
INTERNATIONAL JOURNAL OF c© 2012 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 9, Number 2, Pages 232–246

HYBRID PERFORMANCE MODELING AND ANALYZING OF

PARALLEL SYSTEMS

BIN CHENG, WEIQIN TONG, AND XINGANG WANG

Abstract. Performance is a key feature of parallel system. However, there is a great gap between
the peak performance and performance attainable by a practical application. The model-based
performance evaluation may be used to support the performance-oriented program development for
parallel system. In this paper a hybrid TCPN model is proposed to describe the parallel program
and the resources respectively. This method can bring less effect to modify the program structure
because of running environment changes. And the performance engineering activities based on
this model ranges from performance prediction in early development stages, performance analysis
in the coding phase, to locate the performance bottleneck and modify it. After the correctness
verification of the TCPN model, a reachable graph can be got. Then the further performance-
tuning can be done by summing the execution time of corresponding action in the critical path.

Key words. Timed Coloured Petri Net, parallel system, formal method

1. Introduction

Compared to the traditional development process of sequential software where
performance issues are insufficiently considered one is now convinced that perfor-
mance evaluation is a critical factor in the upcoming parallel software development
methodology. But performance orientation in the development process of parallel
software is motivated by outlining the misconception of current approaches where
performance activities come in at the very end of the development, mainly in terms
of measurement or monitoring after the implementation phase. At that time ma-
jor part of the development work is already done, and performance pitfalls are
very hard to repair. So a development process for parallel programs that launches
performance engineering in the early design phase is needed.

In this paper we put forward a hybrid approach to support for functional and
temporal specification which can specify various aspects of parallel system like
software, such as control flow, data flow, communication, synchronization and so
on, and hardware, such as processors, memory, communication media etc. It is
simple but expressive graphical means. This novel method can develop parallel
software by performance engineering during the whole parallel development cycle. It
means the performance analysis begins at the early design phases and goes on until
the completion of the application, not work during or after the running procedure
like some test tools now. Otherwise, it happens often that a correct program is a
program with lower performance and leads to the huge expenses to modify program.

The rest of this paper is organized as follows: after the briefly introduction of the
problem that need to be solved in Section 1, influencing factors of parallel system
performance will be analyzed in Section 2 and a time model of parallel program is
built. PRM model based on Timed Coloured Petri Net is proposed. The formal
models of parallel program and executive environment are defined in detail. There is

Received by the editors December 31, 2010 .
2000 Mathematics Subject Classification. 35R35, 49J40, 60G40.
This research was supported in part by Shanghai Leading Academic Discipline Project, Project

Number: J50103.

232

HYBRID PERFORMANCE MODELING AND ANALYZING OF PARALLEL SYSTEMS 233

an example in Section 3 which demonstrates the building process and the analyzing
of the TCPN model. Section 4 concludes this paper and introduces the future work.

2. Hybrid Performance Modeling and Analyzing

Formal methods are frequently applied in industries to build mission-critical sys-
tems where insufficient verification can cause human injury or large-scale financial
loss. The topic of using the formal method to identify the correctness verification
and performance analysis of the parallel program gains a lot of attention [5,6].

Petri nets provide the foundation of the graphical notation and the basic prim-
itives for modeling parallel, communication, and synchronization. It is a strict
formal tool of mathematical modeling which can transform the Petri nets model
into mathematical problems or simulation models. Then the qualitative and quan-
titative analysis of the system performance can be easy. However, the basic Petri
nets only record the number of token not the individual character. And excessive
description about the individual changes makes too many nodes of the Petri nets to
characterize the complex process of the system and decreases the abstract capacity.
To solve these problems many authors propose extensions of the basic Petri nets
model.

Several authors have extended the basic Petri net with coloured tokens. In these
models tokens have a value, often referred to as ’colour’. There are several reasons
for such an extension, such as uncoloured Petri nets describe real systems tend to be
complex and extremely large, tokens often represent objects or resources which have
attributes in the modeled system. These ’coloured’ Petri nets allow the modeler to
make much more succinct and manageable descriptions.

