
INTERNATIONAL JOURNAL OF c© 2012 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 9, Number 1, Pages 17–28

DECOUPLED AND MULTIPHYSICS MODELS FOR

NON-ISOTHERMAL COMPOSITIONAL TWO-PHASE FLOW IN

POROUS MEDIA

JOCHEN FRITZ, BERND FLEMISCH, AND RAINER HELMIG

Abstract. A new multiphysics model for two-phase compositional flow is

presented. It is designed to fit the level of model complexity to that of the flow

and transport processes taking place in a given region of the domain. Thus, the

model domain is divided into a subdomain which accounts for two-phase com-

positional processes and another in which single-phase transport is described.

A coupling of the simple and complex equations gives rise to an efficient model.

Special interest is placed in the discretization of the two-phase compositional

model in a finite-volume context and an IMPES time scheme with decoupled

pressure and transport equations. For optimal subdomain determination, an

easy-to-handle, adaptive scheme is presented. The practical usability is demon-

strated on a real live problem from carbon dioxide sequestration.

Key Words. multiphysics, domain decomposition, multiphase flow, compo-

sitional, sequential, decoupled formulation

1. Introduction

The modeling of flow processes in porous media is used in many environmental
and engineering applications. To gain insight into increasingly complex processes,
models in use become increasingly complex which has obvious consequences for
the computational effort. When considering large systems, detailed measurements
(such as saturations of contaminants or concentrations of certain components) are
usually only available in relatively small regions in which complex processes are
assumed to occur, whereas fewer and simpler measurements may be available in
other parts of the considered domain. This poor spatial resolution of measurement
data in large parts of the model domain questions the use of highly complex and
detailed models. More important, complex processes often occur only in a small
part of the domain of interest. In order to account for these factors, the coupling
of a two-phase compositional model to a single-phase transport model is presented.
This allows for the use of the complex two-phase compositional model only in the
parts of the model domain where complex processes occur, whereas other parts of
the domain are resolved by a simpler single-phase model.

Coupling of different models for the simulation of complex processes was for ex-
ample originally discussed in the context of domain decomposition methods (e.g.,
[17]). This was the motivation for [14], where the authors develop a multiblock
framework to couple fully implicit and sequential two-phase flow models. Further
developments resulted in multiphysics coupling of single-phase (implicit or sequen-
tial), two-phase (implicit or sequential) and black-oil (implicit only) models as
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published in [15] and [16]. However, the coupling of the different models involved a
nonlinear iterative solver to match the coupling conditions at the interfaces. Fur-
thermore, the black-oil model was only presented in a fully implicit formulation
which in turn involves nonlinear solvers. Due to the relatively simple form of the
pressure equations, the resulting smaller matrices and the noniterative solution
scheme, sequential models require less computational effort per timestep, making
them attractive in wide areas of application ([18]). The black-oil model also con-
tains rather strong assumptions (water phase contains no other components than
water, gas phase is only made up of light hydrocarbons), limiting its applicability
to certain areas.

To account for the mentioned data collection problem, a multi-scale multi-physics
model approach was presented in [7]. In this study, the velocity is assumed to be
divergence-free. This assumption, however, is not true for compositional multi-
phase flow, since the mixing of phases influences the total fluid volume.

We introduce a sequential multiphysics model for two-phase compositional flow
without the need for nonlinear solvers and without restrictions concerning misci-
bility. For this purpose, we incorporate the decoupled formulation for two-phase
compositional flow introduced and analyzed in [3] and expanded to other formula-
tions of the pressure equation in [6]. We want to concentrate on applications like
enhanced recovery of contaminated soils or carbon dioxide sequestration, where
we assume strongly advection-dominated problems and hence neglect diffusion and
capillarity.

2. Physical Model

2.1. General balance equation. The mass balance equation per component in
a multiphase compositional model neglecting diffusion is (e.g., [1])

(1)
∂Cκ

∂t
= −∇ ·

∑

α

vα̺αX
κ
α + qκ ,

where Cκ = φ
∑

α

Sα̺αX
κ
α denotes the total concentration of component κ, and φ

is the porosity. Moreover, Sα and ̺α are the saturation and the density of phase
α, respectively, while Xκ

α is the mass fraction of component κ in phase α. The
source term of component κ in the unit mass per time is denoted by qκ. Given the
mobility λα = krα

µα
– where µα and krα are the dynamic viscosity and the relative

permeability of phase α, respectively– , the pressure p, the permeability tensor K

and the gravity vector g, the velocity of phase α is given by the extended Darcy
law as

(2) vα = λαK (−∇p+ ̺αg) .

