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GPU ACCELERATED PARALLEL BRANCH PREDICTION FOR

MULTI/MANY-CORE PROCESSOR SIMULATION

LIQIANG HE GUANGYONG ZHANG AND JINGDONG JIANG

Abstract. Branch Prediction is a common function in nowadays microprocessors. Branch pre-
dictor is duplicated in each core of a multi/many-core processor and makes prediction for mul-
tiple concurrent running programs respectively. To evaluate the parallel branch prediction in a
multi/many-core processor, existing schemes generally use a parallel simulator running on a CPU
that does not have a real massive parallel running environment to support the simulation and
thus has a bad simulating performance. In this paper, we use a real many-core platform, GPU, to
perform a parallel simulation of branch prediction for the future general purpose multi/many-core
processor design. We verify the correctness of the GPU based parallel branch predictor against the
traditional CPU based branch predictor. Experiment result shows that the GPU based parallel
simulation scheme obtains a two to ten times of speedup over the CPU platform when the issue
rate ranging from one to four instructions per cycle, and it shows that the GPU based scheme is
a promising way to improve the simulation speed for future multi/many-core processor research.
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1. Introduction

Branch prediction is a commonly used function in nowadays superscalar or mul-
ticore microprocessor. It uses the branch history (either local or global history or
both) to predict whether a next branch instruction is taken or not. The accuracy of
a branch predictor affects the control flow of a running program with more or less
instructions executed along the wrong paths and then affects the final performance
of the program. Lots of researches have been done related to branch prediction
[1-3] in the past decades.

Branch prediction research generally needs a simulator. Existing schemes either
use a cycle-by-cycle based simulator which runs a program in its simulating envi-
ronment and uses a real executing flow to investigate the functionality of a branch
predictor, or use a trace based simulator which is much simpler and faster than the
former but loses some run-time accuracy.

In multicore and many-core processor, branch predictor is duplicated in each core
of the processor. Each predictor records its own branch history from the running
program in the host core and makes the particular prediction respectively. There is
a big design space that can be explored for branch predictors in a multi/many-core
system. For example, Branch predictors in different cores can (a) cooperate with
each other to increase the prediction accuracies for multi-threaded program, or (b)
be dynamically combined into more powerful predictors, or (c) switch off parts of
them to save power if their behavior is the same. Investigating or exploring the de-
sign space of the parallel branch prediction for a multi/many-core processor needs
a parallel branch predictor simulator. A general technique to build a parallel sim-
ulator in academic literature is to parallelize the traditional sequential simulator
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using array structure[4-5] or Pthread programming scheme[6]. In a general simu-
lating environment without a big memory support, this technique may be suitable
for research on multicore processor with less than sixteen cores but it is absolutely
not useful or possible for multicore with more than thirty-two cores or for many-
core cases. Some other researches [7-9] rely on FPGA to do parallel simulation for
multi/many-core processors. Although the simulation speed is fast, the ability and
the scalability are limited by the hardware itself.

In this paper, we extend our previous work [10] and use a real many-core plat-
form, GPU (Graphic Processing Unit), to help improve the simulation speed for
massive parallel branch predicting research for future multi/many-core processor.
It is well known that GPU is originally designed to target regular massive parallel
computing such as matrix operations, FFT, and lineal algebra. But the proces-
sor simulation, including branch prediction, cache accessing, pipeline processing,
has very irregular program behavior which GPU does not favor initially. In this
work, we try to (a) map an irregular simulating program to a regular organized
GPU structure and (b) use the existing massive parallel GPU platform to help the
multi/many-core processor architecture research, especially parallel branch predic-
tion. Although only the branch prediction is considered, it is a case study and start
point of research on multi/many-core simulation using GPU platform for the future
microarchitecture research.

We rewrite most of the code of the branch predictor component in a widely used
superscalar processor simulator, SimpleScalar [11], and let it run in an NVIDIA
GTX275 GPU processor [12]. We verify our result (including the control flow
and branch predicting outputs of the simulated program) from GPU runs against
the one from the original CPU based running. Experiment results show that (a)
the GPU based code can perform exactly the same functionality as the compared
CPU based code which verifies the correctness of our code and shows the ability
of GPU to do irregular operations, and (b) the GPU code can potentially faster
the simulation speed, up to ten times, for the branch prediction simulating with its
many-core structure when compared with the serialized CPU code.

