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CONVERGENCE AND COMPLEXITY OF ADAPTIVE FINITE

ELEMENT METHODS FOR ELLIPTIC PARTIAL DIFFERENTIAL

EQUATIONS

LIANHUA HE AND AIHUI ZHOU

Abstract. In this paper, we study adaptive finite element approximations in a

perturbation framework, which makes use of the existing adaptive finite element

analysis of a linear symmetric elliptic problem. We analyze the convergence

and complexity of adaptive finite element methods for a class of elliptic partial

differential equations when the initial finite element mesh is sufficiently fine.

For illustration, we apply the general approach to obtain the convergence and

complexity of adaptive finite element methods for a nonsymmetric problem, a

nonlinear problem as well as an unbounded coefficient eigenvalue problem.
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1. Introduction

The purpose of this paper is to study the convergence and complexity of adaptive
finite element computations for a class of elliptic partial differential equations of
second order and to apply our general approach to three problems: a nonsymmet-
ric problem, a nonlinear problem, and an eigenvalue problem with an unbounded
coefficient. One technical tool for motivating this work is the relationship between
the general problem and a linear symmetric elliptic problem, which is derived from
some perturbation arguments (see Theorem 3.1 and Lemma 3.1).

Since Babuška and Vogelius [3] gave an analysis of an adaptive finite element
method (AFEM) for linear symmetric elliptic problems in one dimension, there has
been much work on the convergence and complexity of adaptive finite element meth-
ods in the literature. For instance, Dörfler [10] presented the first multidimensional
convergence result and Binev, Dehmen, and DeVore [5] showed the first complexity
work, which have been improved and generalized in [5, 6, 9, 12, 13, 18, 19, 20, 21, 25],
from convergence to convergent rate and complexity. For a nonsymmetric problem,
in particular, Mekchay and Nochetto [18] imposed a quasi-orthogonality property
instead of the Pythagoras equality to prove the convergence of AFEM while Morin,
Siebrt, and Veeser [21] showed the convergence of error and estimator simultane-
ously with the strict error reduction and derived the convergence of the estimator by
exploiting the (discrete) local lower but not the upper bound. In this paper, we can
get the convergence and optimal complexity of nonsymmetric problems from our
general approach directly. For a nonlinear problem, Chen, Holst and Xu [7] proved
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the convergence of an adaptive finite element algorithm for Poisson-Boltzmann
equation while we are able to obtain the convergence and optimal complexity of
AFEM for a class of nonlinear problems now. For a smooth coefficient eigenvalue
problem, Dai, Xu, and Zhou [9] gave the convergence and optimal complexity of
AFEM for symmetric elliptic eigenvalue problems with piecewise smooth coeffi-
cients (see, also convergence analysis of a special case [12, 13]). In this paper, we
will derive similar results for an unbounded coefficient eigenvalue problem from our
general conclusions, too. We mention that a similar perturbation approach was
used in [9].

This paper is organized as follows. In Section 2, we review some existing results
on the convergence and complexity analysis of AFEM for the typical problem. In
Section 3, we generalize results to a general model problem by using a perturbation
argument when the initial finite element mesh is sufficiently fine. In Section 4 and
Section 5, we provide three typical applications for illustration, including theory
and numerics.

2. Adaptive FEM for a typical problem

In this section, we review some existing results on the convergence and complex-
ity analysis of AFEM for a boundary value problem in the literature.

Let Ω ⊂ R
d(d ≥ 2) be a bounded polytopic domain. We shall use the standard

notation for Sobolev spaces W s,p(Ω) and their associated norms and seminorms,
see, e.g., [1, 8]. For p = 2, we denote Hs(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) :
v |∂Ω= 0}, where v |∂Ω= 0 is understood in the sense of trace, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω.
The space H−1(Ω), the dual space of H1

0 (Ω), will also be used. Throughout this
paper, we shall use C to denote a generic positive constant which may stand for
different values at its different occurrences. We will also use A <∼ B to mean that

A ≤ CB for some constant C that is independent of mesh parameters. All constants
involved are independent of mesh sizes.

2.1. A boundary value problem. Consider a homogeneous boundary value
problem:

(1)

{
Lu := −∇ · (A∇u) = f in Ω,

u = 0 on ∂Ω,

where A : Ω → R
d×d is piecewise Lipschitz over initial triangulation T0 and sym-

metric positive definite with smallest eigenvalue uniformly bounded away from 0
and f ∈ L2(Ω).

Remark 2.1. The choice of homogeneous boundary condition is made for ease of
presentation, since similar results are valid for other boundary conditions [6].

The weak form of (1) reads: find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω),(2)

where a(·, ·) = (A∇·,∇·). It is seen that a(·, ·) is bounded and coercive on H1
0 (Ω),

i.e., for any w, v ∈ H1(Ω) there exist constants 0 < ca ≤ Ca < ∞ such that

|a(w, v)| ≤ Ca‖w‖1,Ω‖v‖1,Ω and ca‖v‖21,Ω ≤ a(v, v) ∀w, v ∈ H1
0 (Ω).

The energy norm ‖ · ‖a,Ω , which is equivalent to ‖ · ‖1,Ω , is defined by ‖w‖a,Ω =√
a(w,w) . It is known that (2) is well-posed, that is, there exists a unique solution

for any f ∈ H−1(Ω).
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Let {Th} be a shape regular family of nested conforming meshes over Ω: there
exists a constant γ∗ such that

hτ

ρτ
≤ γ∗ ∀τ ∈

⋃

h

Th,

where, for each τ ∈ Th, hτ is the diameter of τ , ρτ is the diameter of the biggest
ball contained in τ , and h = max{hτ : τ ∈ Th}. Let Eh denote the set of interior
sides (edges or faces) of Th. Let Sh

0 (Ω) ⊂ H1
0 (Ω) be a family of nested finite element

spaces consisting of continuous piecewise polynomials over Th of fixed degree n ≥ 1,
which vanish on ∂Ω.

Define the Galerkin-projection Ph : H1
0 (Ω) → Sh

0 (Ω) by

a(u− Phu, v) = 0 ∀v ∈ Sh
0 (Ω).(3)

For any u ∈ H1
0 (Ω), there apparently hold:

‖Phu‖a,Ω <∼ ‖u‖a,Ω and lim
h→0

‖u− Phu‖a,Ω = 0.

Now we introduce the following quantity:

ρ
Ω
(h) = sup

f∈L2(Ω),‖f‖0,Ω=1

inf
v∈Sh

0 (Ω)
‖L−1f − v‖a,Ω,

then ρ
Ω
(h) → 0 as h → 0 (see, e.g., [2, 31]).

A standard finite element scheme for (2) is: find uh ∈ Sh
0 (Ω) such that

a(uh, v) = (f, v) ∀v ∈ Sh
0 (Ω).(4)

We see that uh = Phu.
By a contradiction argument, we have (c.f., e.g., [32])

Lemma 2.1. As operators over H1
0 (Ω), there holds

lim
h→0

‖K(I − Ph)‖ = 0

if K is a compact operator over H1
0 (Ω).

2.2. Adaptive algorithm. Given an initial triangulation T0, we shall generate a
sequence of nested conforming triangulations Tk using the following loop:

SOLVE → ESTIMATE → MARK → REFINE.

More precisely, to get Tk+1 from Tk we first solve the discrete equation to get uk

on Tk. The error is then estimated using uk and used to mark a set of elements
that are to be refined. Elements are refined in such a way that the triangulation is
still shape regular and conforming. We assume that we have the exact solutions of
finite-dimensional problems.1

Now we review the residual type a posteriori error estimators for finite element
solutions of (1). Let T denote the class of all conforming refinements by bisection

of T0. For Th ∈ T and any v ∈ Sh
0 (Ω) we define the element residual R̃τ (v) and the

jump residual J̃e(v) by

R̃τ (v) = f − Lv = f +∇ · (A∇v) in τ ∈ Th,
J̃e(v) = −A∇v+ · ν+ −A∇v− · ν− = [[A∇v]]e · νe on e ∈ Eh,

1Indeed we have ignored two important practical issues: the inexact solution of the resulting
algebraic system and the numerical integration. By the similar perturbation argument, it would
be seen that some approximations to the linear system will be sufficient.
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where e is the common side of elements τ+ and τ− with unit outward normals ν+

and ν−, respectively, and νe = ν−. Let ωe be the union of elements which share
the side e and ωτ be the union of elements sharing a side with τ .