2.2. Pressure equation. As a physical constraint, the pore space of the porous
medium must always be filled with a mixture of fluids. That is, the sum over the
volumes of the phases inside a control volume must equal the pore volume, or

(3)

(

∑

κ

Cκ

)

·

(

∑

α

να

̺α

)

− φ = 0 ,

where να = Sα̺α∑

α

Sα̺α

denotes the mass fraction of phase α. Due to compressibility

and mixing effects, the volume of a mixture is affected by changes in pressure
or total concentration. These volume changes must be taken into account in the
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pressure equation to conserve the total volume of the mixture at any point in space.
Following [6] or [2], the pressure equation is expressed by

(4) −
∂vt

∂p

∂p

∂t
+
∑

κ

∂vt

∂Cκ
∇ ·
∑

α

Xκ
α̺αvα =

∑

κ

∂vt

∂Cκ
qκ ,

where vt is the total specific volume of the mixture. The final pressure equation
is then obtained by inserting Darcy’s law (2) into equation (4). The unit of the
terms of equation (4) is volume per time, thus it is essentially a volume conservation
equation. The equation predicts changes in total fluid volume caused by changes in
concentration of the components and compensates them by adjusting the pressure
field accordingly. Since the first-order approximation of the volume changes in
equation (4) is not perfect yet, volumetric errors may still occur. Therefore we
follow the suggestion in [3], where the authors add the residual of the volume
constraint (3) to the right-hand side of equation (4) to compensate these errors in
subsequent time steps.

2.3. Flash calculation. The pressure and transport equations are evaluated se-
quentially in every time step. Since the transport equations (1) can only evaluate
changes in total concentration, the saturation and mass fractions have to be eval-
uated by a flash calculation at the end of every time step. In [4], the authors
present a detailed description of flash calculations for arbitrary numbers of phases
and components. Without going into detail on the derivation, the set of nα− 1 (nα

is the number of phases) equations

(5)
∑

κ

zκ (Kκ
α − 1)

1 +
∑

α6=r

(Kκ
α − 1) να

= 0 ∀α 6= r ,

known as the Rachford-Rice equation has to be solved iteratively in order to deter-
mine the mass fraction of each phase να. In this equation, zκ = Cκ

∑

κ

Cκ denotes the

overall mass fraction of component κ in the mixture, whereas the equilibrium ratio
Kκ

α relates the mass fraction of component κ in phase α to its mass fraction in a

reference phase r through Kκ
α =

Xκ

α

Xκ
r

. A fast and adequately exact way to obtain

the equilibrium ratios is the exploitation of Dalton’s, Raoult’s, and Henry’s laws as
presented in [7]. In this case, the equilibrium ratios stay constant for the isothermal
model. A more accurate way is to incorporate thermodynamic equations of state
(EOS) and calculate the equilibrium ratios from the component’s fugacities in the
different phases, as described in [4] or [8]. In this case, the equilibrium ratios are
subject to the phase compositions and, therefore, have to be updated in every itera-
tion step. For simplicity, however, we use the former approach. The mass fractions
of the components in the reference phase can be calculated from

(6) Xκ
r =

zκ
∑

α6=r

(Kκ
α − 1) να + 1

,

while the mass fractions in the other phases can be obtained by rearranging the
definition of the equilibrium ratios to

(7) Xκ
α = Kκ

αX
α
r .
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For a two-phase two-component system with the phases α = w, n and the reference
phase being w, the Rachford-Rice equation reduces to

(8) νn = −
z1
(

K1
n − 1

)

+ z2
(

K2
n − 1

)

(K1
n − 1) · (K2

n − 1)
,

which can be directly solved. For a stable two-phase system, the phase mass fraction
νn must have a value between zero and unity: 0 < νn < 1. Inserting these two
inequalities into equation (8) yields the stability constraints (e.g., [9]) for a two-
phase system

∑

κ

Kκ
nz

κ > 1 ,

∑

κ

Kκ
n

zκ
> 1 .(9)

If one of these constraints is violated, the mixture is in a single-phase state. Vio-
lation of the former constraint corresponds to a single wetting phase w, violation
of the latter to a single nonwetting phase n. In these cases, the composition of the
remaining phase equals the feed mass fractions Xκ

α = zκ.