Petri nets execute transition firings instantaneously, i.e. there is no time to be
consumed, which is certainly sufficient for reasoning about the quality of system be-
havior, such as synchronization. To make the Petri nets formalism adequate also for
quantitative, i.e. performance, analysis, finite timing of activities can be expressed
by associating a time concept to places, transitions, tokens and any combination of
them.

Compared to another formal methods, only Timed and Coloured Petri Net(TCPN)
is suitable to model the large and complex parallel systems and more effective to
analyze synchronization, communication, performance and reduce the possibility of
state explosion.

2.1. PRM Model based on TCPN. It’s figured that the performance of par-
allel systems is not only determined by the performance of the hardware itself but
also by the structure of the parallel program and the assignment of program parts
to resources in this paper. The actual performance is determined by the interdepen-
dencies between hardware performance and the requirements of parallel programs,
i.e. the proper utilization of hardware performance by the program. It means the
performance measures of interest are the run time of the parallel program and the
degree of hardware utilization.

With PRM[1] a modeling technique has been given considering hardware re-
sources, parallel program and mapping between them as the performance influenc-
ing factors for the prediction of performance of parallel computations running on
parallel hardware. The separation of the three specification elements should enable
to vary each of them, as far as possible, independently from the other specifications.
This approach can realize various mapping between the parallel program and the
resource with minimal additional effort and compare the performance of program
running on different resource.

234 B. CHENG, W.Q. TONG, AND X.G. WANG

The performance analysis procedure of parallel system based on performance
model is illustrated in FIG. 1. In the Program Model, each task of fi the program
is described in terms of the operations performed and expressed as a function of
the program character parameters P=(f1, f2...fn). In the Resource Model, each
machine resource is described by their performance character ri, such as the com-
munication bandwidth, computing speed, storage speed, etc.

The most important layer of this model is the mapping between the task fi of
parallel program and the resource ri. The formal description of program model, re-
source model and mapping can be converted a timed coloured Petri net model(TCPN)
and analyzed. It is a simulation process. Its output is the execution time of the
program, the utilization of the hardware resource, speedup and other performance
measures. Analysis the performance report can tell the programmer where the bot-
tleneck is and how to modify the program or improve the hardware architecture.
The model that combines Program Model with Resource Model is referred to as
hybrid model.

Fig. 1. Performance analysis procedure of parallel system based
on performance model

2.2. Static Structure of TCPN. Definition 1 S={P-TCPN, R-TCPN, M} is
the model of parallel systems. P-TCPN is the model of parallel program based on
TCPN. R-TCPN is the model of resource based on TCPN. And M is the mapping
between P-TCPN and R-TCPN.

Definition 2 P-TCPN =(Pp, Tp, Ap, C,Φ, FT) satisfying the following require-
ments:

(1) Pp is a finite set of places. A place contains zero or more tokens. A token
has 3 attributes < p, v, tm > to denote a token in place p with value v and time tm.
v is the colour of the token and tm is the timestamp that token arrives at the p.
Pstart and Pend are E1.Ep1 and En.Epm denote the start place and the end place
of P-TCPN respectively.

(2) Tp is a finite set of transitions. Pp ∩ Tp = ∅.
(3) Ap is a set of flow relations, Ap ⊆ (Pp × Tp) ∪ Tp × Pp). It shows the track

of tokens flowing in the net.
(4) C is a colour function. It is a multi-set. Each pi ∈ Pp has a set of colours

attached to it, i.e. v ∈ C(pi).

HYBRID PERFORMANCE MODELING AND ANALYZING OF PARALLEL SYSTEMS 235

(5) Φ is the set of functionalities of Tp. ∀ti ∈ Tp finishes partial function of the
program, which is Φ(ti).

(6) FT is the set of time functions of Tp. FT (ti) is the time delay to realize Φ(ti)
and also describes the interval that ti occupies the related resources.

P-TCPN oriented parallel application model is used to specify the structure,
functionality and operation character. Each pi ∈ Pp is a state of an object and
each ti ∈ Tp is a change or an event. The token is the object or the condition of pi.
∀ti ∈ Tp is either a delay transition or an instant transition, which is represented by
box or bar. If a transition spends some time on consuming tokens from the input
places and producing new tokens to the output places when it is enabled, it is a delay
transition, such as the task execution time of processor, message communication,
and so on. On the contrary if a transition consumes tokens from the input places
and produces new tokens to the output places immediately when it is enabled, it is
an instant transition, such as logical decision.

