the redundant layer’s efficiency, two kinds of computing
systems are chosen. One is 16 shared-memory processors at Shanghai Super Com-
puting Center. Another is a cluster using 32 processors at Aviation Industry De-
velopment Research Center of China. The shared layer starts from level five. And
the experimental results are respectively presented in Fig.6 and Fig.7, where a



266 Y. HU, W. TONG, X. WANG, AND X. ZHI

Figure 6. The processing time and acceleration according to the
size of the redundant layer, which are tested at Shanghai Super-
Computing Center

Figure 7. The processing time and deceleration according to the
size of the redundant layer, which are tested at Aviation Industry
Development Research Center

notation Rx is used to denote the number of levels in redundant layer. The nota-
tion R0 means there is no redundant level in the whole tree.

Fig.6 illustrates that the computing time is increasing along with the redundant
levels’ increasing, i.e. the accelerating rate becomes bigger and bigger, which is
from 0.7% to 20% . We consider this phenomenon to have a relationship with the
computing system. For the sake of the program testing benchmark, the condition
in shared memory system is different from that in distributed memory system.
When some calculating task is added to take place of some communications, the
time reduced is always less than that added in shared memory system, because the
communication time is much less than that in distributed memory system.

As demonstrated in Fig.7, the condition in distributed memory system is abso-
lutely opposite, the redundant layer displays its efficiency in this system.

• The Parallel Efficiency



PARALLEL DATA PARTITIONING STRATEGY IN ELECTROMAGNETIC SCATTERING 267

Figure 8. Parallel efficiency for a complex diamond

Figure 9. Memory occupancy in four processors with different SL

To assess the parallel efficiency, we contrast our new strategy with the old one.
These tests were conducted at Shanghai Super Computing Center and the shared
layer also started from the fifth level. Since the condition discussed above, the
redundant layer was not used.

Fig.8 shows that the new strategy has greatly reduced the calculating time,
and a high parallel efficiency above 80% when the processors are less than 20 has
been obtained in our implementation. However, the bottom level of the shared
layer is not trivial to determine for the best performance according to different
problems. Moreover, distributed memory and shared memory coexist in lots of
parallel computing architectures, the number of levels in redundant layer is also
need an available strategy to consult. Once these two problems are solved, the
parallel efficiency would get closer to the best.

• The Memory Occupancy

Since the memory requirement is huge in computing large scale scattering prob-
lems, the memory strategy would greatly influence the parallel efficiency. Moreover,
the initial level of the shared layer SL can cause uncertainty or confusion about the
best computing time. So, in this section, we make some effects to check our mem-
ory strategy under different SL. The experiments are done at Aviation Industry
Development Research Center of China, and the results are represented in Fig.9.



268 Y. HU, W. TONG, X. WANG, AND X. ZHI

From Fig.9, we can see that at the case of SL = 3, the gap in the memory
requirements among processors is very big, which could cause expensive waiting
time in the course of parallel computing. However, the memory requirement gap
is rapidly reduced when SL = 4, so as SL > 4. Whereas, the total memory
requirement appears increase as SL growing, and the best condition is SL = 5.
This conclusion has been confirmed by our plentiful tests that SL can be set at
three for small problems or five for large problems. But, we desire a systematic
analysis to arrive a theoretical conclusion to compute different shapes and scales of
problems.

6. Conclusion Remarks

In this paper, we have discussed our parallel data partitioning strategies in fine-
granular scale and large scale aspects. To narrate the large scale partitioning
scheme, a detail hierarchical data partitioning strategy of the far-neighbor field,
using an oct-tree, is presented. The new parallel partitioning algorithm proposes a
series of measures to cut down much communication time in the distributed layer
and shared layer. On one hand, as shown by the experimental results, an optimal
parallel efficiency has been obtained. On the other hand, the experimental results
also point out that whether to use the redundant layer or how many levels are
involved in the redundant layer depends on the computing environment and prob-
lem’s size. The redundant layer can give full play to its advantage to compute large
scale problems in the distributed memory system.

Until recently, we have solved a series of sized electromagnetic problems using
this new data partitioning strategy. The scattering objects were sphere, cube, ring,
diamond as well as tablet, wimble and cone-spheroid ranging from 0.15GHz to
5.7GHz, etc. And our goal is to solute a large scale dense matrix equation with
more than 10 million unknowns effectively. We regard this as our milestone target
of a massively parallel implementation of MLFMA.

The further work will focus on the memory and computing optimization to im-
prove its performance, a detail performance analysis of the aggregation, translation
and disaggregation at different levels will be given.