2.4. Single-phase transport. The pressure and transport equations for incom-
pressible single-phase transport can be derived as simplifications from equations
(1) and (4). By inserting the definition of the total concentration into the mass
balance equation (1) for one phase and applying the chain rule, we get

(10) φ̺αX
κ
α

∂Sα

∂t
+S̺αX

κ
α

∂φ

∂t
+φSαX

κ
α

∂̺α

∂t
+φSα̺α

∂Xκ
α

∂t
= −̺α∇·(vαX

κ
α)+qκ .

Since only one phase is present, the saturation equals unity and hence the derivative
of saturation in the first term on the left-hand side equals zero. For incompressible
flow, the derivatives of density and porosity also vanish. We now assume a volu-
metric source term Q of the present phase with a defined mass fraction Xκ

Q. Then
the mass source of component κ is qκ = ̺QXκ

Q, and we can write the transport
equation as

(11) φ
∂Xκ

∂t
= −∇ · (vX) +QXκ

Q ,

where we neglected the indices of the remaining phase for better readability. Ob-
viously, the mass fraction of the source must be defined in such a way, that the
flow from the source does not split in two phases. This transport equation must
only be solved for one component in the binary system since mass fractions sum
up to unity. The pressure equation can also be simplified for an incompressible
single-phase system by deleting the first term on the left hand side and setting the
remaining volume derivative ∂vt

∂Cκ to the reciprocal of the density ̺ of the present
phase:

(12)
1

̺
∇ ·
∑

κ

Xκ̺v =
∑

κ

1

̺
qκ

Once again using the chain rule and the fact that mass fractions sum up to unity,
and using the source term as defined above, we get the pressure equation for single-
phase flow,

(13) ∇ · v = Q .

Our simple model of incompressible single-phase transport is thus described by
equations (11) and (13) combined with Darcy’s law (2).
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Sw = 1, Sn = 0

Sn 6= 0

vw

Figure 1. Multiphysics problem example

2.5. Multiphysics. A comparison of the two pressure equations (4) and (13) re-
veals their resemblance: just as described above for equation (4), the terms of
equation (13) have the unit volume per time. Their common physical relevance is
the conservation of the total fluid volume at any point in space. Also, the transport
equations can be derived from each other and represent the conservation of mass.
This basically opens the way for our multiphysics approach where the model do-
main is divided into two parts: one subdomain of special interest which is modeled
with higher physical accuracy and the remaining global domain where reasonable
simplifications can be made. As an example, consider figure 1 where a model prob-
lem, as it commonly appears in environmental sciences, is sketched. The domain is
filled with water except for a spill of non aqueous phase liquid (NAPL) containing
contaminants. The contaminants are dissolved in water and transported by the
water flow. At the same time, the NAPL spill is displaced. Due to the solution of
contaminants in water, this scenario would have to be simulated using a two-phase
compositional model. However, this model is only needed in the area where the
NAPL spill is situated. The rest of the domain can be modeled using a single-phase
transport model. Coupling these two models leads to our multiphysics approach.
By exploiting the similarities of the pressure equations and writing both of them
into the same stiffness matrix as described in section 3.3, there is no need for further
coupling conditions and corresponding special solution schemes.

3. Numerical Model

The discretization of the equations described above is realized using a stan-
dard cell-centered finite volume method (FVM) and an IMPES time discretization.
These are implemented in the toolbox DuMuX([5]) which was build on the nu-
merical environment DUNE ([12, 13]). In every timestep, the pressure equation is
solved implicitly using the coefficient values of the old time level and, thereafter,
the transport equation is solved explicitly. The solution of the transport equations
of single-phase and multiphase compositional models and the pressure equation of
single-phase models have been discussed by many authors, as for example in [20].
We want to concentrate on our solution strategy for the compositional pressure
equation (4).

