AN OPTIMAL-ORDER ERROR ESTIMATE FOR AN H₁-GALERKIN MIXED METHOD FOR A PRESSURE EQUATION IN COMPRESSIBLE POROUS MEDIUM FLOW

HUANZHEN CHEN, ZHAOJIE ZHOU, AND HONG WANG

Abstract. We present an H^1-Galerkin mixed finite element method for the solution of a nonlinear parabolic pressure equation, which arises in the mathematical models for describing a compressible fluid flow process in subsurface porous media. The method possesses the advantages of mixed finite element methods while avoiding directly inverting the permeability tensor, which is important especially in a low permeability zone. We conducted theoretical analysis to study the existence and uniqueness of the numerical solutions of the scheme and prove an optimal-order error estimate for the method. Numerical experiments are performed to justify the theoretical analysis.

Key Words. H^1-Galerkin mixed finite element method, optimal-order error estimates, numerical examples.

1. Introduction

Mathematical models used to describe compressible fluid flow processes in petroleum reservoir simulation and groundwater contaminant transport lead to a coupled system of time-dependent nonlinear partial differential equations. Let $c(x,t)$ be the concentration of an invading fluid or a concerned solute or solvent, and let $p(x,t)$ and $u(x,t)$ be the pressure and Darcy velocity of the fluid mixture. The mass conservation for the fluid mixture and for the invading fluid as well as Darcy’s law leads to the following system of partial differential equations [1, 2, 3]

\begin{align*}
\frac{\partial}{\partial t}(\phi \rho) + \nabla \cdot (\rho u) &= \rho q, \quad x \in \Omega, \ t \in J, \\
\frac{\partial}{\partial t}(\phi c) + \nabla \cdot (\rho u c - \rho D(x,u) \nabla c) &= \bar{c} \rho q, \quad x \in \Omega, \ t \in J,
\end{align*}

\[u = -\frac{K}{\mu}(\nabla p - \rho g), \quad x \in \Omega, \ t \in J. \]

Here $\Omega \subset \mathbb{R}^d$ refers to a porous medium reservoir with the boundary $\partial \Omega$, $J = (0,T]$ is the time interval, $\phi(x)$ and $K(x)$ are the porosity and the permeability tensor of the medium, μ and ρ are the viscosity and the density of the fluid mixture, g reflects the gravitational effect, $q(x,t)$ is the source and sink term. $D(x,u) = \phi(x)d_m \mathbf{I} + d_1 |u| + (d_t - d_2)(u_i u_j)_{i,j=1}^d/|u|$ is the diffusion-dispersion tensor, with

Received by the editors August 17, 2009 and, in revised form, November 25, 2009.

2000 Mathematics Subject Classification. 65N15, 65N30.

The work is supported by the National Science Foundation of China under Grant 10971254, the Natural Science Foundation of Shandong Province under Grant ZR2009AZ003 and Young Scientists Fund of Shandong Province under Grant 2008BS01088, and the National Science Foundation under Grant No. EAR-0934747.
\(d_m, d_t, \) and \(d_l \) being the molecular diffusion, the transverse and longitudinal dispersivities, respectively, and \(\mathbf{I} \) is the identity tensor. \(\bar{c}(\mathbf{x}, t) \) is specified at sources and \(\bar{c}(\mathbf{x}, t) = c(\mathbf{x}, t) \) at sinks.

In the context of compressible fluid flow process, the first term in (1.1a) does not vanish. The flow equation in (1.1) can be expressed as a nonlinear parabolic equation in terms of the pressure \(p \) as follows

\[
S_p \frac{\partial p}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = \rho q.
\]

The variable of primary interest in the mathematical model (1.1)-(1.2) is the concentration \(c \) in the transport equation in (1.1), which shows the sweeping efficiency in the enhanced oil recovery in petroleum industry or the extent and location of the contaminant and the effect of remediation in groundwater contaminant transport and remediation. Extensive research has been conducted on the numerical methods and corresponding analysis for the transport equation in (1.1), including (but not limited to) [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

Nevertheless, an accurate solution of the concentration \(c \) requires an accurate recovery of Darcy velocity \(\mathbf{u} \) in the flow equation in (1.1) since the advection and diffusion-dispersion in the transport equation are governed by Darcy velocity. However, the flow properties of the porous media often change abruptly with sharp changes in lithology. These sharp changes are accompanied by large changes in the pressure gradient \(\nabla p \) which, in a compensatory fashion, yields a smooth Darcy velocity \(\mathbf{u} \) [3]. The standard finite difference or finite element methods solve the pressure equation (1.3) for the pressure \(p \) directly, which is not necessarily smooth due to the rough coefficients in the equation. The pressure \(p \) is differentiated and then multiplied by a possibly rough coefficient \(K/\mu \) to determine Darcy velocity \(\mathbf{u} \) via (1.2). Therefore, the resulting Darcy velocity \(\mathbf{u} \) is often inaccurate, which then reduces the accuracy of the approximation to the concentration \(c \) in the transport equation in (1.1).

The mixed finite element method approximates both the pressure \(p \) and Darcy velocity \(\mathbf{u} \) from a flow or pressure equation in (1.1) simultaneously, yielding an accurate Darcy velocity \(\mathbf{u} \) [3, 26, 27, 28]. This is why the mixed method has been used widely in the numerical simulation of porous medium flow, including both incompressible flow [18, 19, 20, 21, 22, 23, 24] and compressible flow [5, 6, 25]. In the mixed formulation, Darcy’s law (1.2) is rewritten as \(\mu K^{-1} \mathbf{u} = \nabla p \) and then combined with the flow equation in (1.1) to form a saddle-point problem. Consequently, the mixed formulation could face numerical difficulties in a low permeability zone due to the inversion \(K^{-1} \).

In this paper we continue our previous work in [41] and develop a fully discrete \(H^1 \)-Galerkin mixed finite element method which combines the \(H^1 \)-Galerkin formulation [29, 30] and the expanded mixed finite element method [31]. This would solve for the pressure \(p \), its gradient \(\mathbf{\sigma} = \nabla p \) and Darcy velocity \(\mathbf{u} = (K/\mu)\nabla p \) directly, and thus avoids invert \(K \) explicitly. Furthermore, this formulation permits the use of standard continuous and piecewise (linear or higher-order) polynomials in contrast to continuously differentiable piecewise polynomials required by standard \(H^1 \)-Galerkin method [29, 30], and is free of LBB condition as required by the mixed finite element method. An optimal error estimate for fully discrete approximation was proved under milder regularity assumptions and the CFL condition. Numerical tests are performed to confirm the theoretical analysis. There have been works in the literature on the development and analysis \(H^1 \)-Galerkin mixed finite element
method for linear parabolic type equations and regularized long wave equation [32, 33, 34, 35].

The rest of the paper is organized as follows: In Section 2 we formulate a fully discrete \(H^1 \)-Galerkin mixed finite element procedure for a nonlinear parabolic problem and prove the existence and uniqueness for the solution of the scheme. In Section 3 we prove the main error estimates. In Section 4 we perform numerical experiments to observe the numerical performance of the method. Finally, we draw some concluding remarks in Section 5.

2. An \(H^1 \)-Galerkin mixed finite element scheme

Let \(W^{k,p}(\Omega) \) denote the standard Sobolev space of \(k \)-differential functions in \(L^p(\Omega) \) and \(\| \cdot \|_{k,p} \) be its norm. Let \(\| \cdot \|_k \) be the norm of \(H^k(\Omega) = W^{k,2}(\Omega) \) or \((H^k(\Omega))^d =: H^k \). When \(k = 0 \), we let \(L^2 \) or \(L^2 \) denote the corresponding space defined on \(\Omega \), \((\cdot,\cdot)\) denotes its inner-product and \(\| \cdot \| \) denote its norm. We also use the following spaces that incorporate time dependence. If \([a,b] \subset [0,T] \), \(X \) is a Sobolev space and \(f(x,t) \) suitably smooth on \(\Omega \times [a,b] \), we let \(L^p(a,b;X) = \{ f : \int_a^b \| f(\cdot,t) \|^p_x dt < \infty \} \) with its norm \(\| f \|_{L^p(a,b;X)} = (\int_a^b \| f(\cdot,t) \|^p_x dt)^{\frac{1}{p}} \), where if \(p = \infty \), the integral is replaced by the essential supreme. Throughout this paper, \(C \) will denote a generic constant which does not depend on \(h \), and \(\tau \).