An event or a change is ready to get active, if its corresponding transition t is en-
abled; it gets active as the corresponding transition starts firing, and remains active
for the firing duration. The transition behaves according to a predefined function-
ality and terminates by releasing tokens to output places, then making subsequent
transitions ready to get enabled/active. The P-TCPN can be arranged to be ex-
ecuted in sequence, parallel, alternatively or iteratively, like FIG.2. To support
hierarchical specification, event compositions can be folded to form a single, com-
pound event, graphically represented by a single transition (box), by aggregation
of the tasks and the execution time of all the events constituted in it.

FIG.2 describes the structure of a simple parallel program. Ps,ts, Pe and te
compose the parallel process. P10 and P20are the initial states of the two parallel
program bodies. The transitions represented by boxes are compound transitions.
tseq1 and tseq2 are the sequential composition and they aggregate a set of sequential
processes to a single compound process as a matter of abstraction. The execution
time of tseq1 or tseq2 is cumulated by all primitive transitions in it. P11 and trep
compose the loop structure. P20, tb1, tb2 and P21 compose the alternative structure.
ts, Pcom and tr compose the communication structure. ts is the sender, Pcom is the
buffer and tr is the receiver.

After correct verification of the P-TCPN model the expected performance of the
parallel application under development can be analyzed. This requires inclusion
of hardware performance characteristics and program to hardware mapping infor-
mation into the model. We assume the hardware resource which is the running
environment of parallel application is a pool of resources full of memory, processing
elements and communication devices. Their connectivity and interactivity as well
as the potential performance are modeled by R-TCPN.

Definition 3 R-TCPN=(
∑

r, Pr, Tr, Ar) satisfying the following requirements:
(1)

∑

r is a finite set of resources.
∑

r = (r1, r2 . . . rn).
(2) Pr is a finite set of home places for the resources r ∈

∑

r. r is idle and
available if there is a resource token in its home place. The token has 2 attributes
< p, v >, describing the token’s home place p and the physical characteristics v
separately.

(3) Tr is a finite set of transitions.
(4) Ar is a set of flow relations, Ar ⊆ (Pr × Tr) ∪ (Tr × Pr). ∀ai ∈ Aris the

direction of resource flows and describes the interactions between resources.
Every resource in the parallel system is modeled by a token in the home places

of R-TCPN. It means the resource is idle if the corresponding token is in the place.

236 B. CHENG, W.Q. TONG, AND X.G. WANG

Fig. 2. Structure of a simple parallel program

Ar describes the direction of resource flows and help to model interactions and
interdependencies between resources.

Definition 4 M ⊆ (Pr × Tp) ∪ (Tp × Pr) is the mapping between P-TCPN and
R-TCPN.

(1) Pr ×Tpis the set of arcs leading from resource home to processes transitions.
It is resource assignment.

(2) Tp ×Pr is the set of arcs which is opposite to Pr × Tp. It will happen only if
the time of resources occupied by process is equal to the time of allowable service,
or the process releases the resources after finishing the task.

S={P-TCPN, R-TCPN, M} is the combination of a P-TCPN and a R-TCPN by
a mapping M to a single, integrated net model. It is the specification of the parallel
application at the algorithm structure level. Assigning the tokens in home places to
transitions of the P-TCPN is allowed only if the events expressed in the transition
are offered as services by the resource. FIG.3. shows a simplified assignment of the
dashed box in FIG.2 to the hardware resources.

Consider the state shown in FIG.3(a), home place Pfree of R-TCPN and place
P21 of P-TCPN contain a token respectively. Transition tseq2 is enabled because
there are enough tokens on each of its input places. Assume that tseq2 is a com-
pound transition and is composed of tseq2−1, tseq2−2 and tseq2−3 like FIG.3(b).
And Pfree = (PfreeP , PfreeM) is the set of the idle resources which can serve the
transitions tseq2 = (tseq2−1, tseq2−2, tseq2−3). Each sub-transition is a primitive op-
eration which have deterministic resource requirement. tseq2−1 and tseq2−2 require
the same resource of type P(processor) and PfreeP is the resource of this type. So
PfreeP is allowed to be mapped to the two transitions like the directed arc from
PfreeP to tseq2−1.

