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Abstract. We explore methods to automatically detect the quality in individual or batches of

pharmaceutical products as they are manufactures. The goal is to detect 100% of the defects, not

just statistically sample a small percentage of the products and draw conclusions that may not be
100% accurate. Removing all of the defective products, or halting production in extreme cases,

will reduce costs and eliminate embarrassing and expensive recalls. We use the knowledge that

experts have accumulated over many years, dynamic data derived from networks of smart sensors
using both audio and chemical spectral signatures, multiple scales to look at individual products

and larger quantities of products, and finally adaptive models and algorithms.
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1. Introduction

Diabetes is a problem worldwide. Of the more than 15 million Americans who
have diabetes mellitus, about five million do not know it. Nearly 1 million new
cases are diagnosed each year. The disease affects men and women of all ages and
certain ethnic groups are more greatly affected than other groups [1]. With the more
common type 2 diabetes, the body does not make or use insulin properly. Without
enough insulin, the glucose stays in the blood system. Having too much glucose in
the blood system causes serious problems, e.g., damage to the eyes, kidneys, and
nerves. Other side effects of diabetes include heart disease, stroke, and removal of
limbs. Pregnant women can also have gestational diabetes [2].

The total annual economic cost of diabetes in 2007 in the U.S. was estimated to
be 32% higher than just five years earlier. In 2007, medical expenditures totaled
$116 billion ($27 billion for diabetes care, $58 billion for chronic diabetes-related
complications, and $31 billion for excess general medical costs). Indirect costs
resulting from increased absenteeism, reduced productivity, disease-related unem-
ployment disability, and loss of productive capacity due to early mortality equaled
the cost of chronic diabetes-related expenditures. One out of every five health care
dollars is spent caring for someone with diagnosed diabetes, while one in ten health
care dollars is attributed to diabetes [3].

While U.S. drug products are of generally high quality, there is an increasing
trend toward manufacturing-related problems that lead to recalls, disruption of
manufacturing operations, and loss of availability of essential drugs. The U.S.
Food and Drug Administration (FDA) is combating these problems plus low man-
ufacturing process efficiency (<30%) has also led to increased cost of drugs by
emphasizing current good manufacturing practice (cGMP) as the means of con-
trolling drug quality. An unfortunate side effect is that many companies are no
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longer innovating at the same rate as before. The FDAs response is that uses of
new sensing technologies will be key to improving the regulation and quality of
drug manufacturing using scientifically proven risk-based methods. Near infrared
(NIR) is one of the process analytic technologies (PAT) that the FDA has chosen
to improve manufacturing process quality [4].

In Section 2, we describe the smart sensors we are designing for use on man-
ufacturing lines and how both offline high performance computing and integrated
sensing and processing are involved.

In Section 3, we describe where multiscale techniques are useful and how to
construct them.

In Section 4, we describe the process of finding the best frequencies for drug
identification considering algorithmical and numerical aspects.

In Section 5, we describe some identification results along with some simple
timing information for the parallel computation needed to create libraries for our
sensing devices.

In Section 6, we draw some conclusions.

2. Smart Sensors with Integrated Sensing and Processing

Smart sensors are a form of integrated sensing and processing (ISP). ISP opti-
mizes systems that integrate sensing, signal processing, communication, and tar-
geting. Traditional sensing systems lead to high dimensional and prohibitively
expensive problems to solve. ISP based methods lead to reduced and low dimen-
sional systems that can be solved through a combination of the on board computing
on the sensors and by solving auxiliary problems on highly parallel computers in
advance. We convert data directly to knowledge using programmable on demand
ISP-based imaging spectrometers that produce detector signals that can be corre-
lated directly to desired samples. Hence, we do not need to do a post collection
chemometrics step. Parallel computers produce libraries that are downloaded to
the ISPs and include environmentally relevant information that is updated on a
regular basis. While these libraries are expensive to create computationally, the
use in the ISPs is both inexpensive and fast.

Dynamic data-driven application systems (DDDAS), [5], [6], and [7], place far
different strains on high performance systems and centers than traditional appli-
cations due to dynamic and unpredictable changes in resources that are required
during long term runs. An on demand environment is required that stresses tradi-
tional computing centers views on allocating resources. The number of processors,
network resources, and location of computing and data can change unpredictably
during the course of a long term DDDAS computation [8] and [9].

