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SPATIAL ENTROPY BASED MUTUAL INFORMATION IN

HYPERSPECTRAL BAND SELECTION FOR SUPERVISED

CLASSIFICATION

BAIJIE WANG, XIN WANG, AND ZHANGXIN CHEN

Abstract. Hyperspectral band image selection is a fundamental problem for hyperspectral re-
mote sensing data processing. Accepting its importance, several information-based band selection
methods have been proposed, which apply Shannon entropy to measure image information. How-
ever, the Shannon entropy is not accurate in measuring image information since it neglects the
spatial distribution of pixels and is computed only from a histogram. This paper investigates the
potential of spatial entropy in measuring image information and proposes a new mutual informa-
tion (MI) band selection method based on the spatial entropy. Then selected band images are
validated for supervised classification via Support Vector Machine (SVM). Using a hyperspectral
AVIRIS 92AV3C dataset, experiment results show that with 20 images selection from 220 bands,
the supervised classification accuracy can reach 90.6%. Comparison with a previous Shannon
entropy-based band selection method shows that the proposed method selects band images which
can achieve more accurate classification results.

Key words. Spatial entropy, mutual information, band selection, support vector machine, clas-
sification, hyperspectral remote sensing data

1. Introduction

Hyperspectral sensors measure hundreds of contiguous spectral bands with nar-
row spectral intervals simultaneously, which can provide fine, detailed and large
volume spectral information. For example, an Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) is a premier instrument in the realm of Earth Remote
Sensing [9]. It is a unique optical sensor that delivers calibrated images in 224
contiguous spectral bands with wavelengths from 0.4 µm to 2.5 µm. Hyperspec-
tral sensors benefit the potential to detect targets and classify materials with high
accuracy.

High dimensionality of the hyperspectral remote sensing images also calls for
effective and efficient feature selection methods. For example, for a land use classi-
fication task, it is unnecessary to process all spectral bands from the hyperspectral
images since some bands may contain less discriminatory information than the oth-
ers. Besides, the computational cost for hyperspectral image processing with all
bands is high; e.g., as the dimension increases, say 224, the computational cost for
classification will be unendurable. Therefore, it is an advantage to identify bands
that conveys more information.

Band selection refers to the selection of band images with relevant information
or with weak correlation [6]. Information-based band selection is an active research
topic recently [3, 5, 7, 10], which generally applies Shannon entropy or its vari-
ations, e.g., mutual information (MI), as the measurement evaluating the image
information. In [10], the Shannon entropy was directly applied to band selection.
Band images are ranked in terms of entropy values and ones with higher entropy
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values are selected. Since the Shannon entropy is computed based on a single image,
without reference to any ground truth or benchmark, its variation, mutual informa-
tion (MI), is introduced. MI measures the information shared between each band
image and a reference, i.e., the ground truth, and images with higher MI values are
selected. In [3], the authors introduced a method using MI based clustering to deal
with multispectral images selection. In [7], a MI estimation method was introduced
and the band selection method was developed with the objective to choose band
images which maximizes the joint MI value.

Each pixel in remote sensing images has spatial attributes, such as row and
column, and non-spatial attributes, such as intensity. Even though the existing
information-based band selection methods based on Shannon entropy can give good
results in many cases, the Shannon entropy is calculated only based on the statistics
of the non-spatial attributes. Therefore, it leads to an incomplete evaluation of
image information by ignoring spatial distribution of pixels. We will illustrate the
consequent problem by the following example.

Figure 1. Comparison between a qualified remote sensing image
and a noise image with the same histogram: (a) Qualified image,
(b) Noise image, (c) Histogram of (a), (d) Histogram of (b).

Fig.1 (a) shows a remote sensing image of an area and Fig.1 (b) is a noise image
of the same area. Given an image classification task, Fig.1 (b) gives no valuable
information since all pixels are noise contaminated while Fig.1 (a) may give relevant
information since distinct patterns can be visually observed. Figs.1 (c) and (d)
are the image histograms of Figs.1 (a) and (b), respectively. The two histograms
indicate that two images have the identical intensity distribution.

In this example, the two images have the identical histograms; if we use the
Shannon entropy to measure the image information in Figs.1 (a) and (b), their
entropy would be the same value of 0.4481. In this case, the Shannon entropy fails
in discriminating the information difference between Figs.1 (a) and (b).