Firing a transition means consuming tokens from the input places and producing
tokens on the output places. If, at the same enabling time, more than one transition

HYBRID PERFORMANCE MODELING AND ANALYZING OF PARALLEL SYSTEMS 237

Fig. 3. PRM for the mapping of processor and memory

is enabled, then any of the several enabled transitions may be the next to fire, i.e.
it is a non-deterministic sequence.

The number and the values of tokens produced by the firing of a transition
may depend upon the values of the consumed tokens. And the enabling time of a
transition is the maximum timestamp of the tokens to be consumed. The relation
between the multi-set of consumed tokens and the multi-set of produced tokens is
described by the transition function Φ.

Function Φ(tseq2−1) specifies transition tseq2−1 in the PRM shown in FIG.3(b):

dom(Φ(tseq2−1)) = { < P21, Data > + < PfreeP , P > |Data ∈ C(P21), P ∈
∑

r}

Φ(tseq2−1)(〈P21, Data〉+ 〈PfreeP , P 〉) = 〈Pbusy−c, 〈Data
′

, P 〉〉

The domain of Φ(tseq2−1) describes the condition on which transition tseq2−1 is
enabled. The enabling time of transition tseq2−1 depends upon the timestamps of
the tokens to be consumed. If tseq2−1 is fired, it consumes one token from place
P21 and one token from place PfreeP and it produces one token for place Pbusy−c.
FIG.4(a) is the result of firing tseq2−1 in the state shown in FIG.3(b). The colour
of the produced token is a tuple < Data′, P >. It means that the processor P has
dealt with the data Data and a result Data′ is got. The resource PfreeP is busy
and could not be occupied by other requirement. The transition tseq2−2 is specified
as follows:

dom(Φ(tseq2−2)) = { < Pbusy−c, < Data
′

, P >> |Data
′

∈ C(P21), P ∈
∑

r }

Φ(tseq2−2)(< Pbusy−c, < Data
′

, P >>) =< Pcr, Data
′′

> + < PfreeP , P >

Transition tseq2−2 represents the completion of using resource P and produces

a new data Data
′′

. tseq2−1and tseq2−2 are different transition and they represent
different operations of the parallel algorithm. It spends some time on their execution
and depends upon the function FT. If tseq2−2 occurs in the state shown in FIG.4(a),
the state of the system will change into FIG.4(b). tseq2−2 produces two tokens
< Pcr, DataR > and < PfeeP , P >. It means the completion of a calculation job

238 B. CHENG, W.Q. TONG, AND X.G. WANG

with resource P. DataR is the result. The firing of tseq2−3 is similar to tseq2−1 and
tseq2−2. PfreeM is different resource from PfreeP . It describes the Memory.

Fig. 4. Firing sequence of FIG.3(b)

2.3. Dynamic Behavior of TCPN. P-TCPN and R-TCPN specify the static
structure of parallel system based on TCPN. In this section we define the behavior
of P-TCPN.

(1) Enabled Transition

Place is the passive component, while transition is the active component. Tran-
sition changes the states. A transition is enabled if there are enough tokens, which
are to be consumed, on each of its input places in P-TCPN and the required re-
sources in R-TCPN can be assigned. Only the Enabled Transition can be fired, i.e.
finish some functions of the parallel program.

(2) Event

An event is corresponding to some functions of the parallel program, i.e. it is
Epj ∈ Ei. It is a tuple (t, pin, pout, time) and represents the firing of transition while
consuming the tokens from pin and adding the new tokens to pout in P-TCPN. pin
is the input place of t and pout is the output place of t. time is the execution time
of event. It can be got by time function FT(t). For example, the transition tseq2−1

in FIG.3(b) is an event. It can be expressed as (tseq2−1, P21, Pbusy−c, FT (tseq2−1)).
(3) Enabling time

The enabling time of a transition or an event(t, pin, pout, time) is the maximum
of all the timestamps of the tokens consumed, i.e.