DDDAS assumes that application components, resource requirements, applica-
tion mapping, interfaces and control of the measurement system can be modified
during the course of the application simulation. Figure 1 provides a schematic of
how typical DDDAS applications appear componentwise.

The longest running DDDAS we are aware of began its calculations in 1978 and
still runs today even though all of the hardware and software have changed over
time, but the application has never been turned off. The application monitors all
oil and gas pipelines, storage tanks, wells, and tanker loading in Saudi Arabia.

The devices we are designing for this project are designed to reduce the over
abundance of data that is prevalent in most pharmaceutical manufacturing environ-
ments today [10]. We envision using similar devices in related fields, e.g., handheld
devices to ensure correct pill delivery wherever health caregivers are involved.
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Figure 1. A typical DDDAS

Providing a reprogrammable, networked embedded system that can automati-
cally determine quality and control end products in a manufacturing line will impact
not only the pharmaceutical industry, but any similar chemically-based production
facility. A likely offshoot is a handheld acoustic device that medical providers can
use to correctly identify all medications that will be given to patients. Taking the
wrong medications is the fifth leading cause of death in the United States.

The identification of pills by using acoustic waves is a challenging problem in
technical pharmacy. Manufacturing lines are extremely noisy and we typically only
have 8-10 milliseconds to identify each defective or incorrect pill. Our goal is to
catch 100% of the possible problem pills and get them out of the manufacturing
line before they reach packaging.

In the U.S., a pilot line is created, tested, and eventually approved by the FDA.
Once approved, it becomes a production line and cannot be modified in any signif-
icant way. Any significant modification to a production line makes it a pilot line
again with all of the testing and approvals required again. Further, the FDA has
to approve to conversion back to a pilot line, which it may not do.

Spherix is a small pharmaceutical company that created Tagatose [11], [12], and
[13]. The manufacturing line belongs to a much larger company that is in Italy that
does contract work for others. We are in a position to create a complete DDDAS
and test it on a real pharmaceutical manufacturing line in Italy, where the rules
for testing new pharmaceutical technology is quite different than in the U.S.. In
particular, we do not have to get FDA approval to make an adjustment to the
manufacturing line in order to improve the quality control mechanisms.

The system we are creating corresponds to a true DDDAS since it involves com-
bining pill manufacturing and environmental factors with integrated sensing and
processing. A number of human factors also are included based on who is working
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on the manufacturing line during a work shift and the peculiarities of the individ-
ual workers. Incoming raw materials vary, too, and the system needs small, but
significant adjustments on a regular basis, typically timed for work shifts. The up-
dates require some substantial high performance computing to create downloadable
libraries for the actual devices.

The DDDAS is built using a cumulative set of components:

• The production process is modeled using TagSim, a semi-empirical Simulink
[14] program written in Matlab. TagSim predicts both the output yield and
impurities for the tagatose production process.
• Remote access to the system uses a secure client-server approach on the

Internet.
• Servers are connected to the processes through standard data acquisition

hardware and the Matlab Communication Toolbox. The combination pro-
vides security, data validation, and session management.

The remote access provides a secondary side effect, namely a nice mechanism for
training students in process control.

The choice of Matlab speeded up the development of the entire system. In part
because Matlab is well known by students, but also that it was easy to design, test,
and verify control strategies in real time over the Internet. Both interlocks and
cutoffs were easy to implement, both of which guarantee safe and secure operation
of the remote processing units.

One problem that came to light was that computation and networking speeds
have to be carefully monitored. Using remote supercomputers to generate the li-
braries for the ISP devices must minimize data transfers in order to be useful. It is
not yet practical to transfer the data to a remote supercomputer, do a fast calcula-
tion on it, and transmit the result for an individual pill back to the manufacturing
line. It is essential to do the identification on the ISP directly.

The actual acoustic devices use a combination of integrated sensing and process-
ing and acoustic resonance spectroscopy (ISP-ARS). This is a novel approach to
acoustic spectroscopy that can be implemented using instruments as simple as a
MP3 player like an Apple iPod TouchTM or one that is extremely complex. The
choice depends on the environment that the ISP-ARS will be used in. A wireless
networked MP3 player is ideal since the library can be downloaded from a server
at selected times or pushed by the server.

ISP-ARS is both fast and non-destructive. Unlike near-infrared or optical meth-
ods, acoustic methods are can penetrate deeply many common forms of opaque
packaging. The penetration ability is a significant advantage in preparing clinical
trial lots since drugs and placebos should be indistinguishable by the patients.