For τ ∈ Th, we define the local error indicator η̃h(v, τ) by

η̃2h(v, τ) = h2
τ‖R̃τ (v)‖20,τ +

∑

e∈Eh,e⊂∂τ

he‖J̃e(v)‖20,e

and the oscillation õsch(v, τ) by

õsc2h(v, τ) = h2
τ‖R̃τ (v)− R̃τ (v)‖20,τ +

∑

e∈Eh,e⊂∂τ

he‖J̃e(v) − J̃e(v)‖20,e,

where w is the L2-projection of w ∈ L2(Ω) to polynomials of some degree on τ or
e.

Given a subset T ′ ⊂ Th, we define the error estimator η̃h(v, T ′) and the oscillation
õsch(v, T ′) by

η̃2h(v, T ′) =
∑

τ∈T ′

η̃2h(v, τ) and õsc
2
h(v, T ′) =

∑

τ∈T ′

õsc
2
h(v, τ).

For τ ∈ Th, we also need notations

η2h(A, τ) = h2
τ (‖divA‖20,∞,τ + h−2

τ ‖A‖20,∞,ωτ
)

and

osc2h(A, τ) = h2
τ (‖divA− divA‖20,∞,τ + h−2

τ ‖A− Ā‖20,∞,ωτ
),

where v is the best L∞-approximation in the space of discontinuous polynomials of
some degree.

For T ′ ⊂ Th, we finally set

ηh(A, T ′) = max
τ∈T ′

ηh(A, τ) and osch(A, T ′) = max
τ∈T ′

osch(A, τ).

We now recall the well-known upper and lower bounds for the energy error in
terms of the residual type estimator (see, e.g., [18, 20, 28]).

Theorem 2.1. Let u ∈ H1
0 (Ω) be the solution of (2) and uh ∈ Sh

0 (Ω) be the solution

of (4). Then there exist constants C̃1, C̃2 and C̃3 > 0 depending only on the shape
regularity γ∗, Ca and ca such that

‖u− uh‖2a,Ω ≤ C̃1η̃
2
h(uh, Th)(5)

and

C̃2η̃
2
h(uh, Th) ≤ ‖u− uh‖2a,Ω + C̃3õsc

2
h(uh, Th).(6)

We replace the subscript h by an iteration counter called k and call the adaptive
algorithm without oscillation marking as Algorithm D0, which is defined by:

Choose a parameter 0 < θ < 1 :

1. Pick an initial mesh T0, and let k = 0.
2. Solve the system on Tk for the discrete solution uk.
3. Compute the local indicators {η̃k(uk, τ) : τ ∈ Tk}.
4. Construct Mk ⊂ Tk by Marking Strategy E0 and parameter θ.
5. Refine Tk to get a new conforming mesh Tk+1 by Procedure REFINE.
6. Solve the system on Tk+1 for the discrete solution uk+1.
7. Let k = k + 1 and go to Step 2.
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Marking Strategy E0, which is crucial for our adaptive methods, is stated as
follows:

Given a parameter 0 < θ < 1 :

1. Construct a minimal subset Mk of Tk by selecting some elements in Tk
such that

η̃k(uk,Mk) ≥ θη̃k(uk, Tk).
2. Mark all the elements in Mk.

Due to [6], the procedure REFINE here is not required to satisfy the Interior
Node Property of [18, 20].

Given a fixed number b ≥ 1, for any Tk ∈ T and a subset Mk ⊂ Tk of marked
elements,

Tk+1 = REFINE(Tk,Mk)

outputs a conforming triangulation Tk+1 ∈ T, where at least all elements of Mk

are bisected b times. We define RTk→Tk+1
= Tk\(Tk ∩ Tk+1) as the set of refined

elements, thus Mk ⊂ RTk→Tk+1
.

Lemma 2.2. ([26]) Assume that T0 verifies condition (b) of section 4 in [26]. For
k ≥ 0 let {Tk}k≥0 be any sequence of refinements of T0 where Tk+1 is generated
from Tk by Tk+1 = REFINE(Tk,Mk) with a subset Mk ⊂ Tk. Then

#Tk −#T0 <∼
k−1∑

j=0

#Mj ∀k ≥ 1(7)

is valid, where the hidden constant depends on T0 and b.

The convergence of Algorithm D0 is shown in [6] and stated as follows.

Theorem 2.2. Let {uk}k∈N0
be a sequence of finite element solutions corresponding

to a sequence of nested finite element spaces {Sk
0 (Ω)}k∈N0

produced by Algorithm

D0. Then there exist constants γ̃ > 0 and ξ̃ ∈ (0, 1) depending only on the shape
regularity of T0, b and the marking parameter θ, such that for any two consecutive
iterates we have

‖u− uk+1‖2a,Ω + γ̃η̃2k+1(uk+1, Tk+1)

≤ ξ̃2
(
‖u− uk‖2a,Ω + γ̃η̃2k(uk, Tk)

)
.

Indeed, the constant γ̃ has the following form

γ̃ =
1

(1 + δ−1)Λ1η20(A, T0)
,(8)

where η20(A, T0) = η2T0
(A, T0), Λ1 = (d + 1)C2

0/ca with C0 some positive constant
and constant δ ∈ (0, 1).

Following [6, 9, 25], we have

Lemma 2.3. Let uH ∈ SH
0 (Ω) and uh ∈ Sh

0 (Ω) be finite element solutions of (2)
over a conforming mesh TH and its any refinement Th with marked element MH .
Suppose that they satisfy the decrease property

‖u− uh‖2a,Ω + γ̃∗õsc
2
h(uh, Th)

≤ β̃2
∗
(
‖u− uH‖2a,Ω + γ̃∗õsc

2
H(uH , TH)

)
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with constants γ̃∗ > 0 and β̃∗ ∈ (0,
√

1
2 ). Then the set R = RTH→Th

satisfies the

following inequality

η̃H(uH ,R) ≥ θ̂η̃H(uH , TH)

with θ̂2 =
C̃2(1−2β̃2

∗)

C̃0(C̃1+(1+2CC̃1)γ̃∗)
, where C = Λ1osc

2
0(A, T0) and C̃0 = max(1, C̃3

γ̃∗
).

3. A general framework

Let u ∈ H1
0 (Ω) satisfy

a(u, v) + (V u, v) = (ℓu, v) ∀v ∈ H1
0 (Ω),(9)

where ℓ : H1
0 (Ω) → L2(Ω) is an operator and V : H1

0 (Ω) → L2(Ω) is a linear
bounded operator. Some applications of ℓ and V will be shown in section 4.

Let K : L2(Ω) → H1
0 (Ω) be the operator defined by

a(Kw, v) = (w, v) ∀v ∈ H1
0 (Ω).

Then K is a compact operator from L2(Ω) to H1
0 (Ω) and (9) becomes as

u+KV u = Kℓu.

We assume that for any f ∈ H−1(Ω), there exists a unique solution u ∈ H1
0 (Ω)

satisfying

a(u, v) + (V u, v) = (f, v) ∀v ∈ H1
0 (Ω),

which implies (I + KV )−1 exists as an operator over H1
0 (Ω). An application of

the open-mapping theorem yields that (I +KV )−1 is bounded as an operator over
H1

0 (Ω).
For h ∈ (0, 1), let uh ∈ Sh

0 (Ω) be a solution of discretization

a(uh, v) + (V uh, v) = (ℓhuh, v) ∀v ∈ Sh
0 (Ω),(10)

where ℓh : Sh
0 (Ω) → L2(Ω) is some operator. Note that we may view ℓh as a

perturbation to ℓ, for which we assume that there exists κ1(h) ∈ (0, 1) such that

‖K(ℓu− ℓhuh)‖a,Ω = O(κ1(h))‖u− uh‖a,Ω,(11)

where κ1(h) → 0 as h → 0.
Note that (10) can be written as

uh + PhKV uh = PhKℓhuh,

where Ph is defined by (3). We have for wh = Kℓhuh −KV uh that

uh = Phw
h.(12)

Now we shall establish a relationship between the error estimates of finite element
approximations of (9) and finite element approximations of (1), from which various
a posteriori error estimators for (10) can be easily obtained since the a posteriori
error estimators for (4) have been well-constructed.