Spatial entropy is the extension of the Shannon entropy with the spatial config-
uration, which measures the distribution of a non-spatial attribute in the spatial
domain [4, 14]. In this paper, we propose to use spatial entropy measuring band
image information and develop a new information-based band selection method
considering both the pixels’ intensity and the spatial location in an image. The
main contributions are summarized below:

First, this paper introduces a new spatial entropy-based mutual information
(SEMI) function as the image information measurement. The SEMI function is
derived from the spatial entropy model in [4, 14] and the classic mutual information
definition [11]. SEMI quantifies the shared information between the band image
and the reference image with the images’ spatial and non-spatial attributes, i.e.,
the pixels’ intensity and location.
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Second, this paper develops a new band selection method. This new band selec-
tion method selects relevant band images from candidates with high SEMI values
and low image correlation.

Finally, the proposed band selection method is demonstrated with supervised
classification tasks. A hyperspectral AVIRIS 92AV3C remote sensing dataset, con-
taining 220 band images and 1 ground truth image, is chosen for the experiment.
Selected band images are used as source data for the supervised land use classifi-
cation with the current popular support vector machine (SVM) classifier.

The remainder of the paper is organized as follows. Section 2 introduces a spa-
tial entropy-based mutual information (SEMI) function and the new band selection
method. Section 3 presents the supervised support vector machine (SVM) clas-
sification experiments using the band selection results from the AVIRIS 92AV3C
dataset. Finally, Section 4 draws conclusions and discusses our future work.

2. Methodology

In this section, we propose a new spatial entropy-based band selection method.
Specifically, Sections 2.1 and 2.2 introduce the spatial entropy-based mutual in-
formation (SEMI) as the band selection criterion; Section 2.3 introduces a new
band selection algorithm. In Section 2.4, we review the support vector machine for
supervised land use classification.

Let D = {di|i = 1, 2, · · · , n} be n band images acquired from a hyperspectral
remote sensor. Each image di ∈ D can be viewed as a spatial dataset where each
pixel of the image has spatial attributes, i.e., the row and column, and a non-spatial
attribute, i.e., the intensity value. The objective of the band selection is to identify
a subset SD from D such that SD = {dj |j = 1, 2, · · · ,m},m ≤ n, contains relevant
features for the land use classification.

2.1. Shannon Entropy and Mutual Information. Before introducing spatial
entropy-based mutual information (SEMI), it is necessary to review Shannon en-
tropy and the classic mutual information.

Given an image X containing N pixels, each pixel has its intensity value G and
the location attributes row and col. First, a partition process assigns each pixel
in X to a unique slot based on its intensity value G, which generates a partition
of X , denoted by (X1, · · · , Xi, · · · , Xt). For example, given an image with the
radiometric resolution of eight bits, the intensity G of pixels will have 256 levels so
that all the pixels in the image can be binned into 256 slots. Let (p1, · · · , pi, · · · , pt)
be the fraction of the number of pixels in category Xi over N , i.e., pi = |Xi|/N and
∑

pi = 1. In practice, the computation of (p1, · · · , pi, · · · , pt) is an approximated
by the image histogram.

Definition 1: Given the partition (X1, · · · , Xi, · · · , Xt) of an image X , the Shan-
non entropy of X is defined as:

(1) H(X) = −

t
∑

i=1

pilog2(pi)

where pi is the fraction of the number of pixels in category Xi over N . In Eq. (1),
the Shannon entropy is computed from the image histogram and so a statistical
information measurement of image X .

Shannon entropy H is defined for a single band image and it is not related to
the target information. For example, in a land use classification task, apart from
the remote sensing images, partial ground truth can also be acquired as target
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information, or reference data. Since the Shannon entropy does not involve the
target information, it is seldom used to evaluate the relevance of a band image to
the target land use classification task. Hence the variation of the Shannon entropy,
mutual information (MI), is introduced to measure the relevance of a single band
image to the target image.

Definition 2: Given the band image X and the ground truth image Y , the mutual
information of these two images is defined as:

(2) I(X,Y ) = H(X) +H(Y )−H(X,Y )

In Definition 2, H(X) and H(Y ) are the Shannon entropies to the band image
X and the ground truth image Y , respectively, and H(X,Y ) is the joint entropy
between X and Y . MI measures the common information shared by X and Y .
The higher MI value X and Y share, the more relevant X is to the land use
classification. Therefore, the high value of MI is a general information-based band
selection criterion.

