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STABILITY CRITERIA AND MULTIPLE BIFURCATION

ANALYSIS FOR SOME NONLINEAR CONTINUOUS-TIME

COUPLED SYSTEMS WITH MULTIPLE DELAYS

ZHANWU WANG, MINGSHU PENG, AND XIAOZHONG YANG

Abstract. A coupled system, which consists of multiple delayed neural net-

work loops, is proposed and a detailed analysis of the asymptotic behavior of

the zero solution is included. The stable regions and all possible bifurcations,

which depend on multiple parameters, are given in a geometrical way for several

specific cases.
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1. Introduction

Consider a continuous-time Hopfield neural network withm identical subsystems
which have n nonidentical neurons with n delays and no self-connection of the
following form:

(1.1)

subsystem 1



















x′11(t) = −a1x11(t) + βnfn(x1n(t− τn)) + ǫ1gm(xmn(t− τn))
x′12(t) = −a2x12(t) + β1f1(x11(t− τ1))

...
x′1n(t) = −anx1n(t) + βn−1fn−1(x1(n−1)(t− τn−1))

subsystem 2



















x′21(t) = −a1x21(t) + βnfn(x2n(t− τn)) + ǫ2g1(x1n(t− τn))
x′22(t) = −a2x22(t) + β1f1(x21(t− τ1))

...
x′2n(t) = −anx2n(t) + βn−1fn−1(x2(n−1)(t− τn−1))

...

subsystem m



























x′m1(t) = −a1xm1(t) + βnfn(xmn(t− τn))
+ǫmgm−1(xn(m−1)(t− τn))

x′m2(t) = −a2xm2(t) + β1f1(xm1(t− τ1))
...

x′mn(t) = −anxmn(t) + βn−1fn−1(xm(n−1)(t− τn−1))

where xij denotes the activation of the jth neuron within the ith subsystem, aj is
the internal decay of the neurons, βj and ǫi are the connection weights, nonnegative
integers τj denotes the synaptic transmission delays, which corresponds to the time
when a signal is emitted by the (j − 1)−th neuron, and becomes available for the
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j−th neuron. For above notations, i = 1, 2, . . . ,m, and j = 1, 2, . . . , n. f : R → R

is the activation function.
In the past twenty years, there have been an increasing interest on the study of

the dynamical evolution of nonlinear delayed coupled systems. The attractiveness
of nonlinear coupled systems may lie in their possible modeling the interaction
dynamics among neurons (such as Hopfield/Cohen-Grossberg neuron networks [7,
14, 15, 16]) or oligopolists (such as Cournot duopoly models [20]) etc. Among
the most widely studied phenomena is synchronization, where individual networks
oscillate at the same frequency and phase when coupled. According to the learning
rules of Hebb [13]: synchronous activation increases the synaptic strength, whereas
asynchronous activation decreases the synaptic strength.

It is known that the delay increases the dimensionality, and hence the complexity.
It is natural for the inclusion of time delay in the realistic consideration of finite
transmission of the interaction, such as the propagation of information through a
network node or “synapse”. Now great efforts have been made on those domains
where delay is not the major factor, or where there occur rich dynamics.

For the study of existence and stability of periodic solutions with spatiotemporal
symmetries in delay-coupled neural networks of delay-differential equations, we refer
the reader to Refs. [5, 9, 11, 12, 17, 23, 26], where multiple periodic/steady-state
solutions can be obtained and observed by equivariant Hopf/fold bifurcations from
the trivial zero equilibrium solution. But each of the neurons of the networks is
described by a one-dimensional nonlinear differential equation systems.

For the study of existence and stability of periodic solutions in delay-coupled
asymmetric neural networks, we refer the reader to Refs. [1, 25], where Hopf/fold
bifurcations were discussed and the mechanism of how delay affects neural dynamics
and learning is explored[1]. But each of the neurons of the networks is also described
by a one-dimensional nonlinear differential equation systems.

Moreover, there is an increasing interest in some nonlinear delayed neural net-
works coupled by two sub-networks [3, 19, 24]. In [3], the authors discussed the
stability and bifurcations in the delayed neural network coupled by a pair of three-
neuron sub-networks without internal delays. But they did not deal with the di-
rection and stability of Hopf bifurcation and the possible spatio-temporal patterns
of bifurcating periodic oscillations. In [19, 24], a neural network coupled by a pair
of two-neuron sub-networks is investigated, which contains the time delay not only
in the coupling but also in the internal connection. Yet one can find that all the
delays have the same size in [24].