Theorem 3.1. There exists κ(h) ∈ (0, 1) such that κ(h) → 0 as h → 0 and

‖u− uh‖a,Ω = ‖wh − Phw
h‖a,Ω +O(κ(h))‖u− uh‖a,Ω.(13)

Proof. By the definition of wh, (12) and note that Phuh = uh, we have

u− wh = Kℓu−KV u− (Kℓhuh −KV uh)

= K(ℓu− ℓhuh) +KV Ph(w
h − u) +KV (Ph − I)(u − uh),

hence

(I +KV Ph)(u− wh) = K(ℓu− ℓhuh) +KV (Ph − I)(u − uh).(14)



CONVERGENCE AND COMPLEXITY OF AFEM FOR PDE 621

Since KV : H1
0 (Ω) → H1

0 (Ω) is compact, we get from Lemma 2.1 that

lim
h→0

‖KV (I − Ph)‖ = 0,

which together with the following equality

I +KV Ph = (I +KV ) +KV (Ph − I)

leads to that (I +KV Ph)
−1 exists as an operator over H1

0 (Ω) when h ≪ 1 and

lim sup
h→0

‖(I +KV Ph)
−1‖ < ∞.(15)

Set

κ(h) = ‖(I +KV Ph)
−1‖
(
κ1(h) + ‖KV (I − Ph)‖

)
,(16)

we have that κ(h) → 0 as h → 0 and

‖u− wh‖a,Ω ≤ C̃κ(h)‖u− uh‖a,Ω,(17)

where (11), (14) and (15) are used.
Since (12) implies

u− uh = wh − Phw
h + u− wh,

we get (13) from (17). This completes the proof. �

Theorem 3.1 implies that the error of the general problem is equivalent to that
of the typical problem with ℓhuh−V uh as a source term up to the high order term.
However, the high order term can not be estimated easily in the analysis of conver-
gence and optimal complexity of AFEM for the general problem, for instance, for
a nonsymmetric problem, a nonlinear problem as well as an unbounded coefficient
eigenvalue problem.

3.1. Adaptive algorithm. Following the element residual R̃τ (uh) and the jump

residual J̃e(uh) for (4), we define the element residualRτ (uh) and the jump residual
Je(uh) for (10) as follows:

Rτ (uh) = ℓhuh − V uh − Luh = ℓhuh − V uh +∇ · (A∇uh) in τ ∈ Th,
Je(uh) = −A∇u+

h · ν+ −A∇u−
h · ν− = [[A∇uh]]e · νe on e ∈ Eh.

For τ ∈ Th, we define the local error indicator ηh(uh, τ) by

η2h(uh, τ) = h2
τ‖Rτ (uh)‖20,τ +

∑

e∈Eh,e⊂∂τ

he‖Je(uh)‖20,e

and the oscillation osch(uh, τ) by

osc2h(uh, τ) = h2
τ‖Rτ (uh)−Rτ (uh)‖20,τ +

∑

e∈Eh,e⊂∂τ

he‖Je(uh)− Je(uh)‖20,e,

where e , ν+ and ν− are defined as those in section 2.
Given a subset T ′ ⊂ Th, we define the error estimator ηh(uh, T ′) by

η2h(uh, T ′) =
∑

τ∈T ′

η2h(uh, τ)(18)

and the oscillation osch(uh, T ′) by

osc2h(uh, T ′) =
∑

τ∈T ′

osc2h(uh, τ).(19)

Let h0 ∈ (0, 1) be the mesh size of the initial mesh T0 and define

κ̃(h0) = sup
h∈(0,h0]

max{h, κ(h)}.
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Obviously, κ̃(h0) ≪ 1 if h0 ≪ 1.
To analyze the convergence and complexity of finite element approximations, we

need to establish some relationship between the two level approximations. We use
TH to denote a coarse mesh and Th to denote a refined mesh of TH . Recall that
wh = K(ℓhuh − V uh) and wH = K(ℓHuH − V uH).

Lemma 3.1. If h,H ∈ (0, h0], then

‖u− uh‖a,Ω = ‖wH − Phw
H‖a,Ω +O(κ̃(h0)) (‖u− uh‖a,Ω + ‖u− uH‖a,Ω) ,(20)

ηh(uh, Th) = η̃h(Phw
H , Th) +O(κ̃(h0)) (‖u− uh‖a,Ω + ‖u− uH‖a,Ω) ,(21)

and

osch(uh, Th) = õsch(Phw
H , Th) +O(κ̃(h0)) (‖u− uh‖a,Ω + ‖u− uH‖a,Ω) .(22)

Proof. First, we prove (20). It follows that

‖Ph(w
h − wH) + u− wH‖a,Ω <∼ ‖wh − wH‖a,Ω + ‖u− wH‖a,Ω

<∼ ‖u− wH‖a,Ω + ‖u− wh‖a,Ω,

which together with (17) implies

‖Ph(w
h − wH) + u− wH‖a,Ω <∼ κ̃(h0)(‖u− uH‖a,Ω + ‖u− uh‖a,Ω).(23)

Observing that identity (12) leads to

u− uh = wH − Phw
H + Ph(w

H − wh) + u− wH ,

we then obtain (20) from (23).
Next, we turn to prove (22). Due to Lwh = ℓhuh−V uh and LwH = ℓHuH−V uH ,

we know that wh −wH is the solution of the typical boundary value problem with
ℓhuh − ℓHuH + V uH − V uh as a source term. Set E = Ph(w

h − wH) and since

R̃τ (Ph(w
h − wH)) = ℓhuh − ℓHuH + V uH − V uh − L(Ph(w

h − wH)),

we have

õsc2h(Ph(w
h − wH), Th) =

∑

τ∈Th

õsc2h(E, τ)

=
∑

τ∈Th

(
h2
τ‖R̃τ (E)− R̃τ (E)‖20,τ +

∑

e∈Eh,e⊂∂τ

he‖J̃e(E)− J̃e(E)‖20,e
)

≤
∑

τ∈Th

h2
τ‖R̃τ (E) + LE − (R̃τ (E) + LE)‖20,τ

+
∑

τ∈Th

(
h2
τ‖LE − LE‖20,τ +

∑

e∈Eh,e⊂∂τ

he‖J̃e(E)− J̃e(E)‖20,e
)
.(24)

Following the proof of Proposition 3.3 in [6], we see that
∑

τ∈Th

(
h2
τ‖LE − LE‖20,τ +

∑

e∈Eh,e⊂∂τ

he‖J̃e(E) − J̃e(E)‖20,e
)

can be bounded by
∑

τ∈Th

C2
0osc

2
h(A, τ)‖Ph(w

h − wH)‖21,ωτ
<∼ osc2h(A, Th)‖Ph(w

h − wH)‖2a,Ω.
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Hence using the fact osch(A, Th) ≤ osc0(A, T0), we obtain
∑

τ∈Th

(
h2
τ‖LE − LE‖20,τ +

∑

e∈Eh,e⊂∂τ

he‖J̃e(E)− J̃e(E)‖20,e
)

<∼ osc20(A, T0)‖Ph(w
h − wH)‖2a,Ω.(25)

Using the inverse inequality, the bounded property of V and (11), we get
( ∑

τ∈Th

h2
τ‖R̃τ (E) + LE − (R̃τ (E) + LE)‖20,τ

)1/2

<∼
( ∑

τ∈Th

‖hτ (ℓhuh − ℓHuH + V uH − V uh)‖20,τ
)1/2

<∼ ‖K(ℓhuh − ℓHuH)‖a,Ω + h‖uH − uh‖a,Ω
<∼ ‖K(ℓhuh − ℓu)‖a,Ω + ‖K(ℓHuH − ℓu)‖a,Ω

+h‖u− uH‖a,Ω + h‖u− uh‖a,Ω
<∼ κ̃(h0) (‖u− uh‖a,Ω + ‖u− uH‖a,Ω) .(26)

Note that

‖Ph(w
h − wH)‖a,Ω <∼ ‖wh − wH‖a,Ω

<∼ ‖u− wh‖a,Ω + ‖u− wH‖a,Ω,
which together with (17) implies

‖Ph(w
h − wH)‖a,Ω <∼ κ̃(h0) (‖u− uh‖a,Ω + ‖u− uH‖a,Ω) .(27)

Combining (24), (25), (26) and (27), we conclude that

õsch(Ph(w
h − wH), Th) <∼ κ̃(h0) (‖u− uh‖a,Ω + ‖u− uH‖a,Ω) .(28)

Due to uh = Phw
H + Ph(w

h − wH), õsch(uh, Th) = osch(uh, Th), (28) and the
definition of oscillation, we arrive at (22).