Comparing with our previous work, we make the following new contributions in
this paper:

• Consider the specific GPU features, and optimize our implementation of
the GPU based parallel branch prediction simulation.

• Verify the correctness of previous work [10], and show the speedup results
on new hardware platform.

• Through experiment on three typical types of workloads, a trend of the sim-
ulating speedup on GPU platform is obtained, and the maximum speedup
values at 8K simulated cores or threads are observed.

• Make sensitivity analysis of the instruction issue rates in the simulated
cores and the number of instructions being simulated.

The rest of this paper is organized as follows. Section 2 presents the GPU
architecture and programming model. Section 3 introduces the rationale of the
branch predictor used in this paper and the organization of the parallel branch
predictor in future many-core microprocessor. Section 4 describes the design and
implementation of our GPU based parallel branch prediction simulator. Section
5 gives the experimental methodology and Section 6 presents and analyzes the
results. Then, Section 7 discusses the related work, and finally Section 8 concludes
this paper.
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2. GPU as Parallel Computer

In this section, we introduce the architectural aspects of the NVIDIA GPU device
used in this work and the corresponding programming model.

2.1. NVIDIA GPU architecture. The new generation of GPUs is applied to
the general-purpose GPU computing [13]. Different from the philosophy of tradi-
tional CPU organization, more transistors on GPU are devoted to data processing
rather than data caching and flow controlling. The fundamental building block
of the NVIDIA GPU is the streaming multiprocessors (SMs), and each of them
consisting of multiple streaming processors, and only one instruction fetch/decode
unit. GPU is a typical SIMD (Single Instruction Multiple Data) parallel model, and
all the processing cores must simultaneously execute the same instruction stream.
Each SM has a shared register pool and shared memory space which is organized
into banks, and the bank conflicts are avoided. The local and global memory spaces
are read-write regions of the device memory and are not cached. A single floating
point value read from (or written to) global memory can take about 400 to 600
clock cycles. Data processed in GPU is transferred from CPU, and the result is
transferred back. All the transmission is done between the host memory and the
GPU’s global memory. A read-only constant cache is shared by all the scalar pro-
cessor cores, and has very short access latency. Another read-only texture cache is
shared by all the processors in a multiprocessor, which speeds up read operations
from the texture memory space.

2.2. CUDA programming model. NVIDIA GPU devices use CUDA (Compute
Unified Device Architecture) as their programming model [14] in which the CUDA
threads execute on a physically separate device that operates as a coprocessor to
the CPU host. CUDA consists of a minimal set of extensions to the C language
and a runtime library.

The CPU host implements parallel processing of multi-threads by calling kernel
functions which run on GPU. A group of threads with multiple same instructions
and different data streams form a block, different blocks can execute different in-
struction streams, and many blocks form a grid. Thread, block and grid form
a three-dimensional-thread-space. For convenience, threadIdx is a 3-component
vector, so that threads can be identified using a one-dimensional, two-dimensional,
or three-dimensional thread index, to form a one, two, or three-dimensional thread
block. The index of a thread is through its specific thread ID.

A warp which is a group of 32 threads from the same thread block is the main
scheduling unit in CUDA. In fact, warp is a part of CUDA, but warp can be
helpful in understanding and optimizing the performance of CUDA applications on
devices. The number of active warps in a SM is an important factor in tolerating
global memory access latency.

3. Rationale of Branch Predictor

In this section, first, we introduce the rationale of a simple branch predictor,
2Bits predictor [15], which acts as an example of showing how to map CPU code
to a GPU program in next section. Then, we present the organization and working
mechanism of the parallel branch predictor in a future multi/many-core processor.

3.1. 2Bits branch predictor in single core. 2Bits branch prediction is a simple
and well known prediction scheme. Although its prediction accuracy is much lower
than many up-to-date complicated branch predictors like OGEHL [1] and L TAGE
[2], it is sufficient to be an example to show how to realize a parallel branch predictor
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Figure 1. The states in a 2-bit prediction scheme [15]
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Figure 2. The structure of a 2D-mesh connected multi/many-
core processor, where R is the router and N is the node which can
be a core or a memory bank, etc