ETime(t) = max
(p,v,tm)∈pin

tm

If an event is time enabled, it may occur. The enabling time of tseq2−1 in
FIG.3(b) is x because of x=max(x, 0).

(4) State
A state is characterizes as a multi-set of coloured tokens each bearing a times-

tamp.

S = (CS ×TS)MS

∀s ∈ S , s = {(p, v, t) | p ∈ Pp, v ∈ C(pi), t ∈ TS}

HYBRID PERFORMANCE MODELING AND ANALYZING OF PARALLEL SYSTEMS 239

S is the set of all possible states. CS is a colour set of system. TS is a non-
negative real, TS = {x ∈ R |x ≥ 0}. It represents the time set. Event happening
will change the system state. The state notes the static status of the parallel
system. The state shown in FIG.3(b) is < P21, Data, x > + < PfreeP , P, 0 > + <
PfreeM ,Memory, 0 >, that is a state with one token in P21 with value Data at x
and one token in PfreeP with value P at 0 and one token in PfreeM with value
Memory at 0. x and 0 are the timestamp of tokens.

The state shown in FIG.3(b) is changed into< Pbusy−c, < Data, P >, FC(tseq2−1)+
x > after firing the transition tseq2−1. FC(tseq2−1)+x is the timestamp of the token
in Pbusy−c.

(5) Fire
An event(t, pin, pout, time) may occur if it is enabled. It means the transition t

fires and removes the tokens specified by pin and adds the tokens specified by pout.
Firing an event changes the state S and the mark M of the system.

Let M(p) be the number of tokens in place p. And M [t > denotes t is enabled
with the marking M and M [t > M ′ means the marking M ′ can be obtained from
M after firing t. Φ(t) is effect of firing transition t.

M
′

(p) =







M(p)− Φ(t) p is the pre - set of t
M(p) + Φ(t) p is the post - set of t
M(p) otherwise

(6) Reachable State

An event (t, pin, pout, time) occurs in state s and state changes into the state s′.
It is s′ = s − pin + pout and s′ is directly reachable from s by the occurrence of

event e = (t, pin, pout, time). It is described by s1
e

−→ s2. So the firing sequence of

the parallel system is a sequence of states and events, s1
e1−→ s2

e2−→ s3
e3−→and

siis reachable from s1 only if there is a firing sequence of finite length from s1 to
si.

Reachability analysis is used to get critical path in this paper. This technique
builds a reachability graph, sometimes referred to as reachability tree. The reach-
ability graph contains a node for each possible state and an arc for each possible
state change. This technique is a very powerful method to prove the most of the
properties and answer the question of the parallel system performance. However the
reachability graph may become very large and often infinite. It is state explosion.
So we should solve this problem before analyzing the performance of the system
based on reachability graph. A reduction method which aggregates similar states
into state classes will be introduced to cut down the state space in other paper.

3. TCPN Model of Construction the Finest Level of the Distributed

Tree

MLFMA(multilevel fast multipole algorithm) is one of the most effective meth-
ods solving electromagnetic scattering problems from complex objects. And the
parallelization of MLFMA can greatly reduce the solution time of large-scale elec-
tromagnetic scattering problems involving complicated three-dimensional objects.
The basic data structure of parallel MLFMA is a distribute tree, i.e. assigning ev-
ery branch of the tree to different processors. The scatterers finish the aggregation,
translation and disaggregation based on the distribute tree. The bottom-to-up
method is adopted to build the tree. So it is very important to build the finest
level of the distributed tree. Whether the data of finest level is assigned equally or
not will affect the load balancing and the parallel efficiency of the MLFMA. The

240 B. CHENG, W.Q. TONG, AND X.G. WANG

data of the finest level in the distribute tree is the Geometric Data after scatterers’
triangulation, which are vertices, facets and edges.

3.1. Hierarchical TCPN Modeling. To keep the specification as clear and flex-
ible as possible, a hierarchical model is applied throughout the parallel system
specification. FIG.8 is the top model of the algorithm which is constructing the
finest level of the distributed tree. It describes the information transmission among
the submodels and the task execution flow. There are 3 substitution transitions in
FIG.8 which are realized by relevant submodel in detail. The place between the sub-
stitution transitions shows the information interaction and every place has a colour
set. The substitution transition treadjust is described in detail as FIG.9, which is
the construction of finest level of the distributed tree. And Table 1 expresses the
semantic of the transitions and places in FIG.9.