3.1. Discretization of the pressure equation. For the discretization of partial
differential equations by the FVM, the model domain is divided into control volumes
and the equation is integrated over each control volume G. The integration of
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equation (4) over G and the use of the Gauss-Green formula yields

−
∂Vt

∂p

∂p

∂t
+

˛

n ·
∑

α

(

vα̺α
∑

κ

∂vt

∂Cκ
Xκ

α

)

dΓ

+

ˆ

∑

κ

(

∇
∂vt

∂Cκ
·
∑

α

Xκ
α̺αvα

)

dG = |V |
∑

κ

∂vt

∂Cκ
qκ ,(14)

where Γ denotes the boundary of G. The integral of the total fluid volume
´

vtdG

is denoted by Vt. In the right hand side term, the source is assumed to be piecewise
constant so its integral equals its multiplication by the control volume|V |. Inserting
equation (2) and separating pressure gradients and gravity vectors , one gets

−
∂Vt

∂p

∂p

∂t
−

˛

n

[

(K∇p)
∑

α

(

λα̺α
∑

κ

∂vt

∂Cκ
Xκ

α

)]

dΓ

−

ˆ

(K∇p)
∑

κ

(

∇
∂vt

∂Cκ

∑

α

Xκ
α̺αλα

)

dG

= −

˛

n ·

[

(Kg)
∑

α

(

λα̺α
∑

κ

∂vt

∂Cκ
Xκ

α

)]

dΓ

−

ˆ

(Kg)
∑

κ

(

∇
∂vt

∂Cκ

∑

α

Xκ
α̺αλα

)

dG+ |V |
∑

κ

∂vt

∂Cκ
qκ .(15)

¸

n· is discretized as
∑

k

|Ak|nk· , where k is the index for the cell interfaces as

sketched on the left-hand side of figure (3.1), and |Ak| is the area of the cell face
k, the pressure gradient ∇p is discretized by − p−pk

|uk|
uk

|uk|
, where p is the pressure

in the current cell and pk is the pressure in the k-th neighbor cell, while uk is the
vector connecting the two centers of gravity. The gradient of the volume derivative
∇ ∂vt

∂Cκ is discretized in the same way as the pressure gradient. By a decomposition
of the control volume as sketched in figure (3.1), the computation of the volume
integrals in the second and fourth line of equation (15) can be carried out by using
the standard face gradients of pressure and volume derivative. In particular, each
interface k is assigned a weighting factor wk to decompose the control volume to
a subvolume wk · |V | (see figure (3.1), right-hand side). Obviously the weighting
factors must sum to unity. For the integration, the coefficients inside the integral
are evaluated at the interface and multiplied with the associated subvolume. The
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p pk

uk

nk

Ak

k-th neighboring cell k-th neighboring cell

∇p

∇
(

∂vt
∂Cκ

)

wk · |V |

Figure 2. Vector and interface notation in FVM scheme

discretized form of equation (15) is then

−
∂Vt

∂p
·
pt − pt−∆t

∆t

+
∑

k

|Ak|nk ·K
uk

|uk|

pt − ptk
|uk|

∑

α

(

λα̺α
∑

κ

∂vt

∂Cκ
Xκ

α

)

+
∑

k

|V |wk

pt − ptk
|uk|

K
uk

|uk|
·
∑

κ

(

−
∂vt
∂Cκ −

(

∂vt
∂Cκ

)

k

|uk|

uk

|uk|

∑

α

Xκ
α̺αλα

)

= |V |
∑ ∂vt

∂Cκ
· qκ

−
∑

k

|Ak|nk ·Kg
∑

α

(

λα̺α̺α
∑

κ

∂vt

∂Cκ
Xκ

α

)

−
∑

k

|V |wkKg ·
∑

κ

(

−
∂vt
∂Cκ −

(

∂vt
∂Cκ

)

k

|uk|

uk

|uk|

∑

α

Xκ
α̺α̺αλα

)

.(16)

Pressures marked with the superscript t are the unknowns and those with the
superscript t−∆t are taken from the last time step as all other coefficients. Equation
(16) has to be set up for every control volume and forms a linear system of equations
which can be solved explicitly for the pressures pt. The values and gradients of the
derivatives of fluid volume with respect to total concentrations can be determined
in two ways. In equations (16), the derivatives are linearly interpolated between
two cell centers. The gradients are therefore determined by the secant between the
values at the current and the k-th cell center. The absolute values of the derivatives
in the second and fifth line of equation (16) are determined by linear interpolation at
the cell interface. Instead of linear function, the derivatives can also be assumed to
be cell-wise constant. That means that the gradient is zero and the third and sixth
line of equation (16) have to be deleted. The total value of the derivative is then
taken from the current cell; no upwinding or other weighting with any neighbor cell
is applied. Although both options work, the linear interpolation of the derivatives
produces better results.