Finally, we prove (21). By (6) and (28), we have

η̃h(Ph(w
h − wH), Th)

<∼ ‖(wh − wH)− Ph(w
h − wH)‖a,Ω + õsch(Ph(w

h − wH), Th)
<∼ ‖u− wh‖a,Ω + ‖u− wH‖a,Ω + κ̃(h0) (‖u− uh‖a,Ω + ‖u− uH‖a,Ω)
<∼ κ̃(h0) (‖u− uh‖a,Ω + ‖u− uH‖a,Ω) .(29)

From (29) and the fact that

η̃h(Phw
h, Th) = η̃h(Phw

H + Ph(w
h − wH), Th),

we obtain

η̃h(Phw
h, Th) = η̃h(Phw

H , Th) +O(κ̃(h0)) (‖u− uh‖a,Ω + ‖u− uH‖a,Ω) ,
which is nothing but (21) since η̃h(Phw

h, Th) = ηh(uh, Th). This completes the
proof. �

Theorem 3.2. Let h0 be small enough and h ∈ (0, h0]. There exist constants C1, C2

and C3, which only depend on the shape regularity constant γ∗, Ca and ca such that

‖u− uh‖2a,Ω ≤ C1η
2
h(uh, Th)(30)

and

C2η
2
h(uh, Th) ≤ ‖u− uh‖2a,Ω + C3osc

2
h(uh, Th).(31)
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Proof. Recall that Lwh = ℓhuh − V uh. From (5) and (6) we have

‖wh − Phw
h‖2a,Ω ≤ C̃1η̃

2
h(Phw

h, Th)(32)

and

C̃2η̃
2
h(Phw

h, Th) ≤ ‖wh − Phw
h‖2a,Ω + C̃3õsc

2
h(Phw

h, Th).(33)

Thus we obtain (30) and (31) from (12), (13), (32) and (33). In particular, we may
choose C1, C2 and C3 satisfying

C1 = C̃1(1 + C̃κ̃(h0))
2, C2 = C̃2(1− C̃κ̃(h0))

2, C3 = C̃3(1 − C̃κ̃(h0))
2.(34)

This completes the proof. �

Remark 3.1. Either to ensure that the discrete problem is well-posed or to provide
a structure-preserving approximation, we shall require that h0 is small enough for a
finite element approximation to (9) (see, e.g., [15, 31]). We refer to [7, 18] for the
initial mesh size requirement in adaptive finite element computations for nonlinear
and nonsymmetirc boundary value problems.

Now we address step MARK of solving (10) in detail, which we call Marking

Strategy E. Similar to Marking Strategy E0 for (4), we define Marking

Strategy E for (10) to enforce error reduction as follows:

Given a parameter 0 < θ < 1:

1. Construct a minimal subset Mk of Tk by selecting some elements in Tk
such that

ηk(uk,Mk) ≥ θηk(uk, Tk).
2. Mark all the elements in Mk.

The adaptive algorithm of solving (10), which we call Algorithm D, is nothing
but Algorithm D0 when η̃k are replaced by ηk and Marking Strategy E0 is
replaced by Marking Strategy E.

3.2. Convergence. We now prove that Algorithm D of (10) is a contraction
with respect to the sum of the energy error plus the scaled error estimator.

Theorem 3.3. Let θ ∈ (0, 1) and {uk}k∈N0
be a sequence of finite element solutions

of (10) corresponding to a sequence of nested finite element spaces {Sk
0 (Ω)}k∈N0

produced by Algorithm D. If h0 ≪ 1, then there exist constants γ > 0 and ξ ∈
(0, 1) depending only on the shape regularity constant γ∗, Ca, ca and the marking
parameter θ such that

‖u− uk+1‖2a,Ω + γη2k+1(uk+1, Tk+1)

≤ ξ2
(
‖u− uk‖2a,Ω + γη2k(uk, Tk)

)
.(35)

Here,

γ =
γ̃

1− C4δ
−1
1 κ̃2(h0)

(36)

with C4 a positive constant.

Proof. For convenience, we use uh, uH to denote uk+1 and uk, respectively.
We conclude from Theorem 2.2, wh = K(ℓhuh−V uh) and wH = K(ℓHuH−V uH)

that there exist constants γ̃ > 0 and ξ̃ ∈ (0, 1) satisfying

‖wH − Phw
H‖2a,Ω + γ̃η̃2h(Phw

H , Th)
≤ ξ̃2

(
‖wH − PHwH‖2a,Ω + γ̃η̃2H(PHwH , TH)

)
.
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Hence using the fact that uH = PHwH , we obtain

‖wH − Phw
H‖2a,Ω + γ̃η̃2h(Phw

H , Th)
≤ ξ̃2

(
‖wH − uH‖2a,Ω + γ̃η2H(uH , TH)

)
.(37)

By (20) and (21), there exists a constant Ĉ > 0 such that

‖u− uh‖2a,Ω + γ̃η2h(uh, Th)
≤ (1 + δ1)‖wH − Phw

H‖2a,Ω + (1 + δ1)γ̃η̃
2
h(Phw

H , Th)
+Ĉ(1 + δ−1

1 )κ̃2(h0)(‖u− uh‖2a,Ω + ‖u− uH‖2a,Ω)
+Ĉ(1 + δ−1

1 )κ̃2(h0)γ̃(‖u− uh‖2a,Ω + ‖u− uH‖2a,Ω),

where the Young’s inequality is used and δ1 ∈ (0, 1) satisfies

(1 + δ1)ξ̃
2 < 1.(38)

It thus follows from (17), (37), and identity η̃H(PHwH , TH) = ηH(uH , TH) that

there exists a positive constant C∗ depending on Ĉ and γ̃ such that

‖u− uh‖2a,Ω + γ̃η2h(uh, Th)
≤ (1 + δ1)ξ̃

2
(
‖wH − uH‖2a,Ω + γ̃η2H(uH , TH)

)

+C∗δ−1
1 κ̃2(h0)(‖u− uh‖2a,Ω + ‖u− uH‖2a,Ω)

≤ (1 + δ1)ξ̃
2
((

1 + C̃κ̃(h0)
)2‖u− uH‖2a,Ω + γ̃η2H(uH , TH)

)

+C∗δ−1
1 κ̃2(h0)

(
‖u− uh‖2a,Ω + ‖u− uH‖2a,Ω

)
.

Hence, if h0 ≪ 1, then there exists a positive constant C4 depending on C∗ and C̃
such that

‖u− uh‖2a,Ω + γ̃η2h(uh, Th)
≤ (1 + δ1)ξ̃

2
(
‖u− uH‖2a,Ω + γ̃η2H(uH , TH)

)

+C4κ̃(h0)‖u− uH‖2a,Ω + C4δ
−1
1 κ̃2(h0)‖u− uh‖2a,Ω.

Consequently,

‖u− uh‖2a,Ω +
γ̃

1− C4δ
−1
1 κ̃2(h0)

η2h(uh, Th)

≤ (1 + δ1)ξ̃
2 + C4κ̃(h0)

1− C4δ
−1
1 κ̃2(h0)

‖u− uH‖2a,Ω +
(1 + δ1)ξ̃

2γ̃

1− C4δ
−1
1 κ̃2(h0)

η2H(uH , TH).