Motivated by proposing a more generalized model than those in [3, 24], we
consider model (1.1), which consists of multiple nonlinear delayed neural network
loops by delay coupling.

It is well-known that an artificial neural network (ANN) is composed of many
artificial neurons that are linked together according to a specific network architec-
ture. The objective of the neural network is to transform the inputs into meaningful
outputs. Artificial neural networks are inspired by the learning processes that take
place in biological systems, which try to imitate the working mechanisms of their
biological counterparts. Since McCulloch and Pitts’s first formal model of the ele-
mentary computation neuron in 1943 [22], which could perform arithmetical logic
operations, a great amount of ANN models have been proposed and developed
according to the purposes of the applications or theoretical analysis. The appli-
cations of ANNs range from classification (including pattern recognition, feature
extraction, detection and clustering, image matching), noise reduction (recognizing
patterns in the inputs and produce noiseless outputs), prediction (extrapolation
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based on historical data, such as stock market prediction), function approximation,
control for real-world applications (such as robot control), and optimization etc.

The rest of this paper is organized as follows: In Sec. 2 we give a detailed study
of asymptotic behavior of system (1.1) and some properties of the polynomial (2.3)
are discussed. As application, the stable regions and all possible bifurcations, which
depend on multiple parameters, are given in a geometrical way for some specific
cases in Sec. 3. Numerical simulation is included in Sec. 4, and a tendency of
partially phase-locking phenomenon is discovered. Finally we draw our conclusions
in Sec. 5.

2. local stability analysis of Eq. (1.1)

For notational simplicity, let fi(0) = 0, f ′
i(0) = 1(i = 1, 2, . . . , n), gi(0) = 0, g′i(0) =

1(i = 1, . . . ,m).
The linearized system of (1.1) evaluated around the origin (the trivial zero solu-

tion) leads to

(2.1)

subsystem 1



















x′11(t) = −a1x11(t) + βnx1n(t− τn) + ǫ1xmn(t− τn)
x′12(t) = −a2x12(t) + β1x11(t− τ1)

...
x′1n(t) = −anx1n(t) + βn−1x1(n−1)(t− τn−1)

subsystem 2



















x′21(t) = −a1x21(t) + βnx2n(t− τn) + ǫ1x1n(t− τn)
x′22(t) = −a2x22(t) + β1x21(t− τ1)

...
x′2n(t) = −anx2n(t) + βn−1x2(n−1)(t− τn−1)

...

subsystem m



















x′m1(t) = −a1xm1(t) + βnxmn(t− τn) + ǫmxn(m−1)(t− τn)
x′m2(t) = −a2xm2(t) + β1xm1(t− τ1)

...
x′mn(t) = −anxmn(t) + βn−1xm(n−1)(t− τn−1)

Then one can derive the characteristic matrix of (2.1)

Q(λ) = diag(λ+ a1, λ+ a2, . . . , λ+ an, . . . , λ+ a1, λ+ a2, . . . , λ+ an)mn −M,

where M is the connection matrix of (2.1), i.e.,

M =















A 0 0 · · · 0 B1

B2 A 0 · · · 0 0
0 B3 A · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · Bn A















mn×mn

,

where

A =











0 0 · · · βne
−λτn

β1e
−λτ1 0 · · · 0
...

... · · ·
...

0 · · · βn−1e
−λτn−1 0











n×n
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and

Bi =











0 0 · · · ǫie
−λτn

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0











n×n

.

Hence, the characteristic equation is

(2.2)
detQ(λ)
= [eλτ (λ+ a1)(λ+ a2) · · · (λ + an)− β1β2 · · ·βn]m − (β1β2 · · ·βn−1)

mǫ1 · · · ǫm

=















∏m−1
s=0 [eλτ (λ+ a1)(λ+ a2) · · · (λ+ an)− (β + ηe

2sπi

m )]
if (β1β2 · · ·βn−1)

mǫ1 · · · ǫm > 0;
∏m−1
s=0 [eλτ (λ+ a1)(λ+ a2) · · · (λ+ an)− (β + ηe

(2s+1)πi

m )]
if (β1β2 · · ·βn−1)

mǫ1 · · · ǫm < 0;
:= ∆0 · · ·∆m−1 = 0,

where β = β1β2 · · ·βn, η = |β1β2 · · ·βn−1|(|ǫ1 · · · ǫm|)
1
m .