In this section we develop a fully discrete \(H^1 \)-Galerkin mixed finite element scheme for the following initial-boundary value problem of a nonlinear parabolic equation in porous medium flow

\[
\begin{align*}
(a) \quad & p_t - \nabla \cdot (a(p)\nabla p) = f, & (x,t) \in \Omega \times J, \\
(b) \quad & p = 0, & (x,t) \in \partial\Omega \times J, \\
(c) \quad & p(x,0) = p_0(x), & x \in \Omega,
\end{align*}
\]

where \(x = (x_1, x_2, \ldots, x_d)^T \in \mathbb{R}^d \), \(\Omega \) is a bounded domain in \(\mathbb{R}^d \) with a Lipschitz continuous boundary \(\partial\Omega \), \(J = [0,T] \), \(f \in L^2(\Omega \times J) \), \(p \in L^2(\Omega \times J) \), \(p_t = \frac{\partial p}{\partial t} \).

For the solvability of the equation we assume \(a(p) \) satisfies the following conditions:

There exist positive constants \(a_0, a_1, C_0 \) and \(C_1 \) such that

\[
a_0 \leq a(p) \leq a_1, \quad |a_p(p)| \leq C_0, \quad |a_{pp}(p)| \leq C_1, \quad \text {for } p \in \mathbb{R}.
\]

For simplicity of exposition, we have rewritten the nonlinear pressure equation (1.3) into a compact form and neglect the spatial dependence in the coefficients, which leaves out nonessential technicality in the presentation of the method and the analysis.

2.1. Weak Formulation. The \(H^1 \)-Galerkin mixed formulation would split the nonlinear parabolic equation in (2.1) into a first-order system in terms of the pressure \(p \), its gradient \(\sigma = \nabla p \), and Darcy velocity \(u = a(p)\nabla p \) as follows

\[
\begin{align*}
(a) \quad & p_t - \nabla \cdot u = f, \\
(b) \quad & \nabla p = \sigma, \\
(c) \quad & u = a(p)\sigma, \\
(d) \quad & \sigma(x,0) = \nabla p_0(x).
\end{align*}
\]

Let \(H(\text{div},\Omega) = \{ v \in (L^2(\Omega))^d, \nabla \cdot v \in L^2(\Omega) \} \) and \(H^1_0(\Omega) = \{ w \in H^1(\Omega) : w = 0 \text{ on } \partial\Omega \} \). Note that \(p \in H^1_0(\Omega) \). Then we multiply equation (2.2a) by \(\nabla \cdot w \), integrate on \(\Omega \), and apply the divergence theorem to the first term on the left side of the equation to get a weak form for equation (2.2a). We then multiply equation
(2.5) by ∇w for $w \in H^1_0(\Omega)$, equations (2.2c) and (2.2d) by $v \in H(\text{div}, \Omega)$, and integrate the three resulting equations on Ω. This leads to the following weak formulation for problem (2.2): find $(p, \sigma, u) \in H^1_0(\Omega) \times H(\text{div}, \Omega) \times H(\text{div}, \Omega)$ such that
\[
\begin{aligned}
(a) \quad (\sigma, q) + (\nabla \cdot u, \nabla \cdot q) &= -(f, \nabla \cdot q), \quad \forall q \in H(\text{div}, \Omega), \\
(b) \quad (\nabla p, \nabla w) &= (\sigma, \nabla w), \quad \forall w \in H^1_0(\Omega), \\
(c) \quad (u, v) &= (a(p)\sigma, v), \quad \forall v \in H(\text{div}, \Omega), \\
(d) \quad (\sigma(\cdot, 0), v) &= (\nabla p_0, v), \quad \forall v \in H(\text{div}, \Omega).
\end{aligned}
\]

2.2. The Fully Discrete Scheme. Now we are in the position to present the fully discrete H^1-Galerkin MF scheme. Let \mathcal{T}_h be a quasi-uniform family of subdivision of domain Ω, i.e., $\Omega = \bigcup_{K \in \mathcal{T}_h}K$ with $h = \max\{\text{diam}(K); K \in \mathcal{T}_h\}$. Let H_h and V_h be the finite dimensional subspaces of $H(\text{div}; \Omega)$ and $H^1_0(\Omega)$ defined by
\[
\begin{aligned}
H_h &= \{q_h \in H(\text{div}; \Omega); q_h|_K \in (P_k(K))^d, \forall K \in \mathcal{T}_h\}, \\
V_h &= \{v_h \in H^1_0(\Omega); v_h|_K \in P_m(K), \forall K \in \mathcal{T}_h\}.
\end{aligned}
\]
Here $P_j(K)$ denotes the space of polynomials of degree at most j on the cell K.

Let $0 = t_0 < t_1 < \cdots < t_{N-1} < t_N = T$, $\tau = t_n - t_{n-1}$, $n = 1, 2, \cdots, N$. Set $p^n = p(x, t^n)$, $\delta_t p^n = (p^n - p^{n-1})/\tau_n$. By using the backward difference technique with first-order accuracy to discretize the nonlinear first-order system (2.3), we formulate the fully discrete H^1-Galerkin mixed finite element scheme for (2.3) as follows: find $(p^n_h, \sigma^n_h, u^n_h) \in V_h \times H_h \times H_h$ such that
\[
\begin{aligned}
(a) \quad (d^h \sigma^n_h, q_h) + (\nabla \cdot u^n_h, \nabla \cdot q_h) &= -(f^n, \nabla \cdot q_h), \quad \forall q_h \in H_h, \\
(b) \quad (\nabla p^n_h, \nabla w_h) &= (\sigma^n_h, \nabla w_h), \quad \forall w_h \in V_h, \\
(c) \quad (u^n_h, v_h) &= (a(p_h^{n-1})\sigma_h^n, v_h), \quad \forall v_h \in H_h, \\
(d) \quad u^n_h(0, \cdot) &= \Pi_h u^n(0, \cdot) = \Pi_h a(p_0)\nabla p_0.
\end{aligned}
\]

Theorem 2.1. The fully discrete H^1-Galerkin mixed finite element scheme (2.5) has a unique solution $(p^n_h, \sigma^n_h, u^n_h) \in V_h \times H_h \times H_h$.

Proof. Since (2.5) is a linear problem, it is sufficient to prove that its homogeneous problem has only a zero solution.

Let $f^n = 0$ and $\sigma^n_h = 0$. Scheme (2.5) can be rewritten as follows:
\[
\begin{aligned}
(a) \quad \frac{1}{\tau}(\sigma^n_h, q_h) + (\nabla \cdot u^n_h, \nabla \cdot q_h) &= 0, \quad \forall q_h \in H_h, \\
(b) \quad (\nabla p^n_h, \nabla w_h) &= (\sigma^n_h, \nabla w_h), \quad \forall w_h \in V_h, \\
(c) \quad (u^n_h, v_h) &= (a(p_h^{n-1})\sigma_h^n, v_h), \quad \forall v_h \in H_h.
\end{aligned}
\]

Choosing $q_h = u^n_h$ in (2.6a) and $v_h = \sigma^n_h$ in (2.6c), we derive that
\[
\|\nabla \cdot u^n_h\|^2 + \frac{1}{\tau} (a(p_h^{n-1})\sigma_h^n, \sigma_h^n) = 0
\]
and
\[
\tau \|\nabla \cdot u^n_h\|^2 + a_0 \|\sigma_h^n\|^2 \leq 0,
\]
which implies $\sigma_h^n = 0$. Setting $v_h = u^n_h$ in (2.6c) and $w_h = p_h^n$ in (2.6b), we get $\|u^n_h\| \leq C \|\sigma_h^n\|$, which implies $u_h^n = 0$, and $\|\nabla p_h^n\| \leq C \|\sigma_h^n\|$. By Friedrichs – inequality
\[
\|p_h^n\| \leq \|p_h^n\|_1 \leq C \|\nabla p_h^n\|,
\]
we obtain $p_h^n = 0$ at once. This completes the proof. \qed
3. Convergence Analysis

In this section we shall conduct convergence analysis and prove error estimates for the proposed fully discrete H^1-Galerkin mixed finite element scheme.