Pharmaceutical manufacturing lines for pills are extremely noisy environments.
Simple acoustic devices are worthless unless a sound box is created to house the
acoustic device while letting pills pass by. In addition, the pills move on manu-
facturing line at a considerable speed. At any physical region of the line, the pills
are only available for defect identification for 5-10 milliseconds and must then be
eliminated from the line. Further, our goal is to eliminate every single defective
pill, not just some of them.

The ISP-ARS device must perform an optimization of a functional that is equiva-
lent to solving a complicated nonlinear equation. We use automatic differentiation
techniques to simplify the entire process to something that can be put into an
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embedded system. Numerical approximations are used to further simplify the com-
puting tasks to something practical for the embedded system. All we care about is
that the ISP computation is accurate and fast enough to catch each defective pill.

All pills sold in the world are supposed to be unique in shape, size, and coloring.
All pills have a unique audio spectra footprint. We play specific noise patterns
at pills and measure the resulting spectra. We look for specific spectra to iden-
tify specific types of pills. We have to identify which spectra to look for given
environmental factors that may change over time as short as a work shift.

In ISP-ARS, an acoustic waveform is created that comprises just the distin-
guishing spectral details associated with an analyte of interest. Fourier transform
acoustic resonance spectroscopy (FTARS) is used to develop ISP acoustic wave-
forms employed in differentiating different drugs.

As a PAT, a series of ISP-ARS sensors must scan every pill produced by a
manufacturer, enabling the removal of only those pills that do not meet quality
standards or controls. Measurements from a series of ISP-ARS sensors should
control the manufacturing line dynamically and adjust the process conditions and
ingredients in real time based on actual process measurements [15] and [16].

ISP-ARS reduces the time required for processing that normally occurs with full
spectrum FTARS. An ISP acoustic waveform results from chemometric analysis of
the FTARS spectrum. By weighting the frequency changes according to individual
component scores, an acoustic waveform can be constructed that excites just the
frequencies important to the analyte in question. The ISP output is a voltage that
can be read immediately and corresponds to just the analyte in question.

The ISP acoustic wave design starts with the chemometric analysis of the initial
FTARS data. FTARS makes a prediction about what works as an ISP acoustic
waveform for a given set of samples. The training process can be interpreted as a
DDDAS that continuously monitors the performance of the ISP waveform that is
continuously adjusted through retraining. In essence, a symbiotic relation between
the computation and the sensing that results in highly quality manufacturing.

Consider Figure 2. The traditional FTARS cycle is steps ABCDA. In traditional
FTARS, samples are scanned and classified according to their inter-cluster distances
found via multivariate analysis (steps A-D). For each sample or groups scanned the
process is repeated. The FTARS data is used as a predictor for ISP-ARS. The pre-
diction (E) is used to construct an ISP acoustic waveform. The traditional FTARS
cycle is no longer needed once the ISP waveform is constructed. Samples scanned
with the ISP waveform are classified according to their voltages (F-G). If a sample
cannot be classified (H), then FTARS is employed to construct chemometrically a
new ISP acoustic waveform usingth a training set that it includes the new unknown.
As samples change during time, the ISP waveform adapts to the new data.

FTARS can be used to differentiate liquids, powders, drugs, and predict dissolu-
tion rates in seemingly identical samples. FTARS is nondestructive and complete
scans can be made in seconds, therefore it should be a prime candidate for use as
a PAT. Following data collection, FTARS relies on intensive computer processing
due to the amount of information gained in each scan. An ARS spectrum recorded
over the interval of 20 Hz to 20 kHz with a sample rate of 44.1 kHz for one second
generates a large amounts of data from the 44100 data points. Chemometric anal-
ysis of multiple FTARS data sets requires too much computation, which limits the
production rate of tablets, which is unacceptable. ISP-ARS is fast enough to not
limit production rates since it directly produces the analyte identity as an output,
thus eliminating the computational time of FTARS.
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Figure 2. A classification of the steps in FTARS and ISP-ARS

3. Multiscale Advantages

We can assume that the ISP-ARS devices are in multiple locations in the pro-
duction line and that there are local computing resources. The ISP-ARS devices
are identifying defective or low quality pills on the manufacturing line as defective.
Data can be transmitted to a local computer that maps the quality of the overall
production line.