There are 3 processes in P-TCPN to finish the job. No.0 process is the master
node and calculates the pivot elements of the sampled data from all nodes and
broadcasts the result. No.1 and No.2 processes are the slave nodes. They sort local
data and send the sampled data to No.0 process. After receiving the pivot elements,
they divide the ordered local data into 3 parts and communicate globally. At last
the data of finest level of the distributed tree are ordered locally and globally.

The substitution transition treadjust is built in this way:
(1) Ascertain the set of places and transitions of P-TCPN based on the definitions

of Pp and Tp and the implementation process of parallel algorithm. Determine the
set of places and transitions of R-TCPN based on the topology structure of the
parallel environment. Table 1 can be got after this step.

Fig. 5. Data definition of the TCPN model

CPN Tools, an industrial-strength computer tool, is used to construct and ana-
lyze the TCPN model of parallel system in this paper. The behavior of the modeled
system can be investigated by simulating the model. The properties can be verified
by means of state space methods and model checking. FIG.5 is the data definition
of the TCPN model expressed in FIG.8 by CPN language.

In CPN Tools, colour sets are defined using the CPNML keyword colset, such as
INT is a colour set with the integer type. The functions CMorton, sorting, receive
and BC are relative to the transition functions, Φ(T01,T11,T21), Φ(T02), Φ(T03)
relatively.

HYBRID PERFORMANCE MODELING AND ANALYZING OF PARALLEL SYSTEMS 241

(2) Analyze and determine the relationship between Pp and Tp. And build the
initial model of P-TCPN, the right part of FIG.9 and R-TCPN, the left part of
FIG.9.

(3) Ascertain the initial state of P-TCPN and R-TCPN, i.e. the colour set and
the number of tokens, based on the rules and the status of the real system.

The place P start in FIG.9 is the start of the parallel work and it has three
tokens in the initial state. Its colour set is INT ×DATA and the value(colour) of
the token in this place is a two-tuples multi-set with the INT ×DATA type. One
of these tokens has the value (0, data0) at time 0 and is expressed 1′(0, data0)@0.
The transition T start fires to judge if variable x is equal to the process number.

(4) Map the elements of Pp, which have data tokens and resource requirements,
to the idle elements of Pr, which have tokens too and can satisfy the resource
demands.

For example, the transition function T01 is:

Φ(T01) = CMorton(y)

Firing transition T01 will calculate the Morton Key of data0. It requires processor
to finish this job. P1 which is a place of R-TCPN has a token (“P1”, 3). It means
the resource is idle. Its type is processor and the clock speed is 3GHz. The service
time of P1 on T01 is calculated by time function FT (T01):

FT (T01) =
CA(data0)
CS(P1)

CA(data0) is equivalent calculation amount and CS(P1) equivalent calculation
speed.

3.2. State Space Analysis based on TCPN Model. Simulation can be ap-
plied to execute a model of real system within a finite number steps. It is suitable
for detecting errors of the model. But it is not confident adequately because it
can not guarantee that the simulation covers all possible executions. State space
represents all possible executions of the model. Its basic idea is to calculate all
reachable markings (state) and marking changes of the TCPN model and build a
reachability tree where the nodes correspond to the set of reachable markings and
the arcs correspond to the transitions which lead to the marking change.

(1) Reachability
Mk is a marking from M0 in P-TCPN and M0 is the initial marking. It is

reachable iff ∃M0 : Mk ∈ R(M0). R(M0) is the set of reachable markings from M0.
Reachability can estimate whether Mk is a reachable marking during the running
process of system or not. Reachability is decidable.