Since h0 ≪ 1 implies κ̃(h0) ≪ 1, we have that the constant ξ defined by

ξ =

(
(1 + δ1)ξ̃

2 + C4κ̃(h0)

1− C4δ
−1
1 κ̃2(h0)

)1/2

satisfies ξ ∈ (0, 1). Therefore,

‖u− uh‖2a +
γ̃

1− C4δ
−1
1 κ̃2(h0)

η2h(uh, Th)

≤ ξ2

(
‖u− uH‖2a,Ω +

(1 + δ1)ξ̃
2γ̃

(1 + δ1)ξ̃2 + C4κ̃(h0)
η2H(uH , TH)

)
.
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Finally, we arrive at (35) by using the fact that

(1 + δ1)ξ̃
2γ̃

(1 + δ1)ξ̃2 + C4κ̃(h0)
< γ.

This completes the proof. �

3.3. Complexity. We shall study the complexity in a class of functions defined
by

As
γ = {v ∈ H1

0 (Ω) : |v|s,γ < ∞},
where γ > 0 is some constant,

|v|s,γ = sup
ε>0

ε inf
{T ⊂T0:inf(‖v−v′‖2

a,Ω+(γ+1)osc2
T
(v′,T ))1/2≤ε:v′∈ST

0 (Ω)}

(
#T −#T0

)s

and T ⊂ T0 means T is a refinement of T0 and ST
0 (Ω) is the associated finite element

space. It is seen from the definition that, for all γ > 0, As
γ = As

1. For simplicity,
here and hereafter, we use As to stand for As

1, and use |v|s to denote |v|s,γ . So
As is the class of functions that can be approximated within a given tolerance ε
by continuous piecewise polynomial functions of degree n over a partition T with

number of degrees of freedom #T −#T0 <∼ ε−1/s|v|1/ss .

In order to study the complexity ofAlgorithm D for solving (10), we need some
preparations. Recall that associated with uH , the solution of (10) in each mesh TH ,
wH = K(ℓHuH − V uH) satisfies

a(wH , v) = (ℓHuH − V uH , v) ∀v ∈ H1
0 (Ω).(39)

Using the similar procedure as in the proof of Theorem 3.3, we have

Lemma 3.2. Let uH and uh be discrete solutions of (10) over a conforming mesh
TH and its any refinement Th with marked set MH . Suppose that they satisfy the
decrease property

‖u− uh‖2a,Ω + γ∗osc
2
h(uh, Th)

≤ β2
∗
(
‖u− uH‖2a,Ω + γ∗osc

2
H(uH , TH)

)

with constants γ∗ > 0 and β∗ ∈ (0,
√

1
2 ). If h0 ≪ 1, then the set R = RTH→Th

satisfies the following inequality

ηH(uH ,R) ≥ θ̂ηH(uH , TH)

with θ̂2 =
C̃2(1−2β̃2

∗
)

C̃0(C̃1+(1+2CC̃1)γ̃∗)
, C = Λ1osc

2
0(A, T0) and C̃0 = max(1, C̃3

γ̃∗
), where β̃∗

and γ̃∗ are defined in (41) with δ1 being chosen such that β̃∗ ∈ (0,
√

1
2 ).

Proof. Recall that wh = K(ℓhuh − V uh) and wH = K(ℓHuH − V uH). Due to (20)
and (22), we have

‖wH − Phw
H‖a,Ω = ‖u− uh‖a,Ω +O(κ̃(h0))

(
‖wH − PHwH‖a,Ω + ‖wH − Phw

H‖a,Ω
)

and

õsch(Phw
H , Th) = osch(uh, Th) +O(κ̃(h0))

(
‖wH − PHwH‖a,Ω + ‖wH − Phw

H‖a,Ω
)
.

Proceed the same procedure as in the proof of Theorem 3.3, then for problem (39),
we have

‖wH − Phw
H‖2a,Ω + γ̃∗õsc

2
h(Phw

H , Th)
≤ β̃2

∗
(
‖wH − PHwH‖2a,Ω + γ̃∗õsc

2
H(PHwH , TH)

)
(40)
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with

β̃∗ =

(
(1 + δ1)β

2
∗ + C5κ̃(h0)

1− C5δ
−1
1 κ̃2(h0)

)1/2

, γ̃∗ =
γ∗

1− C5δ
−1
1 κ̃2(h0)

,(41)

where C5 is some positive constant and δ1 ∈ (0, 1) is some constant as shown in the
proof of Theorem 3.3.

Combining uH = PHwH with Lemma 2.3 and (40), we get the desired result.
This completes the proof. �

The key to relate the best mesh with AFEM triangulations is the fact that
procedure MARK selects the marked set Mk with minimal cardinality.

Lemma 3.3. Let u ∈ As, Tk be a conforming partition obtained from T0 produced

by Algorithm D, and θ ∈ (0,
√

C2γ
C3(C1+(1+2CC1)γ)

). If h0 ≪ 1, then the following

estimate is valid:

#Mk <∼
(
‖u− uk‖2a,Ω + γosc2k(uk, Tk)

)−1/2s |u|1/ss ,(42)

where the hidden constant depends on the discrepancy between
√

C2γ
C3(C1+(1+2CC1)γ)

and θ with C defined in Lemma 2.3.

Proof. Let α, α1 ∈ (0, 1) satisfy α1 ∈ (0, α) and

θ2 <
C2γ

C3(C1 + (1 + 2CC1)γ)
(1− α2).

Choose δ1 ∈ (0, 1) to satisfy (38) and

(1 + δ1)
2α2

1 ≤ α2,(43)

which implies

(1 + δ1)α
2
1 < 1.(44)

Set

ε =
1√
2
α1

(
‖u− uk‖2a,Ω + γosc2k(uk, Tk)

)1/2

and let Tε be a refinement of T0 with minimal degrees of freedom satisfying

‖u− uε‖2a,Ω + (γ + 1)osc2ε(uε, Tε) ≤ ε2.(45)

It follows from the definition of As that

#Tε −#T0 <∼ ε−1/s|u|1/ss .

Let T∗ = Tε ⊕ Tk be the smallest common refinement of Tk and Tε. Note that
wε = K(ℓεuε − V uε) satisfies

Lwε = ℓεuε − V uε,

we get from the definition of oscillation and the Young’s inequality that

õsc
2
∗(P∗w

ε, τ) ≤ 2õsc
2
∗(Pεw

ε, τ) + 2C2
0osc

2
∗(A, τ)‖Pεw

ε − P∗w
ε‖21,ωτ

∀τ ∈ T∗,
which together with the monotonicity property osc∗(A, T∗) ≤ osc0(A, T0) yields

õsc
2
∗(P∗w

ε, T∗) ≤ 2õsc
2
∗(Pεw

ε, T∗) + 2C‖Pεw
ε − P∗w

ε‖2a,Ω,
where C = Λ1osc

2
0(A, T0). Due to the orthogonality

‖wε − P∗w
ε‖2a,Ω = ‖wε − Pεw

ε‖2a,Ω − ‖P∗w
ε − Pεw

ε‖2a,Ω,



628 L.HE AND A.ZHOU

we arrive at

‖wε − P∗w
ε‖2a,Ω +

1

2C
õsc

2
∗(P∗w

ε, T∗)

≤ ‖wε − Pεw
ε‖2a,Ω +

1

C
osc2ε(Pεw

ε, Tε).