Now, we give a detailed study of the zero distribution of a polynomial of the
type

(2.3)
Λ(τ, a, α, b) = eλτ (λ+ a1) . . . (λ+ an)− beiα

= eλτ (λ+ a1) . . . (λ+ an)− (c+ id),

where ai > 0(i ∈ N(1, n)), b ∈ (0,∞) and α ∈ [−π, π].
Define the curve

∑

= {(u, v)}, where u and v are both parameterized by ai, τ
and θ as follows:

Un =

[

an −θ
θ an

]

Un−1 =

[

an −θ
θ an

]

· · ·
[

a1 −θ
θ a1

]

U0,

where Un =

[

un
vn

]

(in what follows, we shall identify (u, v) with (un, vn)), U0 =
[

cos τθ
sin τθ

]

. Then it can be found that

Dn := v′nun − vnu
′
n

= (anv
′
n−1 + θu′n−1)(anun−1 − θvn−1)− (anu

′
n−1 − θv′n−1)(anvn−1 + θun−1)

+un−1(anun−1 − θvn−1) + vn−1(anvn−1 + θun−1)
= an(u

2
n−1 + v2n−1) + (a2n + θ2)(v′n−1un−1 − vn−1u

′
n−1)

= an(a
2
n−1 + θ2) · · · (a21 + θ2) + (a2n + θ2)Dn−1

> 0,

and
δn := (UTn )

′Un = u′nun + vnv
′
n

= θUTn−1Un−1 + (a2n + θ2)(UTn−1)
′Un−1

= θ(a2n−1 + θ2) · · · (a21 + θ2) + (a2n + θ2)δn−1,

with D1 = a1 and δ1 = θ. Therefore

Dn := v′nun − vnu
′
n

=
∑

j1 6=···6=jn,j1,...,jn∈(1,2,...,n) aj1(a
2
j2 + θ2) · · · (a2jn + θ2),

and
δn := u′nun − vnv

′
n

=
∑

j2 6=···6=jn,j2,...,jn∈(1,2,...,n) θ(a
2
j2
+ θ2) · · · (a2jn + θ2).

Then one can find that the following result holds:
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Proposition 2.1. If beiα = un + ivn, then λ = eiθ is one of the zero roots of the
polynomial Λ(τ,a, α, b), i.e.,

eiθτ (iθ + a1) . . . (iθ + an)− (un + ivn) = 0

and λ = e−iθ is one of the zero roots of the polynomial Λ(τ,a,−α, b).
Note that

reiψ = beiα = un + ivn,

where u = r cosψ, v = r sinψ, which leads to

b = r =
√

u2n + v2n =
√

(a2n + θ2)(u2n−1 + v2n−1) =

√

√

√

√

n
∏

i=1

(a2i + θ2)

and ψ = α.
Then, it follows from the above analysis that

• (i) r is monotonically increasing for θ, ai ∈ (0,∞), i = 1, 2, · · · , n and de-
creasing for θ ∈ (−∞, 0), ai ∈ (0,∞);

• (ii) the curve has the anticlockwise property and the symmetry property
about the u−axis, i.e., sign(ψ′(θ)) = sign(uv′ − u′v) > 0 and u(−θ) =
u(θ), v(−θ) = −v(θ);

• (iii) the curve
∑+

= {(u(θ), v(θ)) : θ ∈ R+ := (0,∞)} is simple, i.e., it
cannot intersect with itself.

Let {θs}+∞
n=0 be the monotonic increasing sequence of the nonnegative zeros of v,

and define
cs = |u(θs)|

for all s ∈ N0 := {0, 1, 2, ...}. Then, it follows from
v = ℑ(eiτθ(iθ + a1) . . . (iθ + an)) = 0

that

τθ +

n
∑

j=1

arctan(θ/aj) = sπ,

which leads to θ0 = 0 and θs ∈ ((2s− n)π/(2τ), sπ/τ) for all s ∈ N0 and the curve
∑+

intersects with the u-axis at (cs, 0), s ∈ N0. The anticlockwise property of the

curve
∑+

leads to

(−1)su(θs) > 0, (−1)su′(θs) > 0, (−1)sv′(θs) > 0

for all s ∈ N0.
For each n ∈ N0, define

∑

s = {(u(θ), v(θ))|θ ∈ [−θs+1,−θs] ∪ [θs, θs+1]}, which
is a closed simple curve with (0, 0) inside. The curve is schematically illustrated in
Fig. 2.1.