The map can easily be on different scales ranging from the entire production
line to space corresponding to multiple pills. The advantage of using a multiscale
technique is that when problems arise on the production line, we can determine
quickly and automatically whether we have a minor or major problem. If enough
defective pills are identified at once or in enough different locations, we may want
to shut down the production line until the problems can be resolved. Shutting
down the production line is both expensive and under normal circumstances not
done. Doing so automatically with the problem area already identified will reduce
the expenses considerably.

In packaging, identifying that possibly millions of pills are mislabeled will save a
costly product recall. For a drug test, it will possibly save the entire set of human
trials from having to be discarded and a new country targeted for the trials.

4. Finding the Best Frequencies for a Drug

For an accurate pill testing, the FTARS data for a drug has to be analyzed to
identify the N frequencies, that can identify the drug best. Finding these fequencies
bases on criteria, whose characterice the suitability of a set of N different fequencies.
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This characterization will done by a special curve approximation of the response
intensities of the different frequencies with respect to the given probes. This curve
approximation will be done by minimizing a functional for each frequency tuple.

4.1. Curve Quality.

4.1.1. The General Algorithm. In order to determine the identification ability
of a N–tuple of frequencies {vi}Ni=1 ∈ RN and test them with m strictly increasing
concentrations {ci}mi=1 ∈ Rm and get m response vectors {fi}mi=1.

Now a sufficiently smooth parameterized curve q(·), q : R → RN approximates
the data points (respectively the response vectors {fi}mi=1) and projects each fi,
∀i = 1, . . . ,m orthogonally onto q(·) at parameter ti with the restriction that ti <
ti+1 and determines the arc length si along the curve from t1 to ti afterwards.

The ideal curve q(·) would result in an affine linear relation between arc lengths si
and concentrations ci, ∀i = 1, . . . ,m. The distances of points (si, ci) from the
regression line of these points determines the quality of the approximation.

A pseudo algorithm for this quality criterion looks like:

(1) for i = 1, . . . ,m: project fi onto q(t), such that for ti the value q(ti) is the
closest orthogonal projection point of fi on the curve q(t)

(2) for i = 1, . . . ,m: calculate the arc length si along the curve q(·) from t1 to
ti

(3) determine the parameters a, b of the regression line

(1) g(s) = as+ b

from the data pairs {(si, ci)}mi=1

(4) evaluate the quality of the curve q(·) according to the functional

(2) F (q, f) := ω1

m∑
i=1

(g(si)− ci)2 +ω2

m∑
i=1

‖q(ti)− fi‖2 +ω3

m−1∑
i=1

max(0, ti− ti+1)2

where ω1, ω2 and ω3 are freely chosen parameters with the restriction that
ω3 � ω1, ω2. The idea of this restriction is that the case ti > ti+1, i =
1, . . . ,m− 1 is to be penalized.

Since F is a convex functional and sufficiently regular, we can find (one of) the best
curves for the particular set (v, f, c) in a class by optimizing the curves parameters
with respect to F .

The choice of the used curve classes is of big importance: They have to be fast in
evaluation and have to allow a good approximation of the response vectors {fi}mi=1.

4.1.2. Projection. Because q(t) ∈ C1(RN ) the tangential vector of q(t) at param-

eter t∗ is q′(t∗) =
(
q(1)′(t∗), . . . , q(N)′(t∗)

)T
wherein q(k)′ denotes the first derivative

of q(k) with respect to t. Therefore the projection of the point f ∈ RN onto the curve

q(t) can be expressed in terms of the inner product 〈·, ·〉 in the Hilbert space RN

(3) Find t∗ ∈ R such that p(t∗) :=
〈
q′(t∗) , f − q(t∗)

〉
= 0 .

Providing the first derivative of p(t)

(4) p′(t) =
〈
f − q(t) , q′′(t)

〉
− 〈q′(t) , q′(t)〉

allows to solve the non–linear equation p(t) = 0 via the Newton iteration

(5) t(l+1) := t(l) − p(t)

p′(t)
.
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with an appropriate initial guess t(0). We have to be aware that (3) may have non-
unique solutions. Therefore this initial guess for the non–linear solution procedure
is of great importance.

Solving (3) for all f
i

will determine the ti, i = 1, . . .m from step 1 in the
algorithm from §4.1.1.