3.1. Preliminaries. We begin by reviewing some preliminary knowledge that needs to be used in the main analysis of this paper. It is well known that H_h and V_h satisfy the inverse property and the following approximation properties [27, 37]:

\begin{align}
\inf_{q_h \in H_h} \|q - q_h\|_{L^2(\Omega)} & \leq C h^{k+1} \|q\|_{H^{k+1}(\Omega)}, & q & \in H^{k+1}(\Omega), \\
\inf_{q_h \in H_h} \|\text{div}(q - q_h)\| & \leq C h^{k+1} \|q\|_{k+1, \Omega}, & q & \in H^{k+1}(\Omega) \cap H(\text{div}, \Omega), \\
\inf_{w_h \in V_h} \|w - w_h\|_{L^2(\Omega)} & \leq C h^{m+1} \|w\|_{H^{m+1}(\Omega)}, & \forall w & \in H^{m+1}(\Omega),
\end{align}

where $k_1 = k + 1$ when H_h is one of Raviart-Thomas elements or Nedelec elements, and $k_1 = k + 1$ when H_h is one of the other classical mixed elements, such as Berczi-Douglas-Duran-Fortin elements, Berczi-Douglas-Fortin-Marini elements and Berczi-Douglas-Marini elements.

In the subsequent error analysis, we need the following projection operators:
Let $R_h : H^1_0(\Omega) \to V_h$ be the Ritz projection defined by

\begin{equation}
(\nabla R_h v, \nabla v_h) = (\nabla v, \nabla v_h), \quad \forall v_h \in V_h.
\end{equation}

It is well known that the following approximation results hold [37]

\begin{equation}
\| v - R_h v \| + h \| \nabla v - \nabla R_h v \| \leq C h^{m+1} \| v \|_{m+1, \Omega}.
\end{equation}

It is known that the mixed finite element projection $\Pi_h : H(\text{div}, \Omega) \to H_h$ defined by

\begin{equation}
(\nabla \cdot (q - \Pi_h q), \nabla \cdot q_h) = 0, \quad \forall q_h \in H_h,
\end{equation}

has the following approximation properties [26, 27]:

\begin{equation}
\|q - \Pi_h q\| \leq C h^{k+1} \|q\|_{H^{k+1}},
\end{equation}

\begin{equation}
\|\nabla \cdot (q - \Pi_h q)\| \leq C h^{k} \|q\|_{H^{k+1}}.
\end{equation}

We next prove the following lemmas:

Lemma 3.1. We associate $\sigma^\beta \in H(\text{div}, \Omega)$ and $\zeta \in H_h$ with $\beta \in V_h$ via the relations

\begin{align}
(d_4 \sigma^\beta, q_h) + (\text{div} \, \zeta^\beta, \text{div} \, q_h) + (R_h^\beta, q_h) = 0, & \forall q_h \in H_h, \\
(\nabla \beta^\alpha, \nabla v_h) = (\sigma^\alpha, \nabla v_h), & \forall v_h \in V_h.
\end{align}

Then there is a constant $C > 0$ such that

\begin{equation}
\|d_4 \sigma^\beta\| \leq C(h \|d_4 \sigma^\alpha\| + \|\text{div} \, \zeta^\beta\| + \|R_h^\beta\|).
\end{equation}

Proof. For each $\varphi \in L^2(\Omega)$, we define $\chi \in H^2(\Omega) \cap H^1_0(\Omega)$ be the solution of the Poisson equation $-\Delta \chi = \varphi$ in Ω with a homogeneous Dirichlet boundary condition. The following stability estimate is well known (see, [39]): $\|\chi\|_{H^2} \leq C \|\varphi\|_{L^2}$.

Using (3.7) we can deduce as follows,

\begin{align}
(d_4 \beta^\alpha, \varphi) &= -(d_4 \beta^\alpha, \text{div} \, \chi) \\
&= (d_4 \nabla \beta^\alpha, \nabla \chi) \\
&= (d_4 \nabla \beta^\alpha, \nabla \chi - \nabla R_h \chi) + (d_4 \nabla \beta^\alpha, \nabla R_h \chi) \\
&= (d_4 \nabla \beta^\alpha, \nabla \chi - \nabla R_h \chi) - (d_4 \sigma^\alpha, \nabla \chi - \nabla R_h \chi) + (d_4 \sigma^\alpha, \nabla \chi) \\
&= I_1 + I_2 + I_3.
\end{align}
By using (3.3), we have
\[
I_1 \leq Ch\|\tilde{d}_t \nabla \beta^n\|_{2,\Omega} \leq Ch\|\tilde{d}_t \nabla \beta^n\|_{\Omega},
\]
\[
I_2 \leq Ch\|\tilde{d}_t \sigma^n\|_{2,\Omega} \leq Ch\|\tilde{d}_t \sigma^n\|_{\Omega},
\]
and for \(I_3\), we use (3.6) to derive
\[
I_3 = (\tilde{d}_t \sigma^n, \nabla \chi)
\]
\[
= (\tilde{d}_t \sigma^n, \nabla \chi - \Pi_h \nabla \chi) + (\tilde{d}_t \sigma^n, \Pi_h \nabla \chi)
\]
\[
= (\tilde{d}_t \sigma^n, \nabla \chi - \Pi_h \nabla \chi) + (\text{div} \chi^n, \text{div} \Pi_h \nabla \chi) + (R^n_{\sigma}, \Pi_h \nabla \chi)
\]
\[
= (\tilde{d}_t \sigma^n, \nabla \chi - \Pi_h \nabla \chi) + (\text{div} \chi^n, \text{div} \nabla \chi) + (R^n_{\sigma}, \Pi_h \nabla \chi)
\]
\[
\leq C(h\|\tilde{d}_t \sigma^n\|_{\Omega} + \|\text{div} \chi^n\| + \|R^n_{\sigma}\|_\Omega)\|\varphi\|.
\]
Combining the estimates for \(I_1, I_2\) and \(I_3\) to arrive at
\[
|\tilde{d}_t \nabla \beta^n| \leq C\{h\|\tilde{d}_t \sigma^n\|_{\Omega} + \|\text{div} \chi^n\| + \|R^n_{\sigma}\|_\Omega\} \|\varphi\|.
\]
At last we have to bound \(\|\tilde{d}_t \nabla \beta^n\|\) in (3.8) by using (3.7) as follows:
\[
\|\tilde{d}_t \nabla \beta^n\| \leq \|\tilde{d}_t \sigma^n\|.
\]
(3.8) and (3.9) lead to
\[
|\tilde{d}_t \beta^n, \varphi| \leq C\{h\|\tilde{d}_t \sigma^n\|_{\Omega} + \|\text{div} \chi^n\| + \|R^n_{\sigma}\|_\Omega\} \|\varphi\|,
\]
which proves the lemma. \(\square\)

3.2. Error Analysis. For a priori estimates, we decompose the errors as follows:
\[
\Pi_h \sigma^n - \sigma^n_h = \xi^n, \quad \sigma^n - \Pi_h \sigma^n = \theta^n, \quad \Pi_h u^n - u^n_h = \zeta^n,
\]
\[
u^n - \Pi_h \nu^n = \eta^n, \quad R_h p^n - p^n_h = \beta^n, \quad p^n - R_h p^n = \nu^n.
\]

Making use of projections \(\Pi_h\) and \(R_h\), and subtracting (2.3) from (2.5) gives the following error equations:
\[
(3.11)(\tilde{d}_t \xi^n, q_h) + (\text{div} \xi^n, \text{div} q_h) + (R^n_{\sigma}, q_h) = - (\tilde{d}_t \theta^n, q_h), \forall q_h \in H_h,
\]
\[
(3.12)(\nabla \beta^n, \nabla v_h) = (\xi^n, \nabla v_h) + (\theta^n, \nabla v_h), \forall v_h \in V_h,
\]
\[
(3.13)(a(p_h^{-1})(\xi^n + \theta^n) + (a(p^n) - a(p_h^{-1}))\sigma^n, w_h) = (\eta^n + \zeta^n, w_h), \forall w_h \in H_h,
\]
where \(R^n_{\sigma} = \sigma^n - \tilde{d}_t \sigma^n\).

Since the error estimates of \(\eta^n, \theta^n\) and \(\nu^n\) are known, we only need to estimate the errors of \(\xi^n, \zeta^n\) and \(\beta^n\). We shall tactically break the whole estimates into three parts to avoid tedious proof.