We need the following lemma about the properties of the distributions of the
roots of (2.3), which will play an important role in further study of bifurcation
analysis.

Lemma 2.1. Consider Λ(τ,a, α, b) defined in (2.3) with beiα ∈ C. Then the fol-
lowing statements are true:

• (i) Λ(τ,a, α, b) has purely imaginary zero roots if and only if beiα ∈ ∑

i.
Moreover, if z = u(θ) + iv(θ) then the purely imaginary zero is iθ (or −iθ
which depends on v > (or <)0), except that v = 0, where there is a pair of
conjugate purely imaginary roots for z = (−1)scs for s ∈ N0−{0} and zero
is one of its root with z = a1a2 · · ·an and s = 0.
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c
0
 −c

1
 c

2
 

(u,v) 

u 

v 
all roots with 
negative real part 

Except one root 
with 
positive real part, 
the rest with 
negative real part

(u,−v) 

Σ
1
 

Σ
2
 

reiα 

α 

−(u’,v’) 

Φ(ω) 

c
2i

 c
2i+2

 −c
2i+1

 −c
2i−1

 

Σ
2i

 

Σ
2i+1

 

(u,v) 

(u,−v) 

u 

V 

ω 

(a) (b)

Figure 2.1. (a) Stable region and possible Neimark-Sacker bifur-
cations (NS) near the critical curves

∑

i for model (1.1) and (b)
∑

i, ci and the direction vector Φ(ω).

• (ii) For each fixed z0 = u(θ0)+iv(θ0), there exists an open δ-neighborhood of
z0 in the complex plane, denoted by N(z0, δ), and an analytical function λ :
N(z0, δ) → C such that λ(z0) = iθ0/− iθ and λ(z0) is a zero of Λ(τ,a, α, b)
for all z ∈ B(z0, δ).

• (iii) Along the vector

(2.4) Φ(ω) = −(u′(θ), v′(θ))Ξ(ω),

the directional derivative of ℜ{λ(z)} at z0 = (u(θ0), v(θ0)) is positive, where
ω ∈ (0, π) and

Ξ(ω) =

(

cosω sinω
− sinω cosω

)

.

• (iv) All the roots of Λ(τ,a, α, b) have strictly negative real parts if and only
if z = (u, v) is inside the curve

∑

0; exactly j ∈ N roots with positive real
parts if z lies in between

∑

j−1 and
∑

j. In particular, if z ∈
∑

0, either

zero is one root of Λ(τ,a, α, b) for z = c0, or a simple purely imaginary
root for ℑ(z) 6= 0, or a pair of simple purely imaginary conjugate roots for
z = −c1, except for the rest with strictly negative real parts.

PROOF. According to Proposition 2.1, we can get the validity of case (i), case (ii)
follows from the fact that Λ(τ, a, α, b) is an analytic function and (iv) is a direct
result of case (i) and (iii). Therefore it suffices to verify the validity of case (iii):
Consider Eq. (2.3), we find that

∂λ

∂c
=

1

Q′(a, τ, λ)
,

∂λ

∂d
=

i

Q′(a, τ, λ)
,

∂λ

∂c
=

1

Q
′
(a, τ, λ)

,
∂λ

∂d
=

−i
Q

′
(a, τ, λ)

,

where Q(a, τ, λ) = eλτ (λ + a1) . . . (λ + an) and its derivative with respect to λ is

denoted by Q′(a, τ, λ). Then ∇Reλ =
(

ℜ(Q′

λ
(a,τ,λ))
d1

,
ℑ(Q′

λ
(a,τ,λ))
d1

)T

where

d1 = Q′
λ(a, τ, λ)Q

′
λ(a, τ, λ) > 0,
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andQ′
λ(a, τ, λ)) = τ(u+iv)+eiθτ

∑n
j=1(a1+iθ) · · · (aj−1+iθ)(aj+1+iθ) · · · (an+iθ).

Furthermore we have
[

ℜ(Q′)
ℑ(Q′)

]

=

[

τu

τv

]

+
n
∑

j=1

[

a1 −θ

θ a1

]

· · ·

[

aj−1 −θ

θ aj−1

] [

aj+1 −θ

θ aj+1

]

· · ·

[

an −θ

θ an

] [

cos τθ
sin τθ

]

.