However, as in Eq. (2), MI is defined with the Shannon entropy, which ignores the
spatial information inside the image. For example, MI is computed from the image
histograms of X and Y , and the pixels’ spatial attribute is discarded. Therefore,
either the Shannon entropy or MI evaluation is an incomplete image information
measurement by ignoring spatial attributes inside a band image.

2.2. Spatial Entropy-based Mutual Information. Spatial entropy is an ex-
tension of Shannon entropy which has a spatial configuration. Various forms of the
spatial entropy have been developed and this paper selects the one from [4] because
it is simple to compute. In the spatial entropy, the spatial configuration is defined
as the ratio of the average distance between objects of a particular class (named the
intra-distance) to the average distance of a particular class to the others (named the
extra-distance). The intra-distance of Xi, denoted by dinti is the average distance
between pixels in Xi (as shown in Eq. (3)). The extra-distance of Xi, denoted by
dexti is the average distance of pixels in Xi to other partition classes of X , as shown
in Eq. (4).

(3) dinti =







1
|Xi|×|Xi−1|

∑|Xi|
j=1,j∈Xi

∑|Xi|
k=1,k 6=j,k∈Xi

dist(j, k) if|Xi| > 1

λ otherwise

(4) dexti =







1
|Xi|×|X−Xi|

∑|Xi|
j=1,j∈Xi

∑|X−Xi|
k=1,k 6=j,k/∈Xi

dist(j, k) ifX 6= Xi

β otherwise

In Eq. (3), when Xi is empty or contains only one object, we assume its intra-
distance is very small and a small constant λ is assigned to dinti to avoid the influence
of null values on the computation. In Eq. (4), when Xi includes all of the objects
in X , i.e., all objects have the same values of G, we assume that the extra-distance
dexti is very large, and assign the extra-distance with a large constant β. dist(j, k)
is the distance between objects j and k in the spatial spaces.

Definition 3: The spatial entropy of an imageX based on its partition {X1, · · · , Xi,
· · · , Xt} is defined as:
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(5) Hs(X) = −

t
∑

i=1

dinti

dexti

pilog2(pi)

In this definition, a spatial configuration dinti /dexti is added as a weight factor in
the Shannon entropy, which enables the spatial entropy Hs to measure the image
information by evaluating the pixels’ non-spatial attribute in a spatial space.

The Shannon entropy, as in Eq. (1), measures the probability distribution of the
pixels’ non-spatial attribute G, i.e., the intensity value. The Spatial entropy Hs is
a special form of the Shannon entropy and has a spatial configuration dinti /dexti .
Even though each pixel’s intensity value is correlated within the spatial spaces,
the probability distribution of G is independent of dinti /dexti . Hence, the weight
factor dinti /dexti does not influence the property of Hs in measuring the probability
distribution of G.

On the other hand, the spatial entropy Hs takes the spatial correlation into con-
sideration while measuring the image information. A spatial correlation generally
exists among a spatial dataset. The First Law of Geography [12] states ”everything
is related to everything else, but near things are more related than distant things”.
As a spatial dataset, the spatial attributes and the spatial correlation in remote
sensing images cannot be neglected. This is also the reason why the Shannon en-
tropy fails in discriminating the information difference between the qualified and
the noise image in Fig.1. The spatial entropy has the spatial configuration dinti /dexti

that keeps the spatial entropy decreasing when pixels with similar intensity values
are close and diverse pixels are far from each other. For a band image of which
similar pixels are close and dissimilar pixels are far from each other, dinti /dexti de-
creases. Therefore, the spatial entropy is a better image information measurement
by incorporating both spatial and non-spatial attributes inside the band image.