The first is to bound \(\beta^n\). Choosing \(\nu_h = \beta^n\) in (3.12) to get
\[
\|\nabla \beta^n\| \leq C(\|\xi^n\| + \|\theta^n\|).
\]
Note that \(\beta^n \in H^1_0(\Omega)\), therefore
\[
\|\beta^n\| \leq C\|\nabla \beta^n\| = C(\|\xi^n\| + \|\theta^n\|).
\]
In order to use the discrete Gronwall inequality to bound \(\xi^n\) and \(\zeta^n\), we should derive some non-negative terms for \(\xi^n\) and \(\zeta^n\) by appropriately choosing test functions in (3.11), (3.12) and (3.13). That is the objective of the second part.

Setting \(q_h = \tilde{d}_t \xi^n\) in (3.11) we obtain that
\[
(3.15)(\tilde{d}_t \xi^n, \tilde{d}_t \xi^n) + (\text{div} \xi^n, \text{div} \tilde{d}_t \xi^n) + (R^n_{\sigma}, \tilde{d}_t \xi^n) = -(\tilde{d}_t \theta^n, \tilde{d}_t \xi^n).
\]
Subtracting (3.13) at \(n-1\) from (3.13) at \(n\) and multiplying the error by \(1/\tau\), we have
\[
(3.16)(\tilde{d}_t [a(p_h^{-1})(\xi^n + \theta^n)] + \tilde{d}_t [(a(p^n) - a(p_h^{-1}))\sigma^n], w_h) = (\tilde{d}_t \eta^n + \tilde{d}_t \zeta^n, w_h).
\]
Rewriting (3.16) as follows:

\[
\begin{align*}
(d_t \zeta^n, w_h) &= (a(p_h^{n-1})d_t \zeta^n, w_h) \\
&= (\zeta^{n-1}d_t(a(p_h^{n-1})), w_h) + (d_t[(a(p^n) - a(p_h^{n-1}))\sigma^n], w_h) \\
&\quad - (d_t \eta^n, w_h) + (d_t(a(p_h^{n-1})\theta^n), w_h).
\end{align*}
\]

(3.17)

Taking \(w_h = d_t \xi^n \) in (3.17), and subtracting (3.17) from (3.15) we get the first group non-negative terms,

\[
\begin{align*}
(d_{\text{div}} \zeta^n, d_{\text{div}} \zeta^n) &= -(d_t \theta^n, \zeta^n) - (R^n, \zeta^n) + (\eta^n, d_t \xi^n) \\
&\quad - ((a(p^n) - a(p_h^{n-1}))\sigma^n, d_t \xi^n) - (a(p_h^{n-1})(\xi^n + \theta^n), d_t \xi^n),
\end{align*}
\]

(3.18)

which implies the second group non-negative terms,

\[
\begin{align*}
(d_{\text{div}} \zeta^n, d_{\text{div}} \zeta^n) &= -(d_t \theta^n, \zeta^n) - (R^n, \zeta^n) + (\eta^n, d_t \xi^n) - ((a(p^n) - a(p_h^{n-1}))\sigma^n, d_t \xi^n) \\
&\quad - (a(p_h^{n-1})\theta^n, d_t \xi^n) + ((1 - a(p_h^{n-1}))\xi^n, d_t \xi^n).
\end{align*}
\]

(3.19)

The third group of non-negative terms is obtained by taking \(w_h = \zeta^n \) in (3.16) as follows,

\[
\begin{align*}
(d_t \zeta^n, \zeta^n) &= (d_t[a(p_h^{n-1})(\xi^n + \theta^n)] + d_t[(a(p^n) - a(p_h^{n-1}))\sigma^n], \zeta^n) - (d_t \eta^n, \zeta^n).
\end{align*}
\]

(3.20)

Combining (3.18), (3.19) and (3.20), we derive that

\[
\begin{align*}
(d_{\text{div}} \zeta^n, d_{\text{div}} \zeta^n) &= -(d_t \theta^n, \zeta^n) - (R^n, \zeta^n) - (\eta^n, d_t \xi^n) - ((a(p^n) - a(p_h^{n-1}))\sigma^n, d_t \xi^n) \\
&\quad - (d_t[a(p_h^{n-1})(\xi^n + \theta^n)] + d_t[(a(p^n) - a(p_h^{n-1}))\sigma^n], \zeta^n) - (d_t \eta^n, \zeta^n)
\end{align*}
\]

(3.21)

\[=: T_1 + T_2 + \cdots + T_{15}.\]

In the third part we shall carefully estimate (3.21) term by term, and then combine these results to derive the final estimates.
We analyze the left hand side of (3.21). By the inequalities $a(a - b) \geq (a^2 - b^2)/2$ and $a(\cdot) \geq a_0 > 0$ we deduce that

\[
(\text{div} \, \zeta^n, \text{div} \, \tilde{d}_t \xi^n) + (a(p^n_h^{-1}) \tilde{d}_t \xi^n, \tilde{d}_t \zeta^n) \\
+ (\text{div} \zeta^n, \text{div} \zeta^n) + (\tilde{d}_t \zeta^n, \zeta^n) + (\tilde{d}_t \zeta^n, \zeta^n)
\]

(3.22)

\[
\geq \frac{1}{2\tau}(\|\text{div} \, \zeta^n\|^2 - \|\text{div} \, \zeta^{n-1}\|^2) + a_0 \|\tilde{d}_t \xi^n\|^2 + \|\text{div} \zeta^n\|^2
\]

\[
+ \frac{1}{2\tau}(\|\zeta^n\|^2 - \|\zeta^{n-1}\|^2) + \frac{1}{2\tau}(\|\zeta^n\|^2 - \|\zeta^{n-1}\|^2).
\]

We now begin to bound $T_1 - T_{15}$ on the right-hand side of (3.21). By Hölder–inequality and ε–inequality we easily get the estimates for $T_5, T_7, T_8, T_9, T_{11}, T_{12}$ and T_{15} as follows:

\[
T_5 + T_7 + T_8 + T_9 + T_{11} + T_{12} + T_{15}
\]

(3.23)

\[
\leq C\|\tilde{d}_t \eta^n\|^2 + C\|\tilde{d}_t \theta^n\|^2 + C\|\theta^n\|^2
\]

\[
+ C\|\eta^n\|^2 + C\|\theta^n\|^2)
\]

where C_2 depends on the bound a_1 of $a(p)$.

It remains to estimate the rest terms in (3.21). We decompose $\tilde{d}_t a(p^n_h^{-1})$ as follows

\[
\tilde{d}_t a(p^n_h^{-1}) = \frac{1}{\tau}(a(p^n_h^{-1}) - a(p_h^{n-2}))
\]

\[
= \frac{1}{\tau}(a(p^n_h^{-1}) - (p^n_h^{-1} - a(p_h^{n-2}) - a(p^n_h^{-1} - p_h^{n-2})).
\]

Then, by simple calculation we get that

\[
T_4 = (\xi^{n-1}, \tilde{d}_t a(p_h^{n-1}), \tilde{d}_t \xi^n)
\]

\[
= \frac{1}{\tau}(\xi^{n-1}(a(p^n_h^{-1}) - a(p^{n-1}) - (a(p_h^{n-2}) - a(p^{n-2})), \tilde{d}_t \xi^n)
\]

\[
+ \frac{1}{\tau}(\xi^{n-1}(a(p^n_h^{-1}) - a(p^{n-1})), \tilde{d}_t \xi^n)
\]

\[
\leq \epsilon \|\tilde{d}_t \xi^n\|^2 + C_\ast(\|\tilde{d}_t \beta^{n-1}\|^2 + \|\tilde{d}_t \nu^{n-1}\|^2) + C \|\xi^{n-1}\|^2,
\]

where $C_\ast = C C_0 \|\xi^{n-1}\|_{0, \infty}$.