Since (8) implies γ̃ ≤ 1
2C , we obtain that

‖wε − P∗w
ε‖2a,Ω + γ̃õsc

2
∗(P∗w

ε, T∗)

≤ ‖wε − Pεw
ε‖2a,Ω +

1

C
osc2ε(Pεw

ε, Tε)

≤ ‖wε − Pεw
ε‖2a,Ω + (γ̃ + σ)osc2ε(Pεw

ε, Tε)
with σ = 1

C − γ̃ ∈ (0, 1). Applying the similar argument in the proof of Theorem
3.3 when (21) is replaced by (22), we then get that

‖u− u∗‖2a,Ω + γosc2∗(u∗, T∗)
≤ α2

0

(
‖u− uε‖2a,Ω + (γ + σ)osc2ε(Pεw

ε, Tε)
)

≤ α2
0

(
‖u− uε‖2a,Ω + (γ + 1)osc2ε(Pεw

ε, Tε)
)
,(46)

where

α2
0 =

(1 + δ1) + C4κ̃(h0)

1− C4δ
−1
1 κ̃2(h0)

and C4 is the constant appearing in the proof of Theorem 3.3. Thus, by (45) and
(46), it follows

‖u− u∗‖2a,Ω + γosc2∗(u∗, T∗) ≤ α̌2
(
‖u− uk‖2a,Ω + γosc2k(uk, Tk)

)

with α̌ = 1√
2
α0α1. In view of (44), we have α̌2 ∈ (0, 12 ) when h0 ≪ 1. Let

R = RTk→T∗
, by Lemma 3.2, we have that T∗ satisfies

ηk(uk,R) ≥ θ̌ηk(uk, Tk),

where θ̌2 = C̃2(1−2α̂2)

C̃0(C̃1+(1+2CC̃1)γ̂)
, γ̂ = γ

1−C5δ
−1
1 κ̃2(h0)

, C̃0 = max(1, C̃3

γ̂ ), and

α̂2 =
(1 + δ1)α̌

2 + C5κ̃(h0)

1− C5δ
−1
1 κ̃2(h0)

.

It follows from the definition of γ (see (36)) and γ̃ (see (8)) that γ̂ < 1 and hence

C̃0 = C̃3

γ̂ . Since h0 ≪ 1, we obtain that γ̂ > γ and α̂ ∈ (0, 1√
2
α) from (43). It is

easy to see from (34) and γ̂ > γ that

θ̌2 =
C̃2(1− 2α̂2)

C̃3

γ̂ (C̃1 + (1 + 2CC̃1)γ̂)
≥ C̃2

C̃3(
C̃1

γ̂ + 1 + 2CC̃1)
(1 − α2)

=

C2

(1−C̃κ̃(h0))2

C3

(1−C̃κ̃(h0))2
( C1

γ̂((1+C̃κ̃(h0))2)
+ 1 + 2C C1

(1+C̃κ̃(h0))2
)
(1− α2)

≥ C2

C3(
C1

γ + (1 + 2CC1))
(1− α2) =

C2γ

C3(C1 + (1 + 2CC1)γ)
(1− α2) > θ2

when h0 ≪ 1. Thus

#Mk ≤ #R ≤ #T∗ −#Tk ≤ #Tε −#T0
≤ (

1√
2
α1)

−1/s
(
‖u− uk‖2a,Ω + γosc2k(uk, Tk)

)−1/2s |u|1/ss ,
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which is the desired estimate (42) with an explicit dependence on the discrepancy

between θ and
√

C2γ
C3(C1+(1+2CC1)γ)

via α1. This completes the proof. �

As a consequence, we obtain the optimal complexity as follows.

Theorem 3.4. Let u ∈ As and {uk}k∈N0
be a sequence of finite element solutions

corresponding to a sequence of nested finite element spaces {Sk
0 (Ω)}k∈N0

produced
by Algorithm D. If h0 ≪ 1, then

‖u− uk‖2a,Ω + γosc2k(uk, Tk) <∼ (#Tk −#T0)−2s|u|2s,

where the hidden constant depends on the discrepancy between
√

C2γ
C3(C1+(1+2CC1)γ)

and θ.

Proof. It follows from (7) and (42) that

#Tk −#T0 <∼
k−1∑

j=0

#Mj

<∼
k−1∑

j=0

(
‖u− uj‖2a,Ω + γosc2j(uj , Tj)

)−1/2s |u|1/ss .

Note that (31) implies

‖u− uj‖2a,Ω + γη2j (uj , Tj) ≤ Č
(
‖u− uj‖2a,Ω + γosc2j(uj , Tj)

)
,

where Č = max(1 + γ
C2

, C3

C2
). It then turns out

#Tk −#T0 <∼
k−1∑

j=0

(
‖u− uj‖2a,Ω + γη2j (uj , Tj)

)−1/2s |u|1/ss .

Due to (35), we obtain for 0 ≤ j < k that

‖u− uk‖2a,Ω + γη2k(uk, Tk) ≤ ξ2(k−j)
(
‖u− uj‖2a,Ω + γη2j (uj, Tj)

)
.

Consequently,

#Tk −#T0 <∼ |u|1/ss

(
‖u− uk‖2a,Ω + γη2k(uk, Tk)

)−1/2s
k−1∑

j=0

ξ
k−j
s

<∼ |u|1/ss

(
‖u− uk‖2a,Ω + γη2k(uk, Tk)

)−1/2s
,

the last inequality holds because of the fact ξ < 1.
Since osck(uk, Tk) ≤ ηk(uk, Tk), we arrive at

#Tk −#T0 <∼
(
‖u− uk‖2a,Ω + γosc2k(uk, Tk)

)−1/2s |u|1/ss .

This completes the proof. �

4. Applications

In this section, we provide three typical examples to show that our general theory
is quite useful.
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4.1. A nonsymmetric problem. The first example is a nonsymmetric elliptic
partial differential equation of second order. We consider the following problem:
find u ∈ H1

0 (Ω) such that
{

−∇ · (A∇u) + b · ∇u+ cu = f in Ω,
u = 0 on ∂Ω,

(47)

where Ω ⊂ R
d(d ≥ 2) is a ploytopic domain, A : Ω → R

d×d is piecewise Lipschitz
over initial triangulation T0 and symmetric positive definite with smallest eigenvalue
uniformly bounded away from 0, b ∈ [L∞(Ω)]d is divergence free, c ∈ L∞(Ω), and
f ∈ L2(Ω).

The weak form of (47) is as follows: find u ∈ H1
0 (Ω) such that

(A∇u,∇v) + (b · ∇u, v) + (cu, v) = (f, v) ∀v ∈ H1
0 (Ω).(48)

We assume that (48) is well-posed, namely (48) is uniquely solvable for any f ∈
H−1(Ω). (A simple sufficient condition for this assumption to be satisfied is that
c ≥ 0.)

A finite element discretization of (48) reads: find uh ∈ Sh
0 (Ω) such that

(A∇uh,∇v) + (b · ∇uh, v) + (cuh, v) = (f, v) ∀v ∈ Sh
0 (Ω).(49)

It is seen that (49) has a unique solution uh if h ≪ 1 (see, e.g., [31]) and (49) is a
special case of (10), in which V w = b · ∇w + cw and ℓw = ℓhw = f ∀w ∈ H1

0 (Ω).
Consequently, κ1(h) = 0 and wh = K(f − V uh).

Obviously, V : H1
0 (Ω) → L2(Ω) is a linear bounded operator and KV is a

compact operator over H1
0 (Ω).

Set

κ(h) = ‖(I +KV Ph)
−1‖‖KV (I − Ph)‖,

we have the conclusion of Theorem 3.1.
In this application, the element residual and jump residual become

Rτ (uh) = f − b · ∇uh − cuh +∇ · (A∇uh) in τ ∈ Th,
Je(uh) = [[A∇uh]]e · νe on e ∈ Eh

while the corresponding error estimator ηh(uh, Th) and the oscillation osch(uh, Th)
are defined by (18) and (19), respectively. Thus Theorem 3.3 and Theorem 3.4
ensure the convergence and optimal complexity of AFEM for the nonsymmetric
problem (47).

4.2. A nonlinear problem. In this subsection, we derive the convergence and
optimal complexity of AFEM for a nonlinear problem from our general theory.