Then it yields
d|λ|
dΦ

∣

∣

λ=exp(iθ) = − 1√
u′2+v′2

(u′, v′)Ξ(ω)∇|λ|
= − d3

d1d2
> 0,

where ω ∈ (0, π), d2 =
√
u′2 + v′2 and

d3 = [(uu′ + vv′) cosω − (uv′ − vu′) sinω]τ + (u′v′)

[

cosω sinω
− sinω cosω

] [

ℜ(Q′)
ℑ(Q′)

]

=

{

−∑

j1 6=···6=jn,j1,...,jn∈(1,2,...,n)(2aj1τ + 1)(a2j2 + θ2) · · · (a2jn + θ2) sinω, n ≥ 2,

−(a1τ + 1) sinω, n = 1,

< 0.

2

Now, we list the local stability criterion of system (1.1) as follows:

Theorem 2.1. The zero solution of system (1.1) is locally asymptotically stable if
and only if

(β, η) ∈ Ω :=































(β, η)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣































(β + η cos 2sπ
m

, η sin 2sπ
m

)(s = 0, . . . ,m− 1)
are all lying inside the closed curve

∑

0,

if (β1β2 · · ·βn−1)
mǫ1 · · · ǫm > 0;

(β + η cos (2s+1)π
m

, η sin (2s+1)π
m

)(s = 0, . . . ,m− 1)
are all lying inside the closed curve

∑

0,

if (β1β2 · · ·βn−1)
mǫ1 · · · ǫm < 0;































where β = β1β2 · · ·βn, η = |β1β2 · · ·βn−1|(|ǫ1 · · · ǫm|)
1
m .

PROOF. According to Proposition 2.1 and Lemma 2.1, it is easily to see that all
eigenvalues of the linearized system (2.1) have negative real parts, which implies
that the zero solution of system (1.1) is locally asymptotically stable. 2

3. Applications

Now we consider some specific values of m = 2, 3, 4.

3.1. m=2.
The characteristic equation of system (2.1) becomes

(3.1)
detQ(λ)
= [eλτ (λ+ a1) · · · (λ+ an)− β1β2 · · ·βn]2 − (β1β2 · · ·βn−1)

2ǫ1ǫ2

=















[eλτ (λ+ a1) · · · (λ+ an)− (β + η)][eλτ (λ+ a1) · · · (λ+ an)− (β − η)]
if ǫ1ǫ2 > 0;

[eλτ (λ+ a1) · · · (λ+ an)− (β + iη)][eλτ (λ+ a1) · · · (λ+ an)− (β − iη)]
if ǫ1ǫ2 < 0, ;

:= ∆1∆2 = 0,

where β = β1β2 · · ·βn and η = |β1β2 · · ·βn−1|
√

|ǫ1ǫ2|, which are defined as in Sec.2.
Then we divide our discussion into two cases:
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Case 1: ǫ1ǫ2 > 0.

• (i) The zero solution of system (1.1) is locally asymptotically stable if and
only if

(β, η) ∈ Ω := {(β, η) |−c1 < β ± η < a1 · · · an }
:= {(β, η) |−c1 < β < a1 · · · an, < η < η+ } ,

where η+ = min{a1 · · · an − β, c1 + β}.
Furthermore, as β± η increases through a series of critical values c0, c2,

. . ., respectively, there may occur subsequently (two types of) fold bifur-
cations (such as transcritical/pitch-fork bifurcations) and Neimark-Sacker
bifurcations, whereas β increases through a series of critical values−c1, −c3,
. . ., there may occur subsequently (two types of) Hopf bifurcations (there
occur subsequently two pairs of complex conjugate eigenvalues) (please see
Fig. 3.1).

• (ii) Except for the co-dimension-one (Fold, Hopf) bifurcations, there exists
the following types of co-dimension-two bifurcations:

(a) cusp bifurcations;
(b) Bautin (generalized Hopf) bifurcations;
(c) Bogdanov-Takens(BT) bifurcations: two zero eigenvalues at the crit-

ical point;
(d) double Hopf bifurcations (H2): two pairs of purely imaginary conju-

gate eigenvalues;
(e) Hopf bifurcation and fold bifurcation (HF): A zero eigenvalue and

one pair of purely imaginary conjugate eigenvalues.

c
0
 −c

1
 c

2
 β 

η 

o 

β−η=c
0
 

β−η=−c
1
 

β+η=−c
1
 

β+η=c
0
 

stable
 region 

BT 

HF 

H2 

HF 

Figure 3.1. The stable region and possible bifurcations near the
critical lines β ± η = (−1)scs for model (1.1) with τ +2 = 2m+1.

Case 2: ǫ1ǫ2 < 0.