Spatial entropy itself cannot provide the relevance from the band image to the ref-
erence image, so we introduce the spatial entropy-based mutual information (SEMI)
below. Substituting H with Hs in Eq. (2), the SEMI is defined:

Definition 4: Given the band image X and the ground truth image Y , the Spatial
entropy-based mutual information equals:

(6) Is(X,Y ) = Hs(X) +Hs(Y )−Hs(X,Y )

Combining Eqs(5) and (6), the computational function for SEMI is shown in Eq.
(7):

(7) Is(X,Y ) = −

t
∑

i=1

dinti

dexti

pilog2(pi)−

o
∑

j=1

dintj

dextj

pjlog2(pj)+

t
∑

i=1

0
∑

j=1

dintij

dextij

pij log2(pij)

The spatial entropy-based MI is a special case of the original MI with spatial
configuration. Eq. (6) keeps the same form of Eq. (2), so that SEMI also measures
the dependence between two images. However, instead of using only one dimen-
sional histogram (counting the number of pixels belonging to each slot), SEMI has
the ability to analyze the dependence between the band image and the reference
image considering the pixels’ spatial distribution. The higher the SEMI value, the
more relevant the band image is to the reference image. Therefore, SEMI is used
as the new band selection measurement.
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2.3. Band Selection Algorithm. Selecting band images with high SEMI values
is the general band selection criterion in this paper. However, band selection only
based on this criterion will result in high correlation inside the selected band images.
Since the reflectance of the earth surface to a certain spectral band is very similar to
that of a close spectral band, high correlation exists among neighbor band images.
The observation is that only with the SEMI criterion, a series of consecutive band
images with high correlation are always selected. To avoid that, another parameter,
called band distance, is defined:

Definition 5: Band distance is defined as the absolute difference between two band
image indexes:

(8) η = |bandindexi − bandindexj|

In order to avoid image correlation, each pair of band images selected should
have a minimum η threshold. The pseudo code of a new band selection algorithm
is designed considering the high SEMI value and low correlation, as shown in Al-
gorithm. 1.

Algorithm 1 BandSelection(CL, mi, num, η)

Require: :
(1)CL: the candidate band image list
(2)mi: the vector of SEMI values of all the candidate band images
(3)num: the number of selected band images
(4)η: the minimum band distance threshold

1: Initialize candidate list CL = {1, 2, · · · , n}, S = null
2: maxBand=MaxSEMIIndex(CL,mi) and add maxBand into S
3: Remove maxBand from CL
4: while S.length<num do

5: maxBand=MaxSEMIIndex(CL,mi)
6: flage=true
7: for each band in S do

8: if (|S −maxBand| < η) then
9: flag = false

10: if (flag) then
11: Add maxBand into S
12: Remove maxBand from CL
13: else

14: Remove maxBand from CL
15: return S

The band selection algorithm, as in Algorithm. 1, takes four arguments: CL
is the candidate band image list, mi is the vector containing the SEMI values of
all the candidate band images, num is the number of selected band images and η
is the minimum band distance threshold. MaxSEMIIndex(CL, mi) is a function
which returns the band image index with the highest SEMI value in CL.

As in Algorithm. 1, the algorithm starts by selecting the band image p with the
highest SEMI value from the candidate band image list CL. Then p is removed
from CL and added to the selection list S. In the next iteration, the algorithm
selects another band image q with the highest SEMI value from CL and removes it
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as well. If the band distance between q and each band image in the selection list,
e.g., only p in the first iteration, is not smaller than η, q is added to the selection
list; otherwise, it will be discarded. This process is repeated until the number of
band images in the selection list equals to num. In the end, num band images
from the candidate list with the highest SEMI value and low correlation level will
be selected.

2.4. SVM Supervised Classification. Support vector machine (SVM) is a su-
pervised classification method [11]. Recent works have shown its effectiveness in
land use classification for remote sensing images [8, 13]. In this paper, we will ap-
ply SVM for the land use classification to demonstrate the proposed band selection
method.

The standard SVM is a binary linear classification method that classifies the
input data into two groups by constructing a hyperplane; i.e., two classes locate on
the two sides of the hyperplane. Intuitively, a good classification result is achieved
by constructing the hyperplane that has the maximum distance to the data located
on the margin of the two classes.

For linear inseparable problems, a kernel function is built to map the input
space into a higher dimensional space where the linear SVM separation is possible.
Different kernel functions exist, including polynomials, radial basic functions (RBF)
and hyperbolic tangent [11]. In this paper, we select the most widely used RBF as
the kernel function.