on GPU. In 2Bits branch predictor, there is a table to record the local histories
of different branches, and each entry of the table uses 2 bits to trace the recent
branch history of one particular branch instruction. The instruction fetch unit in
a CPU uses the PC of a branch instruction to index the table, and obtains the
predicting result (taken or not taken) according to the 2Bits value. The diagram of
state translation of 2Bits prediction is shown in Figure 1. Due to the limitation of
the table size, different branch instructions may be mapped to the same table entry
which causes interfere between each other, named as alias conflict. In addition
to the predicting table, there is another set-associate table, BTB (Branch Target
Buffer), to provide branch target if a branch is predicted as taken. BTB must store
the entire PC in order to accurately match the branch instructions. Also, there is
a RAS (Return Address Stack) to be used for sub-routine CALL and RETURN

instructions and it generally has 8 or 16 entries in modern microprocessor.

3.2. Parallel branch prediction in multi/many-Core processor. A multi/
many-core processor has roughly several tens or more of cores on the chip. Each core
can be a complex, multiple instructions issue rate, out-of-order execution processing
unit, or a simple, single-issue, in-order one. Cores are connected through an on-chip
network such as 2D-MESH, butterfly, or FAT tree [16]. Communication between
cores is done through the interconnected network links. A many-core processor
is organized either homogeneously or heterogeneously decided by whether or not
the composed cores are the same. A typical structure of a 2D-mesh connected
homogeneous many-core processor is shown in Figure 2.

As shown in Figure 2, every core in a multi/many-core processor has a branch
predictor which is used by the program running in it. All the components, including
the predicting table, BTB and RAS, are duplicated in each core. The operations
in these separate predictors are parallel and independent of each other.

Some potential architectural optimization can be done for these predictors, for
example, (a) multiple ones cooperate together to make a more accurate prediction
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Figure 3. The trend of the simulation speed with the number of
simulated cores increasing

for a multi-threaded program workload like the cooperate cache in [17], or (b)
multiple predictors can be combined into one big and more powerful predictor for
a particular running thread, or (c) switch off some predictors to save power if the
program behaviors are the same.

To perform simulation for a parallel structure like a multi/many-core processor,
existing schemes always rely on the traditional single core simulator such as Sim-
pleScalar, sim-alpha[18], etc, and change the scalar data structure in the simulator
with array and for loop structures, for example CMP-Sim and M-Sim[4-5], or
use the Pthread parallel programming technique, SSPPC for instance[6]. Unfor-
tunately, these methods are only useful and acceptable when the simulated cores
are not too many in terms of simulation speed, such as less than thirty-two cores
in our experiment. With the number of cores increasing, the simulation speed of
these methods drops continuously and at some points it becomes unacceptable for
the computer architecture researcher. Figure 3 shows the trend of the simulation
speed with the number of cores increasing in M-Sim and SSPPC using the machine
shown in Section 5. From Figure 3, when the number of cores is greater than 32, the
simulation speed of M-Sim and SSPPC is lower than 20 and 5 kilo instructions per
second. With this speed, the time to simulate a typical run for a 32-core processor,
100 million instructions for one configuration running for instance, will need 2 and
8 hours respectively.

To improve the simulation speed, in this paper we adopt an existing hardware
many-core platform, GPU, to help the parallel multi/many-core simulation, specif-
ically on massive parallel branch predictor simulation. It is well known that GPU
is designed for massive regular operations, such as matrix multiplication, FFT, lin-
eal algebra, etc. But processor simulating, including branch predicting, has very
irregular program behavior. How to map such irregular applications onto the GPU
platform is of interest to us. In this work, we try to map irregular programs such
as branch predictor onto GPU platform. In the next section, we will present the
details of our implementing techniques.

4. Parallel Branch Prediction on GPU Platform

4.1. Base infrastructure. We use a single core simulator, SimpleScalar, as our
baseline implementation. It models a five-stage pipeline (Fetch, Decode, Issue,

Execute, and Write Back), out-of-order superscalar microprocessor. The branch
prediction is done at Decode stage. Five different predicting schemes, 2Bits, Two
Level, Static Taken or Not Taken, and Combined scheme, are implemented in the
simulator. In this paper, we select 2Bits predicting scheme as a case study to realize
the parallel branch prediction on the GPU platform, and it is easy to apply our
method for other predicting schemes.
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Figure 4. Overall structure of the parallelized simulator using CUDA
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struct {
unsigned int size;
unsigned char *table;

} bimod;

unsigned int bimod_size;
unsigned char bimod_table[bimod_size];

Figure 5. Changing structure to array definition

To make a branch prediction, SimpleScalar uses two functions, lookup() and
update(). The lookup function is called when the fetched instruction is a condi-
tional branch, and the predicting result is returned using the instruction PC to
access the predicting table. The update function is to update the predicting table
using the actual branch result when the branch is resolved at Execute stage.