Similarly,

\[
T_6 = (\tilde{d}_t a(p_h^{n-1}) \theta^n, \tilde{d}_t \xi^n)
\]

\[
= (\tilde{d}_t (a(p^n_h^{-1})) \theta^{n-1} + a(p_h^{n-1}) \tilde{d}_t \theta^n, \tilde{d}_t \xi^n)
\]

\[
\leq \epsilon \|\tilde{d}_t \xi^n\|^2 + C_2 \|\theta^{n-1}\|^2 + C_2 \|\tilde{d}_t \theta^n\|^2
\]

\[
+ C_\ast(\|\tilde{d}_t \beta^{n-1}\|^2 + \|\tilde{d}_t \nu^{n-1}\|^2) + C \|\theta^{n-1}\|^2
\]

and

\[
T_{13} = (\tilde{d}_t a(p_h^{n-1}) (\xi^n + \theta^n)), \zeta^n)
\]

\[
= (a(p_h^{n-1}) \tilde{d}_t (\xi^n + \theta^n), \zeta^n) + ((\xi^{n-1} + \theta^{n-1}) \tilde{d}_t a(p_h^{n-1}), \zeta^n)
\]

\[
\leq C_2 \|\zeta^n\|^2 + \epsilon \|\tilde{d}_t \xi^n\|^2 + C_2 \|\tilde{d}_t \theta^n\|^2
\]

\[
+ C_\ast(\|\tilde{d}_t \beta^{n-1}\|^2 + \|\tilde{d}_t \nu^{n-1}\|^2) + C \|\zeta^{n-1}\|^2
\]

\[
+ C \|\theta^{n-1}\|^2 + C \|\tilde{d}_t \beta^{n-1}\|^2 + \|\tilde{d}_t \nu^{n-1}\|^2),
\]

where we use the estimate $\|\theta\|_{0, \infty} \leq C h^{k+1}$ to conclude that $\|\theta\|_{L^\infty(0, T; L^\infty)} \leq C$ for a sufficiently small $h > 0$.

To bound T_4 and T_{14} we make the following decompositions,

\[
\tilde{d}_t[(a(p^n) - a(p_h^{n-1})) \sigma^n] = \sigma^{n-1} \tilde{d}_t(a(p^n) - a(p_h^{n-1})) + (a(p^n) - a(p_h^{n-1})) \tilde{d}_t \sigma^n.
\]
and

\[a(p^n) - a(p_h^{n-1}) - (a(p^{n-1}) - a(p_h^{n-2})) \]
\[= a(p^n) - a(p^{n-1}) + a(p^{n-1}) - a(p_h^{n-1}) \]
\[- (a(p^{n-1}) - a(p^{n-2})) - (a(p^{n-2}) - a(p_h^{n-2})) \]
\[= \left(\int_0^1 a_p(p^{n-1} - s(p^{n-1} - p^{n-2}))ds - \int_0^1 a_p(p^{n-2} + s(p^{n-1} - p^{n-2}))ds \right)(p^n - p^{n-1}) \]
\[+ \int_0^1 a_p(p^{n-2} + s(p^{n-1} - p^{n-2}))ds(p^n - 2p^{n-1} + p^{n-2}) \]
\[+ (\int_0^1 a_p(p_h^{n-1} + s(p^{n-1} - p_h^{n-1}))ds \]
\[- \int_0^1 a_p(p_h^{n-2} + s(p^{n-2} - p_h^{n-2}))ds(p^{n-1} - p_h^{n-1}) \]
\[+ \int_0^1 a_p(p_h^{n-2} + s(p^{n-2} - p_h^{n-2}))ds(p^{n-1} - p_h^{n-1} - p^{n-2} + p_h^{n-2}) \].

Then \(T_4 \) can be bounded as follows

\[
T_4 = (d_4[(a(p^n) - a(p_h^{n-1}))\sigma^n], \xi^n) \\
= (\sigma^{-1}d_4(a(p^n) - a(p_h^{n-1})) + (a(p^n) - a(p_h^{n-1}))d_4\sigma^n, \xi^n) \\
\leq \varepsilon \| d_4\xi^n \|^2 + C\tau^2 + C\| \beta^{n-1} \|^2 + C\| \nu^{n-1} \|^2 \\
+ C_3(\| d_4\beta^{n-1} \|^2 + \| d_4\nu^{n-1} \|^2).
\]

An argument analogous to \(T_4 \) yields that

\[T_{14} = (d_4[(a(p^n) - a(p_h^{n-1}))\sigma^n], \xi^n) \]
\[= (\sigma^{-1}d_4(a(p^n) - a(p_h^{n-1})) + (a(p^n) - a(p_h^{n-1}))d_4\sigma^n, \xi^n) \]
\[\leq C \| \xi^n \|^2 + C\tau^2 + C\| \beta^{n-1} \|^2 + C\| \nu^{n-1} \|^2 \\
+ C_3(\| d_4\beta^{n-1} \|^2 + \| d_4\nu^{n-1} \|^2). \]

Here \(C_3 \) depends on the bound \(C_1 \) of \(a_{pp} \). Moreover, it is easy to prove that

\[T_{10} = ((a(p^n) - a(p_h^{n-1}))\sigma^n, d_4\xi^n) \]
\[\leq \varepsilon \| d_4\xi^n \|^2 + C_2(\tau^2 + \| \beta^{n-1} \|^2 + \| \nu^{n-1} \|^2). \]

Combining the estimates of \(T_3 - T_{15} \) and writing \(C_4 = C_4(a_1, C_0, C_1, C_2, C_3) \) we reach the following estimate

\[\frac{1}{2\tau}(\| \text{div} \ \xi^n \|^2 + \| \text{div} \ \xi^{n-1} \|^2) + a_0 \| d_4\xi^n \|^2 + \frac{1}{2\tau}(\| \xi^n \|^2 - \| \xi^{n-1} \|^2) \]
\[\leq T_1 + T_2 + \varepsilon \| d_4\xi^n \|^2 + C_4(\| d_4\eta^n \|^2 + \| \xi^n \|^2 + \| \nu^{n-1} \|^2 + \| \theta^n \|^2 + \| d_4\theta^n \|^2 + \| d_4\beta^{n-1} \|^2 \\
+ \| d_4\nu^{n-1} \|^2) + C_4(\| d_4\beta^{n-1} \|^2 + \| d_4\nu^{n-1} \|^2). \]
Therefore, multiplying (3.24) by 2τ, summing on n and noting $\zeta^0 = 0$, $\text{div}\zeta^0 = 0$ yield that

$$
\| \text{div} \zeta^M \|^2 + a_0 \tau \sum_{n=1}^{M} \| \delta t \zeta^n \|^2 + \tau \sum_{n=1}^{M} \| \text{div} \zeta^n \|^2 + \| \xi^M \|^2 + \| \zeta^M \|^2

\leq \tau \sum_{n=1}^{M} (T_1 + T_2) + C_4 \{ \tau \sum_{n=1}^{M} \| \delta t \eta^n \|^2 + \tau \sum_{n=1}^{M} \| \zeta^n \|^2 + \tau \sum_{n=1}^{M} \| \eta^n \|^2 \\
+ \tau \sum_{n=1}^{M} || \xi^n ||^2 + \tau \sum_{n=1}^{M} (\tau^2 + || \zeta^{n-1} ||^2 + || \theta^{n-1} ||^2 + || \eta^{n-1} ||^2) \\
+ \tau \sum_{n=1}^{M} (|| \theta^\tau ||^2 + || \theta^\tau ||^2 + \tau \sum_{n=1}^{M} (|| \delta t \beta^{n-1} ||^2 + || \delta t \nu^{n-1} ||^2) \\
+ \tau \sum_{n=1}^{M} (|| \beta^\tau ||^2)} + C_4 \tau \sum_{n=1}^{M} (|| \delta t \beta^{n-1} ||^2 + || \delta t \nu^{n-1} ||^2) + || \zeta^0 ||^2,
$$

where $C_4 = C \max_{0 \leq n \leq M-1} \| \xi^n \|_{0,\infty}$.