The nodes of the reachability tree are the markings of TCPN model and the arcs
are the transitions. The algorithm of building Reachability Tree is:
a). The root node r is the initial marking M0;
b). The node x marked by M is a leaf node
iff

∀t ∈ T : ¬M [t > (i.e. no t is enabled in marking M)

or there is a node y betweenr and xand y 6= x and y is marked by M, too.
c). If node x marked by M is not a leaf node, ∀t ∈ T enabled in marking M fires
and builds a new node y marked by M ′. A new arc marked by t is built from x to
y.
d). M ′ can be calculated as following.

M ′(p) =

{

M(p)− Φ(t) p is the pre - set of t
M(p) + Φ(t) p is the post - set of t

242 B. CHENG, W.Q. TONG, AND X.G. WANG

If there is a node z marked by M ′′ and z 6= y from r to y and M ′′ < M ′, the
component j which results in M ′′(pj) < M ′(pj) is changed into ω.
e). Retune to step b and loop execution until ∀t ∈ T : ¬M [t > or ∀t ∈ T : ¬M [t >
M ′.

The reachability tree of FIG.9 is enormous because of the complexity of the
model. So we use the state space statistics produced by CPN Tools like FIG.6 to
describe some basic information about the size of the reachability tree and standard
behavior properties. For the model of FIG.9 there are 22671 nodes and 300203 arcs.
The construction of the reachability tree took 706 seconds on a PC. The Scc Graph
statistics is Strongly Connected Component Graph which is derived from the graph
structure of the state space. Two nodes of reachability tree are in the same Scc if
and only if they are mutually reachable, i.e., there exists a path in the reachability
tree from the first node to the second node and vice versa. The structure of the Scc
Graph can give useful information about the overall behavior of the model being
analyzed. The result that there are fewer nodes in the Scc Graph than in the State
Space shows that there exist cycles in the reachability tree.

(2) Liveness
Liveness properties in FIG.7 specify that there is a single dead marking which

has the node number 17905. Dead marking is a marking in which no binding
elements, namely transition, are enabled. The fact that there is only one dead
marking shows the TCPN is possible to terminate the construction of finest level
of the distributed tree with the correct result. FIG.7 specifies there is no dead
transition, which means each transition in FIG.9 has the possibility to occur at
least once, and no live transition, which means no transitions can be made enabled
from the dead marking.

(3) Time
The performance model of FIG.9 is validated by comparing prediction results

with measurement results for two problem sizes. We use ring and sphere which are
common electromagnetic scatterer and the prediction and measurement results are
shown in Table 2. The time information is accumulated after1000 cycles. n is the
parameter of problem size. Tp shows the prediction results which are obtained by
simulation and Tm shows the measurement results. The column that is indicated
with Ts presents the simulation time. The time needed to execute real program on
Ziqiang 3000 supercomputer is compared with the time needed to predict the per-
formance model on a PC with Tm/Ts. It is observed that model-based performance
evaluation was faster than the corresponding measurement-based evaluation. The
parameter Error shows the prediction accuracy of the performance model.

4. Conclusions

This paper deals with performance oriented development of parallel programs
and proposes a formal design of the application at the algorithm structure level.
Considering that the performance of parallel systems is not only determined by the
performance of the hardware, but also by the structure of the parallel program,
a hybrid TCPN model proposed in this paper describes resource and parallel pro-
gram respectively. The TCPN process templates along with a hierarchy concept are
put forward to serve as functional and temporal specification formalism for parallel
program development. And the hierarchical decomposability allows investigations
on various levels of abstraction and naturally eliminates the problem of complex-
ity of state space based analysis in TCPN models. The TCPN model not only
characterizes the functions of the real system, but also contains the performance

HYBRID PERFORMANCE MODELING AND ANALYZING OF PARALLEL SYSTEMS 243

Fig. 6. Statistics of the state space report

Fig. 7. Liveness properties of state space report of FIG.9

information. It is an executable model and construction such a model can lead to
a more complete specification of the system design and make it possible to create
a systematic investigation of scenarios which can significantly decrease the number
of design errors. It makes it possible to analyze the performance of the system in
the early phases, rather than in performance measurement of fully implemented
applications.

References

[1] . Ferscha. Modelling Mappings of Parallel Computations onto Parallel Architectures with the
PRM-Net Model. In C. Girault and M. Cosnard, editors, Proc. of the IFIP WG 10.3 Working
Conf. on Decentralized Systems, 1990.