In addition to the predicting table, the BTB table needs to be accessed and
given the branch target if a branch is predicted as taken. For sub-routine CALL

and RETURN instructions the RAS will be used to save the return address.

4.2. Parallelization scheme on GPU. As discussed in Section 2, we use NVIDIA
GPU and CUDA programming model as our parallelization platform. Before doing
the parallelization, we firstly modify the single core simulator into multi/many-core
version using the same method in [4-5]. Then, we port the sequential branch pre-
dicting code running in CPU onto the parallel GPU platform, and further improve
the simulation speed through exploiting the specific GPU features.

The overall structure of the parallelized simulator is shown in Figure 4.
To realize the parallel branch prediction with CUDA, we make five changes. The

details are presented as follows.

• Redefine the Static variable

In the original simulator code, there are many Static variables that are defined
as local variables in functions and can store values even after the functions are
returned. These static variables are good at transferring values between different
function calls, but make the code confusing and hard to be parallelized. In our
implementation, we change all these variables to global variables.

• Replace the Structure variable with Array

CUDA programming model suggests using Array instead of Structure variables
in order to benefit from the short access latency from the coalesced global memory
access. So, to get the best parallel speedup, we redefine all the Structure variables
as Array variables. For example, in Figure 5, the bimod is changed to array
variable.
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Further more, in order to transfer values between CPU and GPU all the vari-
ables used as the interface of CUDA kernel need to be defined as two entities with
the same size, one is for CPU, and another is for GPU. For example, in Figure
5 the predicting table, bimod table, needs to be defined as bimod table cpu and
bimod table gpu respectively.

• Task level parallelization

Similar as the Pthread based scheme, we exploit task level parallelization for
the parallel branch prediction simulation. We rewrite the code of the two main
functions, lookup and update, in GPU kernel fashion, and change the name to
bpred lookup and bpred update, as shown below.

bpred lookup <<< NUM, ... >>> (parameter, ...)
and
bpred update <<< NUM, ... >>> (parameter, ...)
Where NUM is the number of predictors being simulated simultaneously. By

varying the value of NUM, different numbers of branch predictors in a multi/many-
core processor can be simulated.

As shown in Figure 6, the loop based scheme only uses one physical core to
simulate the functionalities of different branch predictors, so even with a real mul-
ticore processor it can not exploit the existing core level parallelism and improve the
simulation speed. Whereas for the Pthread based scheme, it uses a relatively heavy-
weight pthread to simulate a single core. So with the number of simulated cores
increasing, the pthreads compete the limited physical cores and memory resources
more and more severely, and the overhead of context switching among pthreads will
make the simulation speed dropping dramatically. In our contrast experiment using
SSPPC simulator, when the number of simulated cores is greater than sixteen the
simulation can not proceed due to the competition. Comparing with them, CUDA
based scheme uses very lightweight thread (several cycles of switching overhead) to
make a SIMD simulation and obtains a good performance speedup.

• Coalesced global memory access

In [14], CUDA suggests decreasing the overall access latency by using coalesced
global memory access among the threads in a warp. To take advantage of this
feature, we reorganize the data placement method for many structure variables
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such that when different CUDA threads access the same field in the SIMD mode
they can perform the coalesced global memory access. Figure 7 shows an example
of such transformation.

• Using constant memory in GPU

In GPU, a value stored in the constant memory can be accessed by one thread
and used by all the concurrent running threads in the same warp in order to greatly
reduce the total access time. To benefit from this feature, we store all the unchanged
variables, the md op2flag array for instance, in the constant memory.

With the above techniques, we realize a parallel branch prediction for multi/many-
core processor simulation with CUDA.

4.3. Issue about simulating performance. With the techniques presented in
the last subsection, a basic parallel branch predictor for multi/many-core archi-
tecture research is constructed. Although the functionality is correct, the simu-
lating performance may become an issue due to the intrinsic high complexity of
multi/many-core processor organization.