One difficulty in remote sensing image classification is the number of the tar-
get classes, i.e., the land types. Since the standard SVM is a binary separator, a
multiclass SVM scheme, named one-versus-all, is used. The one-versus-all scheme
involves the division of an N classes dataset into N two-class cases. For example,
given three target land types in remote sensing images, including wood, grass and
water area, the one-versus-all scheme will build three SVMs. Each SVM is respon-
sible for one class in which the classification is effected. In other words, three SVM
will be responsible for classifying wood against non-wood, grass against non-grass,
and water against non-water area, respectively.

In order to test the proposed band selection method, we will use the band selec-
tion results as the training inputs to SVM for the land use classification, and the
one-versus-all SVM scheme with the RBF kernel function is applied.

3. Experiment

The proposed band selection method is demonstrated using the AVIRIS 92AV3C
dataset [2]. All methods are implemented in the Matlab R2009a and experiments
are performed on a Dell Optiplex 960 desktop (3G CPU & 4G RAM) using the
Windows XP operating system.

3.1. Data Description. The AVIRIS 92AV3C dataset [2] is a public hyperspec-
tral dataset, which is acquired over a test site called Indian Pine in northwestern
Indiana [7]. The AVIRIS sensor collects nominally 224 bands of data. Among them,
four contain only zeros and are discarded. Therefore, 220 bands from the 92AV3C
dataset are used for the experiments.

Each of the 220 band images is of the size of 145×145 pixels. Suggested by
the National Aeronautics and Space Administration (NASA), RGB visualization
of 92AV3C data uses bands (50, 20, 10) [1], as shown in Figs.2 (a) (b) and (c),
respectively, and the final visualization is shown in Fig.2 (d).

The 92AV3C dataset is accompanied with a reference map, indicating the ground
truth, as shown in Fig.3. Around 49% pixels are grouped into 16 different classes.



188 B. WANG, X. WANG, AND Z. CHEN

Figure 2. 92AV3C data visualization.

As to the remaining pixels, it is difficult to group them into any of the existing
class, and they are identified as the background. In the following experiment, 16
labeled classes (excluding the background) are used as ground truth to evaluate the
supervised classification accuracy.

Figure 3. Ground truth for 92AV3C dataset.

3.2. Spatial Entropy-based Mutual Information. This experiment is to eval-
uate the effectiveness of using the spatial entropy-based mutual information (SEMI)
as the band selection criterion. SEMI is computed between each of 220 band im-
ages in the 92AV3C dataset and the ground truth image, and the result is shown
in Fig.4.

Figure 4. SEMI between 220 band images and the ground truth.

SEMI measures the relevant information from the band image to the reference
image considering both spatial and non-spatial attributes. The higher the SEMI
value they share, the more relevance the band image is to the reference image.
For comparison, two band images, (115 and 116), with high SEMI value and two
images, (151, 157), with a low SEMI value, are shown in Fig.5. Observation is
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Figure 5. Comparison between images with high and low SEMI
values: bands 115 and 116 are with SEMI value while bands 151
and 157 are with low SEMI value

that a distinct land pattern can be identified from bands 115 and 116 with a high
SEMI value shared with the reference image. On the other hand, bands 151 and
157, with a low SEMI value, are contaminated by the atmosphere water absorption
expressing no valuable information for the land use classification. Therefore, it is
reasonable to select band images with higher SEMI for the purpose of land use
classification.

3.3. Band Selection Result. The proposed band selection algorithm takes four
arguments: the candidate list including 220 band images (CL), vector of SEMI val-
ues (mi), and number of selected bands (num), minimum band distance threshold
(η). From the previous step, the SEMI of 220 band images has been computed. As
a case study, we set num to 20, and η to 7. Using the band selection algorithm
shown in Algorithm. 1, the 20 selected band images are visualized in Fig.6. 20
bands are almost evenly distributed in the high SEMI value range and of a rea-
sonable band distance from each other. Additionally, it is evident that 20 selected
images contain a distinct land pattern and no one is severely contaminated with
atmosphere water absorption.