4.1.3. Arc Length. The formula for the arc length is simply

(6) s(t∗) :=

∫ t∗

t1

(
N∑

k=1

[q(k)′(t)]2

)0.5

dt .

A arc–length parameterized curve, i.e., using s instead of t as parameter, is rather
hard to achieve and can be done only numerically for the general case. An approach
for spline curves is described in [19].

4.1.4. Regression Line. Determining the a, b in the regression line (1) from the
given data pairs {(si, ci)}mi=1 ∈ R2 is equivalent to minimizing the functional

(7) F̃ (a, b) :=

m∑
i=1

(g(si)− ci)2 (1)
=

m∑
i=1

(a · si + b− ci)2

with respect to the parameters a, b. Note, that the linear functional F̃ in (7) is
similar (not identical) to the non–linear functional F in (2).

Some simple numerical analysis solves (7) as

(8)

(
a
b

)
=

1

m
m∑
i=1

s2
i −

(
m∑
i=1

si

)2

 m
m∑
i=1

sici −
(

m∑
i=1

si

)(
m∑
i=1

ci

)
(

m∑
i=1

s2
i

)(
m∑
i=1

ci

)
−
(

m∑
i=1

sici

)(
m∑
i=1

si

)


4.2. Curve Classes.

4.2.1. Polynomial Curves. Let us assume that the functions q(k)(t) are global
polynomial functions of degree p, i.e.

(9) q(k)(t) :=

p∑
j=0

akj · tj ∀k = 1, . . . , N .

If we use piecewise polynomial function, e.g., cubic splines, then we take into
account a similar representation of the curve in which the coefficients akj will
characterize the curve q(t) ∈ RN . These coefficients are functions of the given
intensities f

i
∈ RN . The coefficients akj are unique under the presupposition

q(t = 0) ≡ f
1
.

Because neither projection step, nor arc length computation for the algorithm
in §4.1.1 can be performed analytically for all polynomials of degree higher than
2, numerical approximation like described in §4.1.2 and §4.1.3 has to be used for
projection and arc length computation.

4.2.2. Circular Splines. A circular spline q (t) is a parameterized spline curve in
RN , which segments consist of n circular arcs yi, i = 1, . . . , n [20].

Each circular arc has a rational Bezier-representation

(10) yi (u) =
(1− u)

2
A+ 2u (1− u)ωB + u2C

(1− u)
2

+ 2u (1− u)ω + u2
u ∈ [0, 1] .
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Hence, q (t) = yk (ũ) with k = btc and ũ = t− k, where A,B,C and ω describe the
arc. All arcs can be joined such that the spline has C1-regularity.
Projection: u∗ ∈ [0, 1] is the parameter of a projection point of f ∈ RN on a circular
arc y if the relation in (3) is fulfilled for u∗, i.e.,

(11)

〈
y′ (u∗) , f − (1− u∗)2

A+ 2u∗ (1− u∗)ωB + u∗2C

(1− u∗)2
+ 2u∗ (1− u∗)ω + u∗2

〉
= 0

Thus, u∗ may be computed directly without using iterative methods, since solving
(11) for u∗ means to find a real zero of a polynomial with degree 4 in the interval
[0, 1].
Arc Length: Analogously, closed and easily computable formulas for the arc length
computation can be derived by taking advantage of the geometrical properties of
the spline segments.

4.3. Finding the Best Curve. Formally, determining the best curve is equivalent
to minimizing functional F from (2). The functional F is a function of the regression
parameters a, b which are functions of all si, ci. The si are determined from q(k), ti
and the latter is a function of curve q(k) and intensities f

i
. The parametrization of

q(k) involves finally the curve parameters akj from §4.2.1, i.e., we consider only the
polynomial curves approach in the following. The formulas for circular splines will
be similar using the appropriate curve parameters for them.