First, because the simulated programs running in different cores have various
behaviors, the fetched instructions from the programs at a given cycle may not be
all branches. For this case, two options can be selected. One, the CUDA kernel
only makes parallel predictions for the branch instructions and the other simulated
instructions do not go through the kernel code. This method makes the kernel has
variable numbers of threads. It must match the instructions with the corresponding
simulated programs and cores. This asynchronous process steps make GPU difficult
to work efficiently in its SIMD working mode. Another option, on the other hand,
sends all the instructions to the kernel, and lets the kernel to decide whether making
the prediction or not. The pseudo code of this method is shown in Figure 8. It
makes the kernel easy to be understood and has regular behavior. We use this
method in our implementation, and get a performance speedup.

Second, to speedup the design space exploration our implementation permits
simultaneously running multiple configurations in the same CUDA kernel. For
example, the size of predicting table, the size of BTB, and even the type of pre-
dicting scheme, can be different in the CUDA threads, and the threads can run
concurrently in the kernel and send the predicting results. It is the same case
as simulating a heterogeneous multi/many-core processor in which the cores have
variable configurations.

5. Experiment Setup

We run our parallel branch prediction on an Intel Core 2 Quad Q9500 2.8GHz
machine equipped with 2GB DDR3 memory and an NVIDIA GTX275 GPU. The
bidirectional bandwidth of the on board PCI-E bus is 8GB/s. To build the code,
we use the CUDA developing environment SDK2.3 [14]. We select -O3 as the
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{
......

else

......

}

rst = predicting (PC);

rst = -1;

...... )__global__ void bpred_lookup (inst,PC,

if (inst is a branch)

Figure 8. Pseudo code of the bpred lookup kernel

Table 1. Hardware details of GPUs and CPU in the experiments

Name Parameters
CPU Intel Core 2 Quad CPU Q9500 2.83GHz, DDR3 1033MHz 2GB

GTX275 GDDR3 896MB, 30 SM, 8 SPs/SM, 16384 registers/SM,
Max. 1024 threads/SM, 16KB constant/shared memory per SM,
1.3 compute capability

optimization level for the CPU code and -O2 for the GPU kernel. The operating
system is Fedora Core 10 Linux. Table 1 lists the hardware details for the CPU
and GPU.

In our experiment, we simulate a homogeneous multi/many-core processor with
the same 2Bits branch predictor configuration in each simple single-issue, five
pipeline stages core. The branch history table has 2K entries, BTB is 4 way-
associated and has 512 sets, and RAS has 8 entries. We validate our GPU based
implementation against the CPU based one, and prove the correctness of the GPU
one in logic semantics. Thus, in the following content, we only show and com-
pare the running times of different branch prediction implementations, and do not
present the meaningless prediction results. In the CPU based implementation, we
use the loop method to perform the simulation due to its relatively fast simulation
speed and only count the time of making branch prediction for the same number
of simulated cores. In GPU part, we count the time of data transmission between
CPU and GPU plus the time of making parallel branch prediction. The speedup
of GPU vs. CPU is calculated using the two simulation times.

The twenty-six benchmark programs are selected from SPEC CPU 2000[19].
The multi-program workload running in the multi/many-core processor has a big
combination possibility. So, to obtain the upper bound and lower bound of the
speedup, we construct three types of workloads, and shown in Table 2. The MIX3

type of workload has the maximum irregular behavior that is difficult for GPU to
handler. Whereas the MIX1 type has a good regular behavior (all the combined
programs have the same executing stream) which favors the GPU running mode.
And the MIX2 is among the two other types. In each workload, all the programs
are simulated at least 20 Million instructions.

6. Result

6.1. Speedup of GPU vs. CPU for MIX1 workload. Figure 9 shows the
speedups of GPU implementation over CPU ones for two MIX1 type of workloads,
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Table 2. Workload description in our experiment

Type Description
(assume an N-th workload running in an N-core processor)

MIX1 The workload includes N same programs.
MIX2 The workload is organized as half of the running warps have regular

behaviors and the other half ones do not.
MIX3 Any two adjacent threads are different, like ”abc...zabc...z...”

ammp and applu. From the figure, with the number of cores or threads being simu-
lated ranges from 32 to 8K the speedup goes from a minus value to a positive value.
Here, a core need not be a physical processing unit, and it can be a logical core
similar as the one in a Simultaneous Multithreading processor [20] or a processor
supporting HyperThreading [21]. Also, as described in Section 4.3 multiple config-
urations can be simulated in a same time of CUDA kernel running, so threads in
Figure 9 may represent a same group of cores with different configurations. This is
the same for other results in this section. When the speedup has a minus value, it
means the simulation speed in CPU is faster than in GPU, and otherwise the GPU
based one is faster than the CPU ones.