Note that for any $\omega = \theta, \eta$,

$$
\| \delta t \omega^n \|^2 = \| \omega^n - \omega^{n-1} / \tau \|^2 \leq \frac{1}{\tau} \int_{t_{n-1}}^{t_n} \| \omega \|^2 ds.
$$

Then, we can rewrite the above resulting inequality as the following form,

$$
\| \text{div} \zeta^M \|^2 + a_0 \tau \sum_{n=1}^{M} \| \delta t \zeta^n \|^2 + \tau \sum_{n=1}^{M} \| \text{div} \zeta^n \|^2 + \| \xi^M \|^2 + \| \zeta^M \|^2

\leq \tau \sum_{n=1}^{M} (T_1 + T_2) + C_4 \{ \| \eta^n \|^2 \|_{L^2 (0,T; L^2)} + \tau \sum_{n=1}^{M} \| \zeta^n \|^2 + \| \eta^n \|_{L^\infty (0,T; L^2)} \\
+ \| \theta^n \|^2 \|_{L^2 (0,T; L^2)} + \tau \sum_{n=1}^{M} \| \delta t \beta^{n-1} \|^2 + \| \nu \|^2 \|_{L^2 (0,T; L^2)} + \tau \sum_{n=1}^{M} || R^\tau ||^2) \\
+ C_4 \tau \sum_{n=1}^{M} || \delta t \beta^{n-1} \|^2 + || \zeta^0 ||^2.
$$

We next use summation by parts and recombine the terms in each sum to evaluate the first term on the right hand side of (3.24).

$$
\tau \sum_{n=1}^{M} T_1 = - \tau \sum_{n=1}^{M} (R^n_0, \delta t \zeta^n) \\
= \tau \sum_{n=2}^{M} (\delta t R^n_0, \zeta^{n-1}) - (\zeta^M, R^M_0) + (\zeta^0, R^1_0) \\
\leq c \| \zeta^M \|^2 + C \| R^M_0 \|^2 + C \tau \sum_{n=1}^{M-1} \| \zeta^{n-1} \|^2 + C \tau \sum_{n=2}^{M} \| \delta t R^n_0 \|^2
$$

and

$$
\tau \sum_{n=1}^{M} T_2 = - \tau \sum_{n=1}^{M} (\delta t \theta^n, \delta t \zeta^n) \\
= \tau \sum_{n=1}^{M-1} (\delta t \theta^n, \zeta^n) - (\zeta^M, \delta t \zeta^M) + (\zeta^0, \delta t \theta^1) \\
\leq c \| \zeta^M \|^2 + C \| \delta t \theta^M \|^2 + C \tau \sum_{n=1}^{M-1} \| \zeta^n \|^2 + C \tau \sum_{n=1}^{M-1} \| \delta t \theta^n \|^2.
$$
Moreover, we use Taylor expansion to decompose the relevant difference quotients in the resulting equation and note $\xi^0 = 0$, we have

\[
R^M_\sigma = \frac{\sigma^M - \sigma^{M-1}}{\tau} - \sigma^M = \frac{1}{\tau} \int_{t_{M-1}}^{t_M} (t - t^{M-1}) \sigma_{tt}(t) dt,
\]

\[
d_t\theta^M = \frac{\theta^M - \theta^{M-1}}{\tau} = \frac{1}{\tau} \int_{t_{M-1}}^{t_M} \theta_t(t) dt,
\]

which imply, by using Hölder-inequality

\[
\|R^M_\sigma\|^2 \leq \frac{1}{3} \left\{ \frac{\tau^2}{\tau} \|\sigma_{tt}(t)\|_{L^\infty(t^{M-1}, t^M; L^2)}, \right. \\
\|d_t\theta^M\|^2 \leq \frac{1}{\tau} \left\{ \tau \|\theta_t(t)\|_{L^\infty(t^{M-1}, t^M; L^2)}, \right. \\
\|\theta_t(t)\|_{L^2(t^{M-1}, t^M; L^2)}^2
\]

Similarly we have

\[
|d_t R^n_\sigma| = \frac{1}{\tau} \left| \frac{1}{\tau} \int_{t_{n-1}}^{t_n} (t - t^{n-1}) \sigma_{tt}(t) dt - \frac{1}{\tau} \int_{t_{n-2}}^{t_{n-1}} (t - t^{n-2}) \sigma_{tt}(t) dt \right|
\]

\[
= \frac{1}{\tau^2} \int_{t_{n-1}}^{t_n} (t - t^{n-1})(\sigma_{tt}(t) - \sigma_{tt}(t - \tau)) dt
\]

\[
= \frac{1}{\tau^2} \int_{t_{n-1}}^{t_n} (t - t^{n-1})dt \int_{t-\tau}^{t} \sigma_{ttt}(s) ds
\]

\[
\leq \frac{1}{\tau^2} \int_{t_{n-1}}^{t_n} (t - t^{n-1})dt \int_{t_{n-1}-\tau}^{t_{n-1}} |\sigma_{ttt}(t)| ds
\]

\[
= \frac{1}{\tau} \int_{t_{n-2}}^{t_n} |\sigma_{ttt}(t)| dt
\]

and

\[
|d_t \theta^n| = \left| \frac{\theta^n - 2\theta^{n-1} + \theta^{n-2}}{\tau} \right| \leq \int_{t_{n-2}}^{t_n} |\theta_{tt}(t)| dt,
\]

which conclude that

\[
\|d_t R^n_\sigma\|^2 \leq \tau \|\sigma_{ttt}\|_{L^2(t_{n-2}, t^n; L^2)}^2,
\]

\[
\|d_t \theta^n\|^2 \leq 2\tau \|\theta_{tt}\|_{L^2(t^{n-2}, t^n; L^2)}^2.
\]

Hence,

\[
(3.25) \tau \sum_{n=1}^{M} T_1 \leq \varepsilon \|\xi^M\|^2 + C_5 \tau^2 + C_6 \tau^2 + C \tau \sum_{n=1}^{M-1} \|\xi^{n-1}\|^2,
\]

\[
(3.26) \tau \sum_{n=1}^{M} T_2 \leq \varepsilon \|\xi^M\|^2 + C \|\theta_t\|_{L^2(0, T; L^2)}^2 + C \tau \sum_{n=1}^{M-1} \|\xi^n\|^2 + C \|\theta_{tt}\|_{L^2(0, T; L^2)}^2.
\]

Here C_5 depends on $\|\sigma_{ttt}\|_{L^2(0, T; L^2)}^2$ and C_0 depends on $\|\sigma_{tt}(t)\|_{L^2(t^{M-1}, t^M; L^2)}^2$.

We incorporate (3.24), (3.25) with (3.26) and write \(C_7 = C_7(C_4, C_5, C_6) \) to lead the following estimate

\[
\| \text{div } \mathbf{\xi}^M \|^2 + a_0 \tau \sum_{n=1}^{M} \| \partial_t \mathbf{\xi}^n \|^2 + \tau \sum_{n=1}^{M} \| \text{div } \mathbf{\xi}^n \|^2 + \| \mathbf{\xi}^M \|^2 + \| \mathbf{\xi}^M \|^2 \\
\leq C_7 \{ \| \mathbf{\eta}_t \|_{L^2(0,T,L^2)}^2 + \tau \sum_{n=1}^{M} \| \mathbf{\xi}^n \|^2 + \| \mathbf{\eta} \|_{L^\infty(0,T,L^2)}^2 + \tau \sum_{n=1}^{M} \| \mathbf{\xi}^n \|^2 \}
\]

(3.27)

\[
+ \tau^2 + \tau \sum_{n=1}^{M} \| \mathbf{\xi}^n \|^2 + \| \mathbf{\theta} \|_{L^2(0,T,L^2)}^2 + \| \mathbf{\nu} \|_{L^2(0,T,L^2)}^2 + \| \mathbf{\nu} \|_{L^2(0,T,L^2)}^2 \\
+ \sum_{n=1}^{M} \| \mathbf{\xi}^n \|^2 + \tau \sum_{n=1}^{M} \| \mathbf{\xi}^n \|^2
\]

By Lemma 3.1 we have that

\[
C_** \tau \sum_{n=1}^{M} \| \partial_t \mathbf{\xi}^n \|^2
\]

\[
\leq C_** \{ \tau \sum_{n=1}^{M} \| \mathbf{\xi}^n \|^2 + \tau \sum_{n=1}^{M} \| \mathbf{\xi}^n \|^2 + \tau \sum_{n=1}^{M} \| \text{div } \mathbf{\xi}^n \|^2 + \tau \sum_{n=1}^{M} \| \mathbf{\xi}^n \|^2 \}
\]

(3.28)