• (i) the zero solution of system (1.1) is locally asymptotically stable if and
only if

(β, η) ∈ Ω := {(β, η)|(β, η) lying inside the closed curve
∑

0}
:= {(β, η) |−c0 < β < c1, 0 < η < η+, } ,

where (β, η+) ∈ ∑

0, i.e., there exists a θ∗ ∈ (0, θ1) such that u(θ∗) = β,
and η+ := v(θ∗).

Furthermore, as (β, η) passes through a series of critical curves
∑

i(i =
1, 2, . . . ,, respectively, there may occur subsequently a series of Hopf bifur-
cations (please see Fig. 2.1).
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3.2. m=3.
The characteristic equation of system (2.1) is
(3.2)

detQ(λ)

= [eλτ (λ+ a1) · · · (λ+ an)− β1β2 · · · βn]
3
− (β1β2 · · ·βn−1)

3ǫ1ǫ2ǫ3

=



































[eλτ (λ+ a1) · · · (λ+ an)− (β + η)] [eλτ (λ+ a1) · · · (λ+ an)− (β + ηe
2iπ
3 ))]

[eλτ (λ+ a1) · · · (λ+ an)− (β + ηe
−2iπ

3 )],
if (β1β2 · · ·βn−1)

3ǫ1ǫ2ǫ3 > 0;

[eλτ (λ+ a1) · · · (λ+ an)− (β − η)] [eλτ (λ+ a1) · · · (λ+ an)− (β + ηe
iπ

3 ))]

[eλτ (λ+ a1) · · · (λ+ an)− (β + ηe
−iπ

3 ))]
if (β1β2 · · ·βn−1)

3ǫ1ǫ2ǫ3 < 0,
:= ∆0∆1∆2 = 0,

where β = β1β2 · · ·βn and η = |β1β2 · · ·βn−1|(|ǫ1ǫ2ǫ3|)1/3. Then we have:

• (i) The zero solution of system (1.1) is locally asymptotically stable if and
only if

(β, η) ∈ Ω :=































{

(β, η)

∣

∣

∣

∣

−c1 < β + η < a1 · · · an
(β − η/2,

√
3η/2) lying inside the closed curve

∑

0

}

for (β1β2 · · ·βn−1)
3ǫ1ǫ2ǫ3 > 0;

{

(β, η)

∣

∣

∣

∣

−c1 < β − η < a1 · · · an
(β + η/2,

√
3η/2) lying inside the closed curve

∑

0

}

for (β1β2 · · ·βn−1)
3ǫ1ǫ2ǫ3 < 0.

• (ii) Except for the co-dimension-one (Fold, Hopf) bifurcations, there exists
the following types of co-dimension-two bifurcations (see Fig. 3.2):

(a) cusp bifurcations;
(b) Bautin (generalized Hopf) bifurcations;
(c) double Hopf bifurcations (H2);
(d) triplicate Hopf bifurcations (H3): three pairs of purely imaginary

conjugate eigenvalues;
(e) Hopf bifurcation and fold bifurcation (HF).

o 
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stable
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β+η=c
0
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stable 
region 
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η  
β−η=c

0
 

c
0
 c

2
 −c

1
 

(a) (β1β2 · · ·βn−1)
3ǫ1ǫ2ǫ3 > 0 (b) (β1β2 · · ·βn−1)

3ǫ1ǫ2ǫ3 < 0

Figure 3.2. Stable region and possible higher-codimensional bi-
furcations near the critical values for model (1.1) with m = 3.

3.3. m=4.
The characteristic equation of system (2.1) is
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(3.3)
detQ(λ)

= [eλτ (λ+ a1) · · · (λ+ an)− β1β2 · · · βn]
4
− (β1β2 · · ·βn−1)

4ǫ1ǫ2ǫ3ǫ4

=































[eλτ (λ+ a1) · · · (λ+ an)− (β + η)][eλτ (λ+ a1) · · · (λ+ an)− (β − η)]

[eλτ (λ+ a1) · · · (λ+ an)− (β + iη][eλτ (λ+ a1) · · · (λ+ an)− (β − iη],
if ǫ1ǫ2ǫ3ǫ4 > 0;

[eλτ (λ+ a1) · · · (λ+ an)− (β + ηeiπ/4)][eλτ (λ+ a1) · · · (λ+ an)− (β + ηe−iπ/4)]

[eλτ (λ+ a1) · · · (λ+ an)− (β + ηei3π/4)][eλτ (λ+ a1) · · · (λ+ an)− (β + ηe−i3π/4)],
if ǫ1ǫ2ǫ3ǫ4 < 0;

:= ∆0∆1∆2∆3 = 0,

where β = β1β2 · · ·βn and η = |β1β2 · · ·βn−1|(|ǫ1ǫ2ǫ3ǫ4|)1/4 > 0. Then there are
two cases to consider:

Case 1: ǫ1ǫ2ǫ3ǫ4 > 0.