For ammp and applu, when the number of cores or threads is greater than 1K,
using GPU to make parallel branch prediction is faster than using CPU to do the
same thing. The maximum speedups of GPU at the 8K cores or threads’ cases are
close to three. Not only for these two example workloads, through our experiments
we found that all the workloads have similar performance trends when the number
of cores or threads changes from 32 to 8K, and most of them begin getting positive
simulation speedups on GPU platform when they are more than 1K.

The reason that CPU based implementation is faster than the GPU one when
the simulated cores or threads are not too many, say less than 1K, is because the
large data transmission overhead between the two platforms at the time of launch-
ing CUDA kernels in GPU implementation. In addition, for processor simulation
application it is difficult to adopt the asynchronous transfer scheme provided in
CUDA due to the operation dependency between the simulated pipeline stages. In
other words, it can not start a data transmission between CPU and GPU to do the
parallel branch prediction until the previous pipeline stages, fetch and decode for
example, finish.

Table 3 lists the detailed running times counted in second and the speedups of
GPU vs. CPU for twenty-six MIX1 workloads. Here, we only show the time to
make branch prediction, and ignore the parts used for simulating other pipeline
stages. All the twenty-six workloads have worse simulating performances on GPU
platform when the number of cores or threads is less than 1K. When the number is
greater than 1K the GPU based parallel simulation obtains a better performance
than the CPU based one. The maximum speedup is close to 3.8 times at 8K’s case.

We also show the GPU occupancy values of the two kernels in Table 4. Each
block includes 128 threads, and an SM can have up to 1024 threads, so the kernels
in our implementation have the maximum number of active blocks and the GPU
occupancy is 100%. In addition, each thread uses 16 and 13 registers in bpred lookup

and bpred update respectively, and the overall usage is less than the total number
of registers available in an SM, 16384. And the memory usage is a same case as
the register usage.
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Table 3. Running times (in second) and the speedups of GPU vs.
CPU for 26 MIX1 type of workloads, (C: CPU, G: GPU, S:
Speedup)

`
`
`
`
`
`
`
`
`
`
`
`

Ben.
# of C./Th. 2048 4096 8192

C G S C G S C G S
ammp 85.1 54.6 1.56 168.2 63.7 2.64 336.5 90.1 3.73
applu 71.1 53.0 1.34 140.2 62.2 2.25 299.1 88.6 3.38
apsi 73.6 53.2 1.38 144.8 62.5 2.32 298.4 89.1 3.35
art 76.0 53.5 1.42 150.0 62.7 2.39 318.3 89.2 3.57
bzip 74.1 53.2 1.39 145.9 62.5 2.33 289.9 89.1 3.25
crafty 84.2 54.6 1.54 165.6 63.7 2.60 332.5 90.1 3.69
eon 80.3 54.0 1.49 157.8 63.1 2.50 325.0 89.7 3.62

equake 80.8 54.0 1.50 159.6 63.2 2.53 318.8 89.7 3.55
facerec 82.3 54.2 1.52 161.4 63.4 2.55 322.5 89.8 3.59
fma3d 84.2 54.5 1.54 165.9 63.7 2.60 331.5 90.0 3.68
galgel 77.5 53.7 1.44 152.5 62.9 2.42 305.4 89.5 3.41
gap 72.1 53.0 1.36 142.3 62.3 2.28 299.6 88.8 3.37
gcc 83.8 54.3 1.54 165.1 63.5 2.60 329.8 90.0 3.66
gzip 74.0 53.2 1.39 146.0 62.5 2.34 290.3 89.0 3.26
lucas 73.0 53.2 1.37 144.0 62.4 2.31 307.4 89.0 3.45
mcf 72.2 53.0 1.36 142.5 62.3 2.29 293.2 88.8 3.30
mesa 72.1 53.0 1.36 142.0 62.3 2.28 292.7 88.9 3.29
mgrid 76.4 53.5 1.43 149.8 62.7 2.39 298.8 89.2 3.35
parser 83.7 54.4 1.54 165.1 63.6 2.60 330.5 90.0 3.67