Figure 6. Visualization of the 20 selected band images
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3.4. Supervised Land Use Classification. To evaluate the band selection re-
sults, 20 selected images are used for the supervised land use classification. Several
preprocessing steps are performed for this experiment: First, the reference image,
from Fig.3, contains 16 predefined classes and 1 background class. Since the ar-
eas locating in the background class have ambiguous classification and they do not
belong to any of the 16 classes, we remove the pixels belonging to it, which leaves
10,366 pixels for the remaining 16 classes. Second, SVM is a supervised classifica-
tion method which requires training data to reach a good classifier. The pixels from
each class are randomly separated into 60% and 40% as the training and testing
data, respectively. For our case study, 6,220 pixels form the training data and the
other 4,146 pixels form the testing data.

To classify 16 classes, 16 SVMs are built with applying the one-versus-all scheme
and each of them is responsible for one class classification. In the beginning, 6,220
pixels paired with the corresponding pixels from the ground truth are used to
train the SVM. Then, 4146 testing pixels are used to evaluate the SVM of the
classification accuracy. The result is that 5,706 out of 6,220 pixels from the training
data are of correct classification reaching the classification accuracy of 91.7%. For
the testing data, the classification accuracy is 88.9%, and the general classification
accuracy for both training and testing data is 90.6%.

Table 1. Parametric evaluation

Parameters
num 2 5 10 15 20 25 30
η 50 25 10 9 7 5 4

Classification Accuracy 51.3% 75.3% 84.9% 88.7% 90.6% 93.5% 95.3%

Additionally, a parametric test is performed for the proposed band selection
method. With different selection parameters, seven sets of band images are selected
for the SVM land use classification. Table.1 shows the parameter configuration and
the corresponding classification accuracy, which demonstrates that the classification
accuracy increases monotonously with the number of band images selected. For
example, the classification accuracy is only 51.3% with two selected band images
and it reaches to 95.3% with 30 band images selection. Also, Fig.7 visualizes the
classification results and compares them with the ground truth. Visual observations
can also tell the constant classification accuracy improvement with the number of
band image increases.

3.5. Comparison with Shannon Entropy Based Band Selection Method.

The third experiment is to compare the proposed spatial entropy-based band se-
lection method with the previous Shannon entropy-based one. In [7], the Shannon
entropy-based MI is applied as the band selection criterion and band images with
higher MI values will be chosen.

In order to make a fair comparison, we use the same configurations for the
band selection algorithm, as in Algorithm. 1, and the supervised classification.
Specifically, two band selection methods take the same arguments: 220 band images
from the 92AV3C dataset as CL, the same number of band image selection num
and the same minimum band distance threshold η. The only difference is the
way to measure the mutual information mi. In comparison of the band selection
methods, mi is referred to the Shannon entropy-based mutual information, while in
the proposed band selection method, mi is from the spatial entropy-based mutual
information (SEMI). Besides, the selected band images are separated with the same
portion of training and testing data for the SVM land use classification.
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Figure 7. Supervised classification results comparison by using
different number of selected bands

Figure 8. Classification accuracy comparison between proposed
method and previous Shannon entropy-based method

Fig.8 compares the classification accuracy. The triangle marked curve is from
the spatial entropy-based band selection method while the circle marked one is from
the Shannon entropy-based method. Visual observation shows that the classifica-
tion accuracy using the spatial entropy-based method is generally higher than the
Shannon entropy-based one. Especially, with a smaller number of band images se-
lection, the spatial entropy-based band selection method has apparent advantage.
For example, with 5 band image selection, the classification accuracy using the
spatial entropy-based band selection results is 75.3% which surpasses the Shannon
entropy-based method, 65.1%, by more than 10 percent.

4. Conclusion and Future Work

This paper proposes a new spatial entropy-based method for the hyperspectal
band selection. Integrating the spatial entropy with the traditional mutual in-
formation measurement, a new spatial entropy-based mutual information (SEMI)
function is derived and introduced as the band selection measurement. Specifically,
the higher SEMI value the band image shares with the ground truth, the more rele-
vant it is related to the classification. Furthermore, this paper develops a new band
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selection algorithm taking into consideration of both SEMI values and band image
correlation. Experiments demonstrate that the proposed band selection method
offers higher classification accuracy for land use datasets.

The new spatial entropy-based band selection method still needs improvement:
First, the current version of the SEMI function is computationally expensive. In the
future, we need to modify the methods and design the data structure to improve
the efficiency. Second, the proposed method will be applied to other large remote
sensing datasets.
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