[2] . Balbo, G. Chiola, S.C. Bruell, and P. Chen. An Example of Modelling and Evaluation of a
Concurrent Program using Coloured Stochastic Petri Nets: Lamport’s Fast Mutual Exclusion
Algorithm. IEEE Transactions on Parallel and Distributed Systems, 1992.

244 B. CHENG, W.Q. TONG, AND X.G. WANG

Table 1. Semantic of the transitions and places in FIG.8.

Place Semantic

P01,P11,P21 Entry of different processes
P02,P12,P22 Status before communication
P03 Ordered sampled data with pivot ele-

ments
P04,P13,P23 Local data with pivot elements
P05,P14,P24 Ordered local data
Pa0,Pa1,Pa2 Sending buffer of processes
Pb0,Pb1,Pb2 Receiving buffer of processes

Transition Semantic

T01,T11,T21 Calculate the Morton Key and quick
sorting locally

T02 Receive data from No.1 and No.2 pro-
cesses

T12,T22 Send data to No. 0 process
T03 Broadcast the pivot elements to all pro-

cesses
T04,T13,T23 Divide the local data into 3 parts based

on the pivot elements
Tneti Communicate

Table 2. Prediction and Measurement Time of Ring and Sphere

Ring n=3221
Nodes Tp(s) Tm(s) Ts(s) Error(%)
1 11.42 11.85 0.46 3.63
2 9.18 9.98 0.36 8.02
4 7.36 8.21 0.42 10.35
8 6.02 6.94 0.51 13.26

Sphere n=3072
Nodes Tp(s) Tm(s) Ts(s) Error(%)
1 11.27 11.5 0.39 2
2 8.57 9.17 0.32 6.54
4 6.44 7.15 0.32 9.93
8 5.18 5.87 0.43 11.75

[3] . Ferscha and G. Kotsis. Optimum Interconnection Topologies for the Compute-Aggregate-
Broadcast Operation on a Transputer Network. In Proceedings of the TRANSPUTER ’92
Conference, 1992.

[4] . Ferscha. A Petri Net Approach for Performance Oriented Parallel Program Design. Journal
of Parallel and Distributed Computing, 1992.

[5] lrich Herzog. Formal methods for performance evaluation. Springer Lectures On Formal Meth-
ods And Performance Analysis, 2002.

HYBRID PERFORMANCE MODELING AND ANALYZING OF PARALLEL SYSTEMS 245

Fig. 8. Top model of the algorithm

[6] ouis Gesbert, Fr’ed’eric Loulergue. Semantics of an Exception Mechanism for Bulk Synchro-
nous Parallel ML. Eighth International Conference on Parallel and Distributed Computing,
Applications and Technologies, 2007.

[7] . Carter, W.B.Gardner. A Formal CSP Framework for Message-Passing HPC Programming.
2006 Canadian Conference on Electrical and Computer Engineering, CCECE’06, 2007.

[8] ornkhom, Panupong. Security Analysis of Micali’s Fair Contract Signing Protocol by Using
Coloured Petri Nets. Proc. 9th ACIS Int. Conf. Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, 2008.

[9] A Min, LAN Jing-chuan, HUANG Jian-guo. Simulation and Design about Deadlock-free
Problem in Parallel Test. Journal of System Simulation,2008.

[10] hen Yue, Meng Xiao-feng, Bian Ze-qiang. Model of parallel TPS management mechanism
based on Petri net. Computer Engineering and Design,2008.

[11] ui Dan, Wang L isheng, Ye Qing. Petri model and Validation for MPI Program. Computer
Applications and Software,2007.

246 B. CHENG, W.Q. TONG, AND X.G. WANG

Fig. 9. Construction of the finest level of distributed tree based on TCPN

1. School of Computer Engineering and Science; Shanghai University;Shanghai 200072;China
2. College of Mathematics, Physics and Information Engineering;Zhejiang Normal University;
Zhejiang Jinhua 321000; China

E-mail : cb@shu.edu.cn

School of Computer Engineering and Science; Shanghai University;Shanghai 200072;China
E-mail : wqtong@mail.shu.edu.cn and wxg@zjut.edu.cn