Acknowledgments

The authors would like to show warm thankfulness to Hong-xia Zhang, Liang-
cheng Zhu and Li-xing Zhang for their helpful comments on earlier drafts of this
paper, and their helpful suggestions.

References

[1] J. M. Song and W. C. Chew, Multilevel fast multipole algorithm for solving combined field
integral equations of electromagnetic scattering, Microwave and Optical Technology Letters,

10, 1995, 14-19.
[2] Tahr Malas and Levnt Grel, Incomplete LU preconditioning with the multilevel fast multipole

algorithm for electromagnetic scattering, Journal on Scientific Computing, 29, 2008,121-140.
[3] Ö. Ergl and L. Grel, Efficient Parallelization of the Multilevel Fast Multipole Algorithm

for the Solution of Large-Scale Scattering Problems, IEEE Transactions on Antennas and
Propagation, 56, 2008, 2335-2345.

[4] Ignace Bogaert, Joris Peeters and Femke Olyslager, A Nondirective Plane Wave MLFMA
Stable at Low Frequencies, IEEE Transactions on Antennas and Propagation, 56, 2008, 3752
- 3767.

[5] Sanjay Velamparambil, Weng Cho Chew and Jiming Song, 10 Million Unknowns: Is It That
Big?, IEEE Transactions on Antennas and Propagation, 45, 2003, 43-58.



PARALLEL DATA PARTITIONING STRATEGY IN ELECTROMAGNETIC SCATTERING 269

[6] Sanjay Velamparambil and Weng Cho Chew, Analysis and Performance of a Distributed

Memory Multilevel Fast Multipole Algorithm, IEEE Transactions on Antennas and Propa-

gation, 53, 2005, 2719 - 2727.
[7] C. C. Lu and W. C. Chew, A multilevel algorithm for solving boundary integral equations of

wave scattering, Microwave and Optical Technology Letters, 10, 1994, 466-470.

[8] B. Dembart and E. Yip, A 3-D fast multipole method for electromagnetic with multiple levels,
Electromagn.,CA, 1995, 621-628.

[9] M. A. Epton and B. Dembart, Multipole translation theory for the threedimensional Laplace
and Helmholtz equations, SIAM J. Sci. Comput., 16, 1995, 865-897.

[10] J. M. Song and W. C. Chew, Multilevel fast-multipole algorithm for solving combined field

integral equations of electromagnetic scattering, Microwave and Optical Technology Letters,
10, 1995, 14-19.

[11] A. Brandt, Multilevel computations of integral transforms and particle interactions with

oscillatory kernels, Computer Phys. Comm., 65, 1991, 24-38.
[12] Wang XinGang, Tang HuaNing, Zhi XiaoLi, Ni WeiLi and Tong WeiQin, Load Balancing and

Data Locality of the Near-Field Interaction in the Parallelization of MLFMA, Proceedings of

2008 China-Japan Joint Microwave Conference, 1, 2008, 347-349.
[13] A.Y. Grama, V.Kumar, and A.Sameh, Scalable parallel formulations of the bames-hut method

for n-body simulations, Supercomputing ’94 Proceedings, 1994, 439-448.

[14] M.S. Warren and J.K. Salmon, A parallel hashed oct-tree N-body algorithm, Supercomputing
’93 Proceedings, 1993, 12-21.

[15] Özgr Ergl and Levent Grel, A Hierarchical Partitioning Strategy for an Efficient Paralleliza-
tion of the Multilevel Fast Multipole Algorithm, IEEE Transactions on Antennas and Prop-

agation, 57, 2009, 1740-1750.

[16] Hailin Guo, Xiaoyan Xue, Xingang Wang, Weiqin Tong and Weili Ni, An Implementation of
Parallel MLFMA on a Cluster of Computers with Distributed Memory, International Con-

ference for Young Computer Scientists, 2008, 1379-1383.

[17] J. M. Song, C. C. Lu, and W. C. Chew, MLFMA for electromagnetic scattering from large
complex objects, IEEE Transactions on Antennas and Propagation, 45, 1997, 1488-1493.

[18] Wang Xingang, Cheng Bin and Tong Weiqin, A New Parallel Strategy for MLFMA Based

on the Partitioned Blocks, International Conference on Information Science and Engineering,
2009, 43-46.

School of Computer Engineering and Science, Shanghai University, Shanghai, 200072, China

E-mail : hiyuehu@gmail.com

School of Computer Engineering and Science, Shanghai University, Shanghai, 200072, China

E-mail : wqtong@staff.shu.edu.cn, wxg@shu.edu.cn and xlzhi@mail.shu.edu.cn