perlbmk 84.3 54.4 1.55 165.6 63.6 2.60 330.8 89.9 3.68
sixtrack 77.5 53.7 1.44 152.0 62.9 2.42 303.3 89.6 3.39
swim 72.0 53.1 1.36 142.1 62.3 2.28 293.1 88.8 3.30
twolf 85.7 54.5 1.57 168.7 63.6 2.65 336.9 90.1 3.74
vortex 76.0 53.5 1.42 149.7 62.7 2.39 298.0 89.1 3.34
vpr 86.1 54.6 1.58 169.1 63.8 2.65 337.7 90.2 3.74

wupwise 72.9 53.2 1.37 143.6 62.4 2.30 296.0 88.9 3.33
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Figure 9. Speedups of GPU vs. CPU implementation with dif-
ferent number of cores or threads being simulated

6.2. Speedup of GPU vs. CPU for MIX2 and MIX3 workloads. We
show the running times and speedups for MIX3 workload in Table 5. Similar as
for MIX1 workloads, the GPU based parallel implementation has no performance
benefit when the simulated cores or threads are less than 4K, and maximum speedup
at 8K cores’ case is more than two times. The reason of bad performance is because
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Table 4. Characteristics of the kernels running on GTX75 GPU

Parameter Lookup Update Note (Maximum Value)
Threads/Blk. 128 128 512
Registers/Thread 14 10 # of reg. / # of th. in one SM
Shared Mem./Blk. 36B 36B Size of shared mem. / # of blks
Active Threads/SM 1024 1024 1024
Active Warps/SM 32 32 32
Active Blocks/SM 8 8 8
Occupancy of SM 100% 100% Act. warps / Max. # of warps

Table 5. Running time (s) and speedups for MIX3 workload

# of C./Th. 32 64 128 256 512 1k 2k 4k 8k
CPU(s) 1.8 2.4 3.5 6.5 14.2 34.7 79.3 166.6 338.5
GPU(s) 77.2 76.6 76.9 77.0 78.6 82.0 88.2 106.3 151.2
Speedup 0.02 0.03 0.05 0.08 0.18 0.42 0.90 1.57 2.24

Table 6. Speedup comparison for three types of workloads

# of C./Th. 32 64 128 256 512 1k 2k 4k 8k
MIX1 0.04 0.05 0.11 0.19 0.38 0.75 1.45 2.44 3.48
MIX2 0.03 0.04 0.05 0.10 0.22 0.54 1.20 2.20 2.97
MIX3 0.02 0.03 0.05 0.08 0.18 0.42 0.90 1.57 2.24

the workload has very irregular behaviors among the composed programs, and at
each time of launching a CUDA kernel many simulated instructions are not branch
thus waist a lot of running time and transmission bandwidth. This suggests us only
transferring the branch instructions when simulating this type of workload. Due to
the implementing complexity, we leave this as our further work.

In Table 6, we compare the speedups for three types of workloads. From the
table, it is clear to see that with a more regular behavior in the workload the
GPU based implementation gets a higher performance speedup. And for multi-
core processor simulation if the GPU based implementation can successfully reduce
the transmission overhead between CPU and GPU, then the GPU one can get
performance speedup, otherwise the researchers should use CPU platform or seek
other schemes, FPGA for example, to help shorter the simulation time. For many-
core simulation, researcher should also carefully organize the data and reduce the
transmission time in order to obtain a better performance speedup.

6.3. Sensitivity to the instruction issue rate in the simulated cores. In
Table 7, we compare the speedups of GPU implementation with different instruction
issue rates in the composed cores for three types of workload. These results show
the potential improvement on simulation time for the processor equipped with
multiple instructions issue rate, out-of-order complex cores. From the table, when
the issue rate changes from one instruction to four instructions per cycle the GPU
based implementation gets a better performance speedups, especially for MIX2

and MIX3 workloads when the simulated cores or threads are more than 512. The
maximum speedups are close to 9 and 7.2 times respectively. The reason is because
that at four instructions issue rate the possibility to have a branch instruction in a
cycle is much higher than that at the one instruction issue rate due to a basic block
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Table 7. Comparison of speedups with different instruction issue
rates (1 means one inst/cycle, and 4 means four inst/cycle)