Consider the following nonlinear problem: find u ∈ H1
0 (Ω) such that

{
Lu ≡ −∆u+ f(x, u) = 0 in Ω,

u = 0 on ∂Ω,
(50)

where Ω ⊂ R
d(d = 1, 2, 3) is a polytopic domain and f(x, y) is a smooth function

on R
d × R

1.
For convenience, we shall drop the dependence of variable x in f(x, u) in the

following exposition. We assume that (50) has a solution u ∈ H1
0 (Ω)∩H1+s(Ω) for

some s ∈ (1/2, 1]. Setting

b(w, v) = (∇w,∇v) + (f(w), v),

then

b(u, v) = 0 ∀v ∈ H1
0 (Ω).
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For any w ∈ H1
0 (Ω) ∩ H1+s(Ω), the linearized operator L′

w at w (namely, the
Fréchet derivative of L at w) is then given by

L′
w = −∆+ f ′(w).

We assume that L′
u : H1

0 (Ω) → H−1(Ω) is an isomorphism in the neighborhood of
u.

As a result, u ∈ H1
0 (Ω) ∩H1+s(Ω) must be an isolated solution of (50).

A finite element discretization of (50) reads: find uh ∈ Sh
0 (Ω) such that

b(uh, v) = 0 ∀v ∈ Sh
0 (Ω).(51)

It is seen that (51) has a unique solution uh in the neighbour of u if h ≪ 1 (see,
e.g., [30]). Let a(·, ·) = (∇·,∇·), K = (−∆)−1 : L2(Ω) → H1

0 (Ω), V = 0 and
ℓhw = −f(w) for any w ∈ Sh

0 (Ω), then (51) becomes (10).
Let P ′

h : H1
0 (Ω) → Sh

0 (Ω) be defined by

b′(u;w − P ′
hw, v) = 0 ∀v ∈ Sh

0 (Ω),(52)

where b′(u;φ, v) ≡ (L′
uφ, v) = (∇φ,∇v) + (f ′(u)φ, v). It is seen that as operators

over H1
0 (Ω)

lim
h→0

‖K(I − P ′
h)‖ = 0.

Moreover, using Aubin-Nitsche duality argument we have

‖u− P ′
hu‖0,Ω <∼ r̃(h)‖u− P ′

hu‖a,Ω,(53)

where r̃(h) → 0 as h → 0.

Lemma 4.1. Assume that ‖uh‖0,∞,Ω <∼ 1 and ‖u−uh‖a,Ω → 0 as h → 0. If h ≪ 1,

then

‖P ′
hu− uh‖a,Ω <∼ ‖u− uh‖0,3/2,Ω‖u− uh‖a,Ω,(54)

‖u− uh‖0,Ω = O(r(h))‖u − uh‖a,Ω,(55)

where r(h) → 0 as h → 0.

Proof. For any w, χ, v ∈ H1
0 (Ω), set η(t) = b(w + t(χ− w), v). From identity

η(1) = η(0) + η′(0) +

∫ 1

0

η′′(t)(1 − t)dt,

we obtain that

b(χ, v) = b(w, v) + b′(w;χ− w, v) +R(w, χ, v),

where

R(w, χ, v) =

∫ 1

0

η′′(t)(1 − t)dt.

Thus uh ∈ Sh
0 (Ω) solves (51) if and only if

b′(u;u− uh, v) = R(u, uh, v) ∀v ∈ Sh
0 (Ω).(56)

A straightforward calculation shows that

η′′(t) = (f ′′(w + t(χ− w))(χ − w)2, v).

Since f(x, y) is smooth, there exists a constant Cζ > 0 such that

|R(w, χ, v)| ≤ Cζ‖w − χ‖0,3/2,Ω‖w − χ‖1,Ω‖v‖1,Ω(57)

when max(‖w‖0,∞,Ω, ‖χ‖0,∞,Ω) ≤ ζ.
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Combining (52) with (56), we have

b′(u;P ′
hu− uh, v) = R(u, uh, v).

Note that Sobolev imbedding theorem implies u ∈ L∞(Ω), we then obtain from
‖uh‖0,∞,Ω <∼ 1 and (57) that

‖uh − P ′
hu‖a,Ω <∼ ‖u− uh‖0,3/2,Ω‖u− uh‖a,Ω,

which is nothing but (54).
Obviously, (54) implies

‖uh − P ′
hu‖0,Ω <∼ ‖u− uh‖0,3/2,Ω‖u− uh‖a,Ω.(58)

Since Sobolev imbedding theorem leads to ‖u− uh‖0,3/2,Ω → 0 as h → 0, we get

‖u− P ′
hu‖a,Ω <∼ ‖u− uh‖a,Ω

if h ≪ 1. Due to (53), we have

‖u− P ′
hu‖0,Ω <∼ r̃(h)‖u− uh‖a,Ω.(59)

We then arrive at (55) from (58), (59), the triangle inequality

‖u− uh‖0,Ω ≤ ‖u− P ′
hu‖0,Ω + ‖P ′

hu− uh‖0,Ω,

and setting r(h) = r̃(h) + ‖u− uh‖0,3/2,Ω. This completes the proof. �

Note that ‖u − uh‖a,Ω → 0 as h → 0 implies that L′
uh

: H1
0 (Ω) → H−1(Ω) is

an isomorphism and (51) has a locally unique solution uh in an neighborhood of
u when h ≪ 1. Now we shall show that Theorem 3.1 is applicable for (50). Let
ℓw = −f(w) ∀w ∈ H1

0 (Ω). Since K is monotone and f(x, y) is smooth, we have
from Lemma 4.1 that

‖K(f(u)− f(uh))‖a,Ω <∼ ‖K(|u− uh|)‖a,Ω
<∼ ‖u− uh‖0,Ω <∼ r(h)‖u − uh‖a,Ω.

Therefore we have (13) when we choose κ(h) = r(h).
In this application, the element residual and jump residual become:

Rτ (uh) = −f(uh) + ∆uh in τ ∈ Th,
Je(uh) = −∇u+

h · ν+ −∇u−
h · ν− = [[∇uh]]e · νe on e ∈ Eh

and the corresponding error estimator ηh(uh, Th) and the oscillation osch(uh, Th)
are defined by (18) and (19), respectively. Note that the requirements ‖uh‖0,∞,Ω <∼
1 and ‖u − uh‖a,Ω → 0 as h → 0 may be satisfied in adaptive finite element
approximations.2 Thus Theorem 3.3 and Theorem 3.4 may ensure the convergence
and optimal complexity of AFEM for nonlinear problem (50).

2To meet the requirements is relatively easy for one and two dimensional cases. We refer to
[7, 22] for the relevant discussions in the three dimensional setting.
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4.3. An unbounded coefficient problem. Finally, we investigate a nonlinear
eigenvalue problem, of which a coefficient is unbounded. It is known that electronic
structure computations require solving the following Kohn-Sham equations [4, 14,
17]


−1

2
∆−

Natom∑

j=1

Zj

|x− rj |
+

∫

R3

ρ(y)

|x− y|dy + Vxc(ρ)


 ui = λiui in R

3,

where Natom is the total number of atoms in the system, Zj is the valance charge
of this ion (nucleus plus core electrons), rj is the position of the j-th atom (j =
1, · · · , Natom),

ρ =

Nocc∑

i=1

ci|ui|2

with ui the i-th smallest eigenfunction, ci the number of electrons on the i-th orbit,
and Nocc the total number of the occupied orbits. The central computation in
solving the Kohn-Sham equation is the repeated solution of the following eigenvalue
problem: find (λ, u) ∈ R×H1

0 (Ω) such that
{

− 1
2∆u+ V u = λu in Ω,

‖u‖0,Ω = 1,
(60)

where Ω is a polytopic domain in R
3 and V = Vne + V0 is the so-called effective

potential. Here, V0 ∈ L∞(Ω) and

Vne(x) = −
Natom∑

j=1

Zj

|x− rj |
.

The weak form of (60) is: find (λ, u) ∈ R×H1
0 (Ω) such that ‖u‖0,Ω = 1 and

1

2
(∇u,∇v) + (V u, v) = λ(u, v) ∀v ∈ H1

0 (Ω).(61)

Note that (61) has a countable sequence of real eigenvalues λ1 < λ2 ≤ λ3 ≤ · · · , and
the corresponding eigenfunctions in H1

0 (Ω), u1, u2, u3, · · · , which can be assumed
to satisfy (ui, uj) = δij , i, j = 1, 2, · · · (see, e.g., [14]).