F :=

m∑
i=1

(g(si)− ci)2

regression line

= F (a({si}, {ci}), b({si}, {ci}))
arc length

= F (a
({

si

[
{q(k)}, ti

]}
, {ci}

)
, b(· · · ))

projection

= F (a
({

si

[
{q(k)}, ti

(
{q(k)}, f

i

)]}
, {ci}

)
, b(· · · ))

parameterization

F ({akj}, {f (k)
i }, {ci}) = F (a

({
si

[
{akj}, ti

(
{akj}, f i

)]}
, {ci}

)
, b(· · · ))

Determining the best curve for an N -tuple of frequencies means solving the opti-
mization problem

(12) min
akj

F ({akj}, {f i}, {ci}) ∀i = 1, . . . ,m

which can be expressed as non–linear equation

(13) ∇akj
F ({akj}, {f i}, {ci}) = 0

with respect to the design variables akj , k = 1, . . . , N , j = 0, . . . , p.
Solving (13) directly cannot be done analytically because of the non–linear equa-

tion (3) the gradient cannot be provided analytically. Instead, we tackle the op-
timization problem (12) with standard SQP methods [21, 22]. The optimizer is
based on a Quasi–Newton approximation of the Hessian using a modified BFGS
update formula following [23] in order to avoid the need for Hessian information of
the objective.
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Algorithm 1 Quasi–Newton optimization with BFGS update

Set i=0
Make initial guess for the design parameters xi.
Set the approximation of the hessian Hi = I.
while convergence criterion is not fulfilled do

Calculate descent direction di from Hidi = −∇xi
F (xi)

Perform line search to get a step size αi with sufficient descent
Set xi+1 = xi + αidi
Set Hi+1 according to the BFGS formula
i=i+1

end while

4.4. Implementational Aspects.
Parallelization. For k possible frequencies, the number of the N–tuples that have
to be tested and hence is the number of curve approximations that have to be
performed is

(
k
N

)
. This means finding the best frequencies is a very computational

task. Therefore parallelization of the task is required. Basically, finding the best
curve for a frequency tuple (and hence evaluate the quality of this tuple) is a
sequential problem for one CPU, respectively for one CPU core. Therefore the
parallelization approach is to have a distinguished master process and many slave
processes.
The master process takes care of the data handling (supplies all other processes
with data sets) and also keeps track of the quality of each data set, while the slave
processes receive one or multiple data set from the master, find the best curve for
the data sets (by performing the algorithm above), send the result back to the
master process and evaluate the new data sets received from the master.
Optimization. While the optimization algorithm 1 with propper line search can
guarantee convergence rates, it prove to be unsuitable for the structure of the
functional F . The reason for this is the steepness of F at certain points, that leads
to problems with common line search strategies, especially when single–precision
data types are used for computation.

Thus, a very naive approach appears to be useful: For line search we use back-
tracking until any descent is achieved. In the step size control any step length
is valid, as long as there is any descent with respect to a step length of 0. This
approach does not guarantee any convergence rates, but prove to be suitable for F .

5. Identification and Computational Results

We identified several toll-manufactured drugs (aspirin, acetaminophen, D-tagatose,
ibuprofen, vitamin C, and vitamin B) in a controlled lab environment using ISP
acoustic waveforms composed of 10, 100, and 1000 frequencies. We found that just
the top 10 frequencies properly classified each pill. Intra-cluster distances were cal-
culated to be less than 3 multidimensional standard deviations (MSD) for each pill
type. The average accuracy of prediction was 98.47, 97.45 and 95.41 percent for
the 10, 100 and 1000 frequency component acoustic waveforms respectively [18].

Computing the libraries for the ISP-ARS devices requires a large number of
independent calculations. We used a cluster made up of Intel Core i7-920 running
at 2.67GHz and 6GB DDR3 RAM. Each potential frequency was computed using
8 cores. We used 10,000 point datasets and 9-way parallelism (the ninth is the
controlling process and uses minimal time).
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Using the g++ compiler, run times per frequency calculation were approximately
160, 260, and 321 seconds for third through fifth degree arc lengths used to find
the best frequencies.

We can deliver an infinite number of acoustic spectra, but that defeats the cre-
ation of a small, embedded DDDAS device that is useful in itself. Instead we choose
a small number of spectra, which changes slightly over time based on environmental
and personnel factors. However, we compute on as many processors as we can for a
set period of wall clock time. For real production of pills, we need to recalibrate the
libraries once per work shift. We can predict how long we need to compute based on
timings like above and the number of processors we can access on a supercoputer.
Alternately, we can predict how many processors we need based on how much time
we are allowed.

6. Conclusions

We have described a multiscale prototype DDDAS to identify defective, inade-
quately low quality, or mislabeled pills. ISP-ARS can differentiate between different
types of pills. The results are preliminary and much more research and development
is necessary to produce systems that can be deployed on pharmaceutical manufac-
turing lines with government approvals.
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