# of C./Th. 32 64 128 256 512 1k 2k 4k 8k
MXI1 1 0.04 0.05 0.11 0.19 0.38 0.75 1.45 2.44 3.48

4 0.16 0.23 0.38 0.66 1.19 3.92 6.14 8.34 10.34
MXI2 1 0.03 0.04 0.05 0.10 0.22 0.54 1.20 2.20 2.97

4 0.08 0.12 0.18 0.33 0.72 1.78 3.98 6.48 8.84
MIX3 1 0.02 0.03 0.05 0.08 0.18 0.42 0.90 1.57 2.24

4 0.08 0.12 0.16 0.28 0.67 1.61 3.42 5.71 7.19
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Figure 10. Speedups of GPU based parallel branch prediction
with different number of simulated instructions for each program

in a program typically including four to seven instructions, and thus the CUDA
kernels do not suffer from the useless data transmission between CPU and GPU
as in the single issue rate case and spend most of the time on effective works. For
MIX1 workload, the GPU gains better performance when the number is greater
than 256, and maximum speedup is 10 times due to the less time spending on data
transmission.

6.4. Sensitivity to the number of simulated instructions. Figure 10 shows
the speedup sensitivities of our parallel branch prediction to the number of instruc-
tions being simulated for each program in a workload. The workload is MIX3 type.
From the figure, when the number of simulated instructions ranges from one mil-
lion to twenty millions, the speedups do not have obvious changes for all the cases
when the number of simulated cores or threads varies from 32 to 8K. This helps us
quickly finding the speedup results in our experiment without waiting long time to
simulate too many instructions, and also verify the correctness of our experimental
results using the methodology in Section 5.

6.5. Discussion. From the above experimental results, we can see that with the
number of simulated cores or threads increasing the speedup of GPU implementa-
tion increases continuously. This implies the effectiveness of improving the CUDA
threads parallelism could help improving the simulation performance. And, the
linear increasing curve of the performance speedup also shows the good scalability
of our GPU implementation. In addition, to further faster the simulation speed,
more attention to the GPU optimization techniques and hardware features should
be paid.



206 L. HE G. ZHANG AND J. JIANG

7. Related Work

As described in Section 1, researchers seek software [4-6] and hardware [7-9]
schemes to help future multi/many-core processor simulation. Unfortunately, the
software based schemes suffer from the long simulating time in CPU platform when
the simulated cores are more than thirty-two, and the hardware schemes, although
have fast simulation speed, but have little scalability due to the limited hardware
resources on chip.

In industry and academic research literature, branch prediction has got long
time attention. Most of the researches focus on how to improve the predicting
accuracy [1-3], and less work has been done on how to simulate massive parallel
branch predicting for future large scale multi/many-core processor.

GPU was announced initially for graphic process, but recently due to the highly
parallel structure and powerful computing capability GPU has been widely used
in massive scientific computing applications [22-23], such as in GPGPU [13]. Most
of applications in GPGPU are regular computation, and very few works have been
done for irregular applications, microprocessor simulation for instance.

[24] develops a trace based cache simulator on GPU platform, and gained 2.44x
of performance improvement over CPU platform. Because it exploits the set-
partitioning as the source of CUDA thread parallelism, it can not be used for
general multi/many-core processor simulating except for shared last-level cache
simulating in multicore. This work is the first work that targets the GPU on fu-
ture multi/many-core processor simulation, especially the parallel branch predictor
simulation.

8. Conclusion

Performance simulation for multi/many-core processor is an important process
to help making design decision of the microarchitecture and organization. To do
this, researchers reply on software or hardware schemes. The software schemes
lose the effectiveness when they use the host CPU to simulate relative more cores,
whereas the hardware schemes are faster but have little scalability.

This paper investigates how to map an irregular application, parallel branch
predicting for multi/many-core microprocessor on GPU platform using the NVIDIA
CUDA programming model. It verifies the correctness of the GPU implementation
and obtains the simulation speedup over the CPU implementation for three different
types of workloads.

The experimental results show that (a) when the simulated cores or threads are
not too many the CPU implementation is faster than the GPU based one, (b) when
the number is greater than 1K the GPU gains simulation speedup over CPU, (c)
the simulation speedups of GPU increase with the simulated instruction issue rate,
and (d) for the parallel branch prediction the simulation speedups are not sensitive
to the number of simulated instructions.
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