A finite element discretization of (60) reads: find (λh, uh) ∈ R×Sh
0 (Ω) such that

‖uh‖0,Ω = 1 and

1

2
(∇uh,∇v) + (V uh, v) = λh(uh, v) ∀v ∈ Sh

0 (Ω).(62)

Let ℓh : Sh
0 (Ω) → L2(Ω) be defined by

ℓhw = λhw ∀w ∈ Sh
0 (Ω),

then (62) is a special case of (10) when a(·, ·) = 1
2 (∇·,∇·) and K = (− 1

2∆)−1 :

L2(Ω) → H1
0 (Ω).

Using the uncertainty principle lemma (see, e.g., [27])
∫

R3

w2(x)

|x|2 ≤ 4

∫

R3

|∇w|2 ∀w ∈ C∞
0 (R3)

and the fact that C∞
0 (Ω) is dense in H1

0 (Ω), we obtain
∫

Ω

w2(x)

|x|2 ≤ 4

∫

Ω

|∇w|2 ∀w ∈ H1
0 (Ω).
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Then for any w ∈ H1
0 (Ω), we have

‖Vnew + V0w‖0,Ω ≤ C‖w‖1,Ω,
namely, V is a bounded operator from H1

0 (Ω) to L2(Ω). Thus KV is a compact
operator over H1

0 (Ω).
We consider the case of that (λ, u) ∈ R × H1

0 (Ω) is some simple eigenpair of
(60) with ‖u‖0,Ω = 1. We see that (62) has an associated finite element eigenpair
(λh, uh) ∈ R× Sh

0 (Ω) that satisfies ‖uh‖0,Ω = 1 and (c.f. [2])

‖u− uh‖0,Ω <∼ ρ
Ω
(h)‖u− uh‖a,Ω(63)

and

|λ− λh| <∼ ‖u− uh‖2a,Ω,(64)

where

ρ
Ω
(h) = sup

f∈L2(Ω),‖f‖0,Ω=1

inf
v∈Sh

0 (Ω)
‖(−1

2
∆ + V )−1f − v‖a,Ω.

Note that for ℓw = λw ∀w ∈ H1
0 (Ω), there holds

K(ℓu− ℓhuh) = λK(u − uh) + (λ− λh)Kuh,(65)

which together with (64) yields

‖K(ℓu− ℓhuh)‖a,Ω = O(κ1(h))‖u− uh‖a,Ω,
where κ1(h) = ρ

Ω
(h) + ‖u− uh‖a,Ω satisfying κ1(h) → 0 as h → 0.

In this application, the element residual and jump residual become:

Rτ (uh) = λhuh − V uh +
1

2
∆uh in τ ∈ Th,

Je(uh) = [[
1

2
∇uh]]e · νe on e ∈ Eh

and the corresponding error estimator ηh(uh, Th) and the oscillation osch(uh, Th) are
defined by (18) and (19), respectively. Then Theorem 3.3 and Theorem 3.4 ensure
the convergence and optimal complexity of adaptive finite element eigenfunction
approximations for the unbounded coefficient problem (60) (c.f. [9]). Besides, we
can also get the convergence and optimal complexity of adaptive finite element
eigenvalue approximations from (64).

5. Numerical examples

In this section, we will report some numerical results to illustrate our theory.
Our numerical results were carried out on LSSC-II in the State Key Laboratory
of Scientific and Engineering Computing, Chinese Academy of Sciences, and our
codes were based on the toolbox PHG of the Laboratory.

Example 1. We consider (47) when the homogenous Dirichlet boundary con-
dition is replaced by u = g on ∂Ω and Ω = (0, 1)3 with the isotropic diffusion
coefficient A = ǫI, ǫ = 10−2, convection velocity b = (2, 3, 4), and c = 0 (c.f. [16]
for a 2D case and Remark 2.1). The exact solution is given by

u =

(
x3 − exp

(2(x− 1)

ǫ

))(
y2 − exp

(3(y − 1)

ǫ

))(
z − exp

(4(z − 1)

ǫ

))
.

For small ǫ > 0, the solution has the typical layer behavior in the neighbourhood
of x = 1, y = 1, z = 1, respectively. The Dirichlet boundary condition is given by

g(x, y, z) =

{
0 x = 1 or y = 1 or z = 1,

u(x, y, z) x = 0 or y = 0 or z = 0.
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Some adaptively refined meshes are displayed in Fig. 1 and Fig. 2. Our numeri-
cal results are presented in Fig. 3 and Fig. 4. It is shown from Fig. 4 that ‖u−uh‖1
is proportional to the a posteriori error estimators, which indicates the efficiency
and reliability of the a posteriori error estimators given in section 4.1. Besides, it is
also seen from Fig. 3 and Fig. 4 that, by using linear finite elements and quadratic
finite elements, the convergence curves of errors are approximately parallel to the
line with slope −1/3 and the line with slope −2/3, respectively. These mean that
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the approximation error of the exact solution has optimal convergence rate, which
coincides with our theory in section 3.2.

Example 2. Consider the following nonlinear problem:
{

−∆u+ u3 = f in Ω,
u = 0 on ∂Ω,

where Ω = (0, 1)3. The exact solution is given by

u = sin(πx1) sin(πx2) sin(πx3)/(x
2
1 + x2

2 + x2
3)

1/2.

Since −∆+ 2u2 is nonsigular, the conditions required in section 4.2 are fulfilled.

Figure 5. The
cross-section
of an adaptive
mesh of Ex-

ample 2 using
linear finite ele-
ments

Figure 6. The
cross-section
of an adaptive
mesh of Ex-

ample 2 using
quadratic finite
elements

Fig. 5 and Fig. 6 are two adaptively refined meshes, which show that the error
indicator is good. It is shown from Fig. 7 and Fig. 8 that ‖u−uh‖1 is proportional to
the a posteriori error estimators, which implies that the a posteriori error estimators
given in section 4.2 are efficient. Besides, similar conclusions to that of Example 1
can be obtained from Fig. 7 and Fig. 8, too.

Example 3. Consider the Kohn-Sham equation for helium atoms:
(
−1

2
∆− 2

|x| +
∫

ρ(y)

|x− y|dy + Vxc

)
u = λu in R

3

with
∫
R3 |u|2 = 1, where ρ = 2|u|2. In our computation of the ground state energy,

we solve the following nonlinear eigenvalue problem: find (λ, u) ∈ R×H1
0 (Ω) such

that
∫
Ω |u|2dx = 1 and

(66)





(
−1

2
∆− 2

|x| +
∫

ρ(y)

|x− y|dy + Vxc

)
u = λu in Ω,

u = 0 on ∂Ω,

where Ω = (−10.0, 10.0)3, and Vxc(ρ) = − 3
2α(

3
πρ)

1
3 with α = 0.77298. Since (66)

is a nonlinear eigenvalue problem, we need to linearize and solve them iteratively,
which is called the self-consistent approach [4, 14, 17, 23]. In our computation, a
Broyden-type quasi-Newton method [24] is used.
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In 1989, White [29] computed helium atoms over uniform cubic grids and ob-
tained ground state energy -2.8522 a.u. by using 500,000 finite element bases.
While the ground state energy of helium atoms in Software package fhi98PP [11] is
-2.8346 a.u., which we take as a reference.
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Figure 9. The
ground state en-
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ments

10
3

10
4

10
5

−2.85

−2.8

−2.75

−2.7

−2.65

−2.6

−2.55

−2.5

Figure

10. The ground
state energy
using quadratic
finite elements

Our results are displayed in Fig. 9– Fig. 14. It is seen from Fig. 10 that the
ground state energy in our computation is close to the reference with less 100,000
degrees of freedom when the quadratic finite element discretization is used. Some
cross-sections of the adaptively refined meshes are displayed in Fig. 11 and Fig.
12. Since we do not have the exact solution, we list the convergence curves of the
a posteriori error estimators in Fig. 13 and Fig. 14 only. It is shown from these
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figures that the a posteriori error estimators given in section 4.3 are convergent as
predicted by our theory.
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