The evaluation of coefficients at the cell interfaces is done by full upwinding,
where the upwind cell is determined by evaluating each phase potential gradient

Ψα = p+ ̺αg .
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At this point, special care must be taken for gravity-dominated systems where
counter-current flow may occur since upwind directions can be different for different
phases. For the upwinding of coefficients during the setup of the pressure equation,
the pressures of the last time step are used. Thus, an initial guess of the value of
pressure is necessary for the first timestep. Also for the initialization of saturations
and mass fractions, an initial pressure guess is necessary. We use a standard two-
phase fractional flow pressure equation with centrally weighted total mobilities (e.g.,
[11] or [1]) to obtain such a guess.

3.2. Evaluation of volume derivatives: The volume derivatives ∂vt
∂Cκ are cal-

culated numerically with a secant method (e.g., [19]): In a pre-step, the transport
equation is evaluated with the last timestep’s pressure field to determine incre-
ments. The current phase split (or phase mass fraction) να is known from the last
flash calculation or by calculating

να =
Sα · ̺α
∑

α

Sα · ̺α
.

The current total fluid volume is then determined by

vt,curr =
∑

α

να ·
1

̺α
.

Now, the total concentration of the first component is increased by the increment
iκ which was calculated in the pre-step, and a flash calculation is performed. With
the mass fractions Xκ

α and the phase splits να, the total fluid volume vt,incr.κ with
respect to the increased total concentration can be computed. The derivative can
now easily be found

∂vt

∂Cκ
=

vt,incr.κ − vt,curr

iκ
.

This procedure is repeated for each component.

3.3. Multiphysics. As already mentioned earlier, the pressure equations of the
two-phase compositional and the single-phase transport model have the same phys-
ical relevance, the same dimensions and the same unknowns. Exploiting this simi-
larity, the two sets of equations are used in one system of equations. The entries of
the stiffness matrix are set according to the position of the corresponding control
volume inside the domain. If the control volume is situated inside the subdomain
for the two-phase compositional model, the matrix and right-hand side entry is set
according to equation (16). If the control volume lies outside of the subdomain,
the entries are set according to the discretized form of equation (13). This strategy
can also be applied for control volumes adjacent to the subdomain boundary since
all necessary coefficients can be determined: for the second phase, they only have
to be set to zero outside the subdomain, and hence the corresponding terms in the
two-phase compositional pressure equation vanish. The only constraint is that only
the phase which is present outside the subdomain can flow across the boundary.
The same considerations as for the pressure equations are valid for the transport
equations: all necessary coefficients can be determined by setting them to zero for
the second phase outside the subdomain, and thus all terms related to this phase
vanish.
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3.4. Choice and adaption of the subdomain. For the proposed multiphysics
model, the choice of an adequate sub-domain is crucial for the quality of the re-
sult. The above mentioned constraint, that only one phase may flow across the
subdomain boundary has to be fulfilled. Furthermore, demixing effects have to be
respected. Consider for example a domain filled with water and residually satu-
rated gas with a pressure-driven water flux. The gas dissolves in water and gets
transported further. The solubility of air in water is proportional to pressure and
since pressure decreases downstream exsolution of gas occurs, producing very small
saturations of non-mobile air. If the solubility is exceeded outside the subdomain,
the demixing effect can not be reproduced since no flash calculations are carried
out in the single-phase transport model. Exsolution of gas occurs predominantly in
cells adjacent to the two-phase region. That is because the water which comes from
the upstream cell is fully saturated with gas, and the pressure is slightly smaller
in the downstream cell. The most logical choice of the subdomain therefore con-
tains all control volumes where two phases are present and – to avoid superfluous
velocity calculations – all adjacent cells. At the end of each timestep, the cells
inside the subdomain are checked: if two phases are present, the cell remains in the
subdomain and also all neighbors become part of the subdomain. Furthermore, the
mass fractions of the cells outside the subdomain can be compared to the solubility
of the dissolved component. This quite easy decomposition can only be expected
to be successful in the case of an explicit solution of the transport equations. In
particular, the fulfilment of the CFL-condition guarantees that no modeling error
will occur, since information is transported at most one cell further in one timestep.