• (i) The zero solution of system (1.1) is locally asymptotically stable if and
only if

(β, η) ∈ Ω :=

{

(β, η)

∣

∣

∣

∣

−c1 < β ± η < a1 · · · an
(β, η) lying inside the closed curve

∑

0

}

:= {(β, η) |−c1 < β < a1 · · ·an, 0 < η < η+ } ,

where η+ = min{a1 · · · an−β, c1+β, η∗}, and (β, η∗) lies in
∑+

0 , i.e., there
exists a θ∗ ∈ (0, θ1) such that u(θ∗) = β, and η∗ := v(θ∗).

• (ii) Except for the co-dimension-one (Fold, Hopf) bifurcations, there exists
the following types of co-dimension-two bifurcations:

(a) cusp bifurcations;
(b) Bautin (generalized Hopf) bifurcations;
(c) Bogdanov-Takens(BT) bifurcations;
(d) double Hopf bifurcations (H2): two pairs of purely imaginary conju-

gate eigenvalues;
(e) Hopf bifurcation and double fold bifurcations (HF2): two zero eigen-

values and one pair of purely imaginary conjugate eigenvalues;
(f) duplicate Hopf bifurcations (H4): four pairs of purely imaginary

conjugate eigenvalues (please see Fig. 3.3).

. Case 2: ǫ1ǫ2ǫ3ǫ4 < 0.

o 

stable
 region 

β 

η 

H4 HF2 H4 

o 

stable
 region 

β 

η 

H4 HF2 
c

0
 −c

1
 

(a) a larger region (b) a smaller region

Figure 3.3. Stable region and possible higher-codimensional bi-
furcations near the critical values for model (1.1) with m = 4.
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• (i) The zero solution of system (1.1) is locally asymptotically stable if and
only if

(β, η) ∈ Ω :=
{

(β, η)
∣

∣

∣(β ±
√
2η
2 ,

√
2η
2 ) lying inside the closed curve

∑

0.
}

• (ii) Except for the co-dimension-one (Fold, Hopf) bifurcations, there exists
the following types of co-dimension-two bifurcations:

(a) cusp bifurcations;
(b) Bautin (generalized Hopf) bifurcations;
(c) double Hopf bifurcations (H2): two pairs of purely imaginary conju-

gate eigenvalues;
(d) quadruplicate Hopf bifurcations (H4): four pairs of purely imaginary

conjugate eigenvalues (please see Fig. 3.4).
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Figure 3.4. Stable region and possible higher-codimensional bi-
furcations near the critical values for model (1.1) with m = 4.

3.4. m=5.
As to m = 5, much richer dynamics can be observed, including quintuplicate hopf
bifurcatoins (H5), and Hopf-double-Fold (HF2) bifurcations etc. (please see Fig.
3.5). But the detail is omitted.
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Figure 3.5. Stable region and possible higher-codimensional bi-
furcations near the critical values for model (1.1) with m = 5 for
β1β2 · · ·βn−1)

5ǫ1 · · · ǫ5 < 0.
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4. Numerical simulation

Consider Eq. (1.1) with n = 2, m = 5, f = g = sin(x), τ1 = 1, τ2 = 2,
a1 = 2.5, a2 = 0.3, β1 = 1, ǫs = c(s = 2, 3, 4, 5), ǫ1 = a and β2 = b, i.e., system
(1.1) becomes

(4.1)

subsystem 1

{

y′

11(t) = −2.5y11(t) + b sin(y12(t− 1)) + a sin(y52(t− 1))
y′

12(t) = −0.3y12(t) + sin(y11(t− 2))

subsystem 2

{

y′

21(t) = −2.5y21(t) + b sin(y22(t− 1)) + c sin(y12(t− 1))
y′

22(t) = −0.3y22(t) + sin(y21(t− 2))

subsystem 3

{

y′

31(t) = −2.5y31(t) + b sin(y32(t− 1)) + c sin(y22(t− 1))
y′

32(t) = −0.3y32(t) + sin(y31(t− 2))

subsystem 4

{

y′

41(t) = −2.5y41(t) + b sin(y42(t− 1)) + c sin(y32(t− 1))
y′

42(t) = −0.3y42(t) + sin(y41(t− 2))

subsystem 5

{

y′

51(t) = −2.5y51(t) + b sin(y52(t− 1)) + c sin(y42(t− 1))
y′

52(t) = −0.3y52(t) + sin(y51(t− 2)).