Then, we have the following estimate

\[
\| \text{div } \mathbf{\xi}^M \|^2 + a_0 \tau \sum_{n=1}^{M} \| \partial_t \mathbf{\xi}^n \|^2 + \tau \sum_{n=1}^{M} \| \text{div } \mathbf{\xi}^n \|^2 + \| \mathbf{\xi}^M \|^2 + \| \mathbf{\xi}^M \|^2 \\
\leq C_7 \{ \| \mathbf{\eta}_t \|_{L^2(0,T,L^2)}^2 + \tau \sum_{n=1}^{M} \| \mathbf{\xi}^n \|^2 + \| \mathbf{\eta} \|_{L^\infty(0,T,L^2)}^2 + \tau \sum_{n=1}^{M} \| \mathbf{\xi}^n \|^2 \}
\]

(3.29)

Since the constant \(C_** = C_0 \max_{0 \leq n \leq M-1} \| \mathbf{\xi}^n \|_{0,\infty} \), we shall make an inductive hypothesis as follows:

\[
\max_{0 \leq n \leq M} \| \mathbf{\xi}^n \|_{0,\infty} \leq 1.
\]

Therefore, for sufficiently small \(\tau \) and \(h > 0 \), we incorporate the discrete Gronwall lemma, the inductive hypothesis (3.29) and the known estimates (3.3) and (3.5) into (3.28) to give the following result,

\[
\| \text{div } \mathbf{\xi}^M \|^2 + a_0 \tau \sum_{n=1}^{M} \| \partial_t \mathbf{\xi}^n \|^2 + \tau \sum_{n=1}^{M} \| \text{div } \mathbf{\xi}^n \|^2 + \| \mathbf{\xi}^M \|^2 + \| \mathbf{\xi}^M \|^2 \\
\leq C_7 \{ \| \mathbf{\eta}_t \|_{L^2(0,T,L^2)}^2 + \| \mathbf{\eta} \|_{L^\infty(0,T,L^2)}^2 + \| \mathbf{\theta} \|_{L^2(0,T,L^2)}^2 + \| \mathbf{\nu} \|_{L^2(0,T,L^2)}^2 + \| \mathbf{\nu} \|_{L^2(0,T,L^2)}^2 + \tau^2 \}
\]

(3.30)

Here we have followed the approach in [32, 40] to select the initial value \(\mathbf{\sigma}^0 \) such that \(\| \mathbf{\xi}^0 \| \leq C h^{k+1} \| \mathbf{\sigma}(0) \|_{H^{k+1}} \), and \(C_0 \) depends on \(C_7 \) as well as \(\| \mathbf{u} \|_{H^1(0,T,H^{k+1})} \), \(\| \mathbf{u} \|_{L^\infty(0,T,H^{k+1})} \), \(\| \mathbf{\sigma} \|_{H^2(0,T,H^{k+1})} \), \(\| \mathbf{\sigma} \|_{H^1(0,T,H^{k+1})} \), \(\| \| \mathbf{\sigma} \|_{H^1(0,T,H^{k+1})} \), \(\| \mathbf{\sigma} \|_{H^1(0,T,H^{k+1})} \), and \(\| \| \mathbf{\sigma} \|_{H^1(0,T,H^{k+1})} \).
We now are in a position to prove (3.29) by induction. We apply the Sobolev embedding theorem and the inverse property of the finite element space to deduce that, for \(k \geq 1\) and \(1 \leq d \leq 3\),

\[
(3.31) \quad \|\xi^0\|_{0,\infty} \leq C h^{-\frac{d}{2}} \|\xi^0\| \leq C_8 h^{k+1-\frac{d}{2}} \leq C_8 h^\frac{k}{2}.
\]

Without loss of generality we suppose the constants \(C\) and \(C_0\) are bounded by \(C_8\), so we can select \(h_0 > 0\), for example \(h_0 = C_8^{-2}/2\), such that

\[
\|\xi^0\|_{0,\infty} \leq 1, \quad 0 < h \leq h_0,
\]

which demonstrates (3.29) at \(M = 0\).

Suppose that (3.29) is true for \(0 \leq j \leq M - 1\). Then we apply (3.28) and (3.30) to conclude that

\[
(3.32) \quad \|\xi^M\| \leq C_8 (h^{\min(k+1,m+1)} + \tau).
\]

We treat the resulting inequality in the same manner as in (3.31) to derive that

\[
(3.33) \quad \|\xi^M\|_{0,\infty} \leq C_8 h^{-\frac{d}{2}} \|\xi^M\| \leq C_8 \{h^{\min(k+1,m+1)-\frac{d}{2}} + \tau h^{-\frac{d}{2}}\}\]

\[
\leq C_8 \{h^\frac{k}{2} + \tau h^{-\frac{d}{2}}\}.
\]

Therefore, we should choose \(h \leq h_0\), \(\tau = o(h^\frac{d}{2})\) such that

\[
C_8 h^\frac{k}{2} \leq \frac{1}{2}, \quad C_8 \tau h^{-\frac{d}{2}} \leq \frac{1}{2},
\]

that is,

\[
\|\xi^M\|_{0,\infty} \leq 1,
\]

which concludes that (3.29) holds at \(M\). By the principle of the induction we know that the inductive hypothesis (3.29) holds for \(0 \leq M \leq N\).

At last we incorporate the resulting estimates (3.3), (3.5), (3.14) and (3.30) with the triangle inequality, then restate them as the following theorem.

Theorem 3.2. Let \((p, \sigma, u)\) and \((p^h, \sigma^h, u^h)\) be the solutions of (2.3) and (2.5), respectively. Suppose that \(d = 1, 2, 3, k \geq 1, m \geq 1\) and \(\tau = o(h^\frac{d}{2})\). Then the following priori error estimates hold

\[
(3.34) \quad \max_{0 \leq n \leq N} \left(\|p^n - p^h_n\| + \|\sigma^n - \sigma^h_n\| + \|u^n - u^h_n\|\right) \leq C_8 (h^{\min(k+1,m+1)} + \tau),
\]

\[
\max_{0 \leq n \leq N} \|\text{div}(u^n - u^h_n)\| \leq C_9 (h^{\min(k+1,m+1)} + \tau),
\]

where the constant \(C_8\) depends on \(a_0, a_1, C_0, C_1\) as well as \(\|u\|_{H^2(0,T;H^{h+1})}, \|u\|_{L^\infty(0,T;H^{h+1})}, \|\sigma\|_{H^1(0,T;H^{h+1})}, \|\sigma\|_{W^{1,\infty}(L^{N-1,L^2})}, \|p\|_{H^1(0,T;H^{m+1})}, \|p\|_{L^\infty(0,T;H^{m+1})}, \|\sigma\|_{W^{1,\infty}(0,T;H^{h+1})} and \|\sigma\|_{H^2(0,T;L^2)}\), \(C_9\) depends on \(C_8\) and \(\|\text{div} u\|_{L^\infty(0,T;H^{h+1})}\).

Remark 3.3. We have assumed that \(k \geq 1\) and \(m \geq 1\) in the proof of the inductive hypothesis. As we can see from (3.33) that for \(d = 1\) we can include the case of \(k = 0\).

Corollary 3.4. Under the condition of the Theorem 3.2, the following \(L^\infty\) estimates hold for \(d = 1\) and \(2\)

\[
(3.35) \quad \|p - p_h\|_{L^\infty(0,T;L^\infty)} \leq C (|\ln h|^{d-1} h^{\min(k+1,m+1)} + \tau).
\]

Proof. This is a direct consequence of the theorem and standard embedding. \(\square\)
4. Numerical Example

In this section, we perform a numerical experiment to verify the theoretically proven optimal-order L^2 convergence. The date of the test example are chosen as follows: $\Omega = [0,1] \times [0,1]$, $T = [0,1]$, $p(0) = 0$ and $a(p) = p + 1$. The analytic solution is $p(x,t) = \sin(t) \sin(\pi x) \sin(\pi y)$.