4. Examples

We demonstrate the performance of our approach with two examples. The dy-
namic adaptivity of the subdomain is shown on a two-dimensional example, whereas
the applicability to real-life problems is demonstrated on the Johannsen-formation
benchmark from carbon dioxide sequestration.

4.1. Subdomain adaptivity. To demonstrate the subdomain adaptivity we set
up a simple example in a rectangular domain with no-flow boundaries at the top
and bottom and hydrostatic pressure boundaries at the left and right. The domain
is initially filled with water, except for a given region where air is found in a low
saturation. The water saturation at the left boundary equals unity, and on the right
there is a free-flow boundary. The pressure at the left boundary is higher than at
the right and thus a pressure- and gravity-driven flow is induced. Several processes
occur at the same time: 1) the air moves up and to the right, 2) in the two-phase
region, air is dissolved in water, 3) exsolution occurs further downstream. Figure
3 shows the system at initial conditions and after 100, 200 and 300 timesteps,
respectively. Saturation of water is displayed according to the legend, and the
subdomain is marked by black squares. During the first 100 timesteps, the air
moves advectively until the residual saturation of 0.05 is reached. Dissolution and
exsolution produce a plume of air with very low saturation. The subdomain grows
to cover the two-phase region. At some point, cells which do not contain gas any
more, are no longer covered by the subdomain as can be seen after 200 timesteps on
the lower left of figure 3. Finally, when most of the air has dissolved, the subdomain
becomes smaller again and moves downsteam as shown on the lower right.

4.2. Carbon dioxide sequestration benchmark. In [21], a benchmark prob-
lem treating the injection of carbon dioxide through a single well into a deep aquifer
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Figure 3. Example for dynamic subdomain adaptivity. From up-
per left to lower right, the system is shown for initial conditions
and after 100, 200 and 300 timesteps, respectively. The subdomain
is marked by black squares.

is presented (see also [10]). The given grid is made up of 54756 control volumes. We
chose this benchmark to compare the performance of the two-phase compositional
model and the multiphysics model with a realistic problem. Both methods solved
the given problems with 9540 time steps for the first 25 years of injection. Figure
4 shows the resulting saturation of carbon dioxide in the reservoir on the left-hand
side and the subdomain, which occupies 2355 cells (4.3 % of the total domain) in
the last timestep, on the right-hand side. In this example, the multiphysics model
provided a speed up of 21 % compared to the full compositional model. The number
of calls of the flash calculation in the full compositional model was 22 times as high
as in the multiphysics model. In our example we used simple relations to determine
equilibrium ratios (see section 2.3) and a noniterative flash, making the evaluation
of the flash calculation only marginally relevant for the overall computational costs.
However, according to [9], for equation of state simulators, 70 % of the CPU time
is spent on flash calculation, making the use of a multiphysics model, and hence
the reduction of flash-calculation calls, highly attractive.

5. Conclusions

We presented a multiphysics method which is able to couple two-phase compo-
sitional flow and single-phase transport models. The requirement for the presented
method is the concentration of two-phase flow in subdomains and presence of only
one phase in the rest of the domain. The model helps to minimize superfluous
evaluations of material laws, which results in savings of computational costs and
data. In particular, the potential increase in efficiency is influenced by sizes of re-
gions where two-phase flow and mass transfer processes occur, and the complexity
of physical relations being used especially in the two-phase region. Using a sim-
ple adaptive scheme, the subdomain size can be readjusted constantly during the
simulation to obtain an efficient discretization and simultaneously guarantee exact
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Figure 4. Results for the Johannsen formation benchmark after
25 years and corresponding subdomain

results. However, further developments concerning diffusion and capillary effects
must be made in order to make the method usable for a wide ranges of application.
This may make the solution of the transport equation problematic, since explicit
Euler (and also Runge-Kutta) timestepping schemes can only deal with hyperbolic
equations. Although Peclet numbers of Pe = 500 did not seem to compromise the
stability of the model in [2], simulation scenarios in which the influence of diffu-
sion or capillary effects is high, will require operator splitting or other appropriate
schemes.
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