Our numerical result is shown in Figs. 4.1, 4.2 and 4.3 with the initial condition
ys1(t) = − cos(2(s − 1)π/5)(−1 ≤ t ≤ 0) and ys2(t) = − sin(2(s − 1)π/5)(−2 ≤
t ≤ 0, s = 1, 2 . . . , 5): In Figs. 4.1 and 4.2, periodic motions and a tendency of
partially phase-locking phenomenon can be observed. Moreover, as the parameter
a is varying, no new oscillation modes occur. But in Fig. 4.3, different oscillation
modes can be observed as the sign of a is varying: the stability of the zero solution,
the occurrence of nontrivial steady states or periodic waves, which gives a solid
verification of our theoretical analysis.

A much richer dynamic of Eq. (1.1) can be observed in Fig. 4.4 with n = 3,
m = 5, f = g = sin(x), τ1 = 1, τ2 = 2, τ3 = 3, ai = 0.3(i = 1, 2, 3), β1 = β2 = 1,
ǫs = 0.1(s = 2, 3, 4, 5), ǫ1 = 0.009 and β3 = b: there exists a periodic doubling
bifurcation from Fig. 4.4(i) to (ii), then a complicated regular/chaotic oscillatory
behavior in 4.4(iii)-(iv).

5. Conclusions

In this paper, we propose a generalized type of coupled systems with unidi-
rectional coupling. The zero distribution in a special polynomial of the form
eλτ (λ+a1) . . . (λ+an)−(c+id) are discussed, which generalize and extend those ob-
tained in [1, 10, 24, 25]. As its applications, new criteria for local stability of coupled
systems with different topological structures are established and the geometrical
structure of the stable region is drawn for some specific cases n = 1, 2, 3, 4, 5.

All possible bifurcations are also concerned, including higher-codimensional bi-
furcations, such as quintuplicate/quadruplicate/triplicate hopf bifurcations (H5,4,3),
fold-double-Hopf (H2F), and Hopf-double-Fold (HF2) bifurcations etc. As to the
lower-codimensional bifurcation analysis in delayed systems, we refer the reader to
Refs. [2, 6, 4, 8, 10] and dynamical systems without delay, please see Ref. [21].

It may be very interesting and complicated for the detailed analysis of higher-
codimensional bifurcations, the interaction of multiple oscillation patterns, and the
mechanism of how delay plays its dominant role in converting a simple system to
be complex/chaotic, which needs a further discussion.

Some improvements can be made on Eq. (1.1), such as adding the spatio-
temporal symmetrical structure so as to study synchronization phenomenon and
the mechanism of processing information among subsystems .



STABILITY CRITERIA AND MULTIPLE BIFURCATION ANALYSIS 717

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
An example of Neuron Network.

time t

so
lu

tio
n 

y

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
An example of Neuron Network.

time t

so
lu

tio
n 

y

(a) a = −0.0009 (b) a = 0.0009
T ime Serials

−0.4 −0.2 0 0.2 0.4 0.6
−1.5

−1

−0.5

0

0.5

1

1.5

y
11

y 21
(r

ed
),

 3
1(

bl
ue

),
 4

1(
gr

ee
n)

, 5
1(

m
ag

en
ta

)

−0.4 −0.2 0 0.2 0.4 0.6
−1.5

−1

−0.5

0

0.5

1

1.5

y
11

y 21
(r

ed
),

 3
1(

bl
ue

),
 4

1(
gr

ee
n)

, 5
1(

m
ag

en
ta

 )

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
An example of Neuron Network.

y
11(red), 21(blue), 31(green), 41(purple), 51(magenta)

y 12
, 2

2,
 3

2,
 4

2,
 5

2

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

An example of Neuron Network.

y
11(red), 21(blue), 31(green), 41(purple), 51(magenta)

y 12
, 2

2,
 3

2,
 4

2,
 5

2

phase portrait

Figure 4.1. Time serials and phase portraits near the critical
values for model (4.1) with b = −1.93, c = 1 as a is varying.
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