In the numerical experiment, we use piecewise linear finite element space for the unknown function p, while using the lowest-order Raviart-Thomas space for the gradient σ and the flux u respectively, to fit the convergence rate in the error estimates of Theorem 4.2,

$$\max_{0 \leq n \leq N} \left(\| p^n - p^n_h \| + \| \sigma^n - \sigma^n_h \| + \| u^n - u^n_h \| \right) \leq C_8 (h + \tau).$$

We perform two kinds of computations. The first is to compute the spatial and temporal errors of $p-p_h$, $\sigma-\sigma_h$ and $u-u_h$ in discrete L^2 norm at different time. The results are presented in Tables 1, 2 and 3, respectively. The other tests the the spatial and temporal convergence rate based on the following formulation

$$\text{convergence rate} \approx \log_2 \left(\frac{\| \psi - \psi_h \|_{0,h}}{\| \psi - \psi_{h/2} \|_{0,h}} \right).$$

The results are displayed in Table 4. We observe that the convergence rate for p is approximately equal to 2, and the convergence rate for σ and u is approximately equal to 1. These results show that H^1-Galerkin mixed finite element method possesses the optimal order spatial and temporal convergence rates for the unknown function, its gradient and the vector-flux as predicted by Theorem 4.2. This reflects the strength of the H^1-Galerkin mixed finite element method developed in this paper.

<table>
<thead>
<tr>
<th>Nodes/\triangle t</th>
<th>t=0.1</th>
<th>t=0.2</th>
<th>t=0.3</th>
<th>t=0.4</th>
<th>t=0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>41/0.04</td>
<td>6.9021e-4</td>
<td>0.0021</td>
<td>0.0032</td>
<td>0.0050</td>
<td>0.0064</td>
</tr>
<tr>
<td>145/0.01</td>
<td>2.0240e-4</td>
<td>4.9847e-4</td>
<td>8.4947e-4</td>
<td>0.0012</td>
<td>0.0017</td>
</tr>
<tr>
<td>545/0.0025</td>
<td>4.9421e-5</td>
<td>1.2361e-4</td>
<td>2.1161e-4</td>
<td>3.1086e-4</td>
<td>4.1951e-4</td>
</tr>
<tr>
<td>Nodes/\triangle t</td>
<td>t=0.6</td>
<td>t=0.7</td>
<td>t=0.8</td>
<td>t=0.9</td>
<td>t=1.0</td>
</tr>
<tr>
<td>41/0.04</td>
<td>0.0085</td>
<td>0.0100</td>
<td>0.0124</td>
<td>0.0140</td>
<td>0.0165</td>
</tr>
<tr>
<td>145/0.01</td>
<td>0.0021</td>
<td>0.0026</td>
<td>0.0031</td>
<td>0.0037</td>
<td>0.0042</td>
</tr>
<tr>
<td>545/0.0025</td>
<td>5.3595e-4</td>
<td>6.5870e-4</td>
<td>7.8641e-4</td>
<td>9.1772e-4</td>
<td>0.0011</td>
</tr>
</tbody>
</table>

Table 2: The errors of $\| \sigma - \sigma_h \|_{0,h}$ at different time

<table>
<thead>
<tr>
<th>Nodes/\triangle t</th>
<th>t=0.1</th>
<th>t=0.2</th>
<th>t=0.3</th>
<th>t=0.4</th>
<th>t=0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>41/0.04</td>
<td>0.0088</td>
<td>0.0294</td>
<td>0.0468</td>
<td>0.0773</td>
<td>0.1000</td>
</tr>
<tr>
<td>145/0.01</td>
<td>0.0049</td>
<td>0.0134</td>
<td>0.0242</td>
<td>0.0368</td>
<td>0.0509</td>
</tr>
<tr>
<td>545/0.0025</td>
<td>0.0023</td>
<td>0.0065</td>
<td>0.0119</td>
<td>0.0182</td>
<td>0.0252</td>
</tr>
<tr>
<td>Nodes/\triangle t</td>
<td>t=0.6</td>
<td>t=0.7</td>
<td>t=0.8</td>
<td>t=0.9</td>
<td>t=1.0</td>
</tr>
<tr>
<td>41/0.04</td>
<td>0.1367</td>
<td>0.1626</td>
<td>0.2030</td>
<td>0.2305</td>
<td>0.2723</td>
</tr>
<tr>
<td>145/0.01</td>
<td>0.0661</td>
<td>0.0821</td>
<td>0.0987</td>
<td>0.1157</td>
<td>0.1330</td>
</tr>
<tr>
<td>545/0.0025</td>
<td>0.0327</td>
<td>0.0407</td>
<td>0.0490</td>
<td>0.0574</td>
<td>0.0660</td>
</tr>
</tbody>
</table>

Table 3: The errors of $\| u - u_h \|_{0,h}$ at different time
Table 4: The convergence rates for p, σ and u in L^2 norm

<table>
<thead>
<tr>
<th>Time</th>
<th>t</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$| p - p_h |_{0,h}$ rate for</td>
<td>41/145</td>
<td>145/545</td>
<td>41/145</td>
<td>145/545</td>
<td>41/145</td>
<td>145/545</td>
</tr>
<tr>
<td>$| \sigma - \sigma_h |_{0,h}$ rate for</td>
<td>41/145</td>
<td>145/545</td>
<td>41/145</td>
<td>145/545</td>
<td>41/145</td>
<td>145/545</td>
</tr>
<tr>
<td>$| u - u_h |_{0,h}$ rate for</td>
<td>41/145</td>
<td>145/545</td>
<td>41/145</td>
<td>145/545</td>
<td>41/145</td>
<td>145/545</td>
</tr>
<tr>
<td>0.1</td>
<td>1.7698</td>
<td>2.0340</td>
<td>0.8447</td>
<td>1.0911</td>
<td>0.8480</td>
<td>1.0589</td>
</tr>
<tr>
<td>0.2</td>
<td>2.0748</td>
<td>2.0117</td>
<td>1.1336</td>
<td>1.0437</td>
<td>1.1272</td>
<td>1.0310</td>
</tr>
<tr>
<td>0.3</td>
<td>1.9134</td>
<td>2.0052</td>
<td>0.9515</td>
<td>1.0240</td>
<td>0.9352</td>
<td>1.0222</td>
</tr>
<tr>
<td>0.4</td>
<td>2.0589</td>
<td>1.9487</td>
<td>1.0708</td>
<td>1.0158</td>
<td>1.0569</td>
<td>1.0141</td>
</tr>
<tr>
<td>0.5</td>
<td>1.9125</td>
<td>2.0188</td>
<td>0.9743</td>
<td>1.0142</td>
<td>0.9520</td>
<td>1.0125</td>
</tr>
<tr>
<td>0.6</td>
<td>2.0171</td>
<td>1.9702</td>
<td>1.0483</td>
<td>1.0154</td>
<td>1.0323</td>
<td>1.0075</td>
</tr>
<tr>
<td>0.7</td>
<td>1.9434</td>
<td>1.9808</td>
<td>0.9859</td>
<td>1.0124</td>
<td>0.9605</td>
<td>1.0059</td>
</tr>
<tr>
<td>0.8</td>
<td>2.0000</td>
<td>1.9789</td>
<td>1.0404</td>
<td>1.0103</td>
<td>1.0178</td>
<td>1.0036</td>
</tr>
<tr>
<td>0.9</td>
<td>1.9198</td>
<td>2.0114</td>
<td>0.9944</td>
<td>1.0113</td>
<td>0.9646</td>
<td>1.0040</td>
</tr>
<tr>
<td>1.0</td>
<td>1.9740</td>
<td>1.9329</td>
<td>1.0338</td>
<td>1.0109</td>
<td>1.0055</td>
<td>1.0026</td>
</tr>
</tbody>
</table>

5. Concluding Remarks

The H^1-Galerkin mixed finite element method developed in this paper combines the merits of H^1-Galerkin formulation and the expanded mixed finite element method. This will solve for the pressure p, its gradient $\sigma = \nabla p$ and Darcy velocity $u = (K/\mu)\nabla p$ directly, and thus works for the differential problems with small diffusion or permeability term. Other advantages of this formulation are free of LBB condition and avoid the troubles resulted from representation of the time derivatives and lead to optimal error estimates without introducing curl operator for linear or nonlinear parabolic problems. On this line further researches on the nonlinear hyperbolic problems and the nonlinear integral-differential equations will be the topic of subsequent work.

References

College of Mathematical Sciences, Shandong Normal University, Jinan, Shandong Province, 250014.
E-mail: chhzh@sdnu.edu.cn

College of Mathematical Sciences, Shandong Normal University, Jinan, Shandong Province, 250014.
E-mail: zzj534@amss.ac.cn

Department of Mathematics, University of South Carolina, Columbia, South Carolina, 29208.
E-mail: hwang@math.sc.edu