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Abstract. This paper is concerned with solving nonlinear monotone difference

schemes of the parabolic type. The monotone Jacobi and monotone Gauss–

Seidel methods are constructed. Convergence rates of the methods are com-

pared and estimated. The proposed methods are applied to solving nonlinear

singularly perturbed parabolic problems. Uniform convergence of the mono-

tone methods is proved. Numerical experiments complement the theoretical

results.
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1. Introduction

Many reaction-diffusion-convection-type problems in the chemical, physical and
engineering sciences are described by nonlinear parabolic equations. The parabolic
problem under consideration is in the form

(1)
∂u

∂t
− Lu+ f(x, t, u) = 0, (x, t) ∈ ω × (0, T ],

u(x, t) = g(x, t), (x, t) ∈ ∂ω × (0, T ], u(x, 0) = u0(x), x ∈ ω,

where ω is a connected bounded domain in R
κ (κ = 1, 2, . . .) with boundary ∂ω.

Lu is given by

Lu =

κ
∑

ν=1

∂

∂xν

(

kν(x, t)
∂u

∂xν

)

+

κ
∑

ν=1

vν(x, t)
∂u

∂xν
,

where the coefficients of the differential operator are smooth and kν > 0, ν =
1, . . . , κ, in ω. It is also assumed that the functions f and g are smooth in their
respective domains.

In the study of numerical methods for nonlinear parabolic problems, the two
major points to be developed are: i) constructing convergent nonlinear difference
schemes and ii) computing solutions of nonlinear discrete problems. A major point
about the nonlinear difference schemes is to obtain reliable and efficient computa-
tional methods for computing the solution. The reliability of iterative techniques for
solving nonlinear difference schemes can be essentially improved by using compo-
nentwise monotone globally convergent iterations. Such methods can be controlled
every time. A fruitful method for the treatment of these nonlinear schemes is the
method of upper and lower solutions and its associated monotone iterations [7].
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Since an initial iteration in the monotone iterative method is either an upper or
lower solution, which can be constructed directly from the difference equation with-
out any knowledge of the exact solution, this method simplifies the search for the
initial iteration as is often required in the Newton method. In the context of solving
systems of nonlinear equations, the monotone iterative method belongs to the class
of methods based on convergence under partial ordering (see Chapter 13 in [7] for
details).

The purpose of this paper is to extend the monotone iterative method from [4]
to monotone relaxation methods of Jacobi- and Gauss–Seidel type iterations for
solving nonlinear monotone difference schemes in the canonical form and to apply
the monotone methods to nonlinear singularly perturbed equations of the parabolic
type. Convergence rates of these relaxation methods are compared and estimated.

The structure of the paper is as follows. In Section 2, we present the nonlinear
monotone difference scheme in the canonical form and formulate the maximum
principle. In Section 3, we construct the monotone Jacobi and monotone Gauss–
Seidel methods, prove monotone convergence of the methods and compare their
convergence rates. Section 4 is devoted to estimation of convergence rates of the
monotone methods. In the final Section 5, the monotone methods are applied
to solving nonlinear singularly perturbed parabolic problems. We prove that on
layer-adapted meshes the monotone methods converge uniformly in a perturbation
parameter. Numerical experiments complement the theoretical results.

2. The nonlinear difference scheme

On ω and [0, T ], we introduce meshes ωh and ωτ , respectively. For simplicity,
we assume that the mesh ωτ is uniform with the time step τ . For a mesh function
U(p, t), (p, t) ∈ ωh × ωτ , consider the nonlinear implicit difference scheme in the
canonical form [9]

(2) LU(p, t) + f(p, t, U)− τ−1U(p, t− τ) = 0, (p, t) ∈ ωh × (ωτ \ 0),

U(p, 0) = u0(p), p ∈ ωh, U(p, t) = g(p, t), (p, t) ∈ ∂ωh × (ωτ \ 0),

where ∂ωh is the boundary of ωh, and the difference operator L is defined by

LU(p, t) ≡ LhU(p, t) + τ−1U(p, t),

LhU(p, t) ≡ d(p, t)U(p, t)−
∑

p′∈σ′(p)

e(p′, t)U(p′, t).

Here σ′(p) = σ(p) \ {p}, σ(p) is a stencil of the scheme at an interior mesh point
p ∈ ωh.

On each time level t, we make the following assumptions on the coefficients of
the spatial operator Lh :

(3) d(p, t) > 0, e(p, t) ≥ 0, p ∈ ωh,

d(p, t)−
∑

p′∈σ′(p)

e(p′, t) ≥ 0, p′ ∈ σ′(p).

We also assume that the mesh ωh is connected. It means that for two interior
mesh points p̃ and p̂, there exists a finite set of interior mesh points {p1, p2, . . . , ps}
such that

(4) p1 ∈ σ′(p̃), p2 ∈ σ′(p1), . . . , ps ∈ σ′(ps−1), p̂ ∈ σ′(ps).

On each time level t, introduce the linear problem

(5) (L+ c)W (p, t) = f0(p, t), p ∈ ωh,
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W (p, t) = g(p, t), p ∈ ∂ωh, c(p, t) ≥ c0 = const ≥ 0, p ∈ ωh.

On each time level t, for a mesh function W (p, t), p ∈ ωh, define the maximal norms

‖W (·, t)‖ωh = max
p∈ωh

|W (p, t)|, ‖W (·, t)‖ωh = max
p∈ωh

|W (p, t)|,

‖W (·, t)‖∂ωh = max
p∈∂ωh

|W (p, t)|.

We now formulate the maximum principle for the difference operator L+c and give
an estimate of the solution to (5).

Lemma 1. Let the coefficients of the difference operator Lh satisfy (3) and the
mesh ωh be connected (4).

(i) If a mesh function W (p, t) satisfies the conditions

(L+ c)W (p, t) ≥ 0 (≤ 0), p ∈ ωh, W (p, t) ≥ 0 (≤ 0), p ∈ ∂ωh,

then W (p, t) ≥ 0 (≤ 0), p ∈ ωh.
(ii) The following estimate of the solution to (5) holds true

(6) ‖W (·, t)‖ωh ≤ max{‖g(·, t)‖∂ωh, ‖f0(·, t)‖ωh/(c0 + τ−1)}.

The proof of the lemma can be found in [9].

3. The monotone iterative methods

Assume that f(p, t, u) from (1) satisfies the two-sided constraint

(7) 0 ≤ fu(p, t, u) ≤ c∗, c∗ = const, (fu = ∂f/∂u).

On a time level t ∈ ωτ \ 0, we say that U(p, t) is an upper solution of (2) with
respect to U(p, t− τ) if it satisfies the inequalities

LU(p, t) + f(p, t, U)− τ−1U(p, t− τ) ≥ 0, p ∈ ωh,

U(p, t) ≥ g(p, t) p ∈ ∂ωh.

Similarly, U(p, t) is called a lower solution if it satisfies all the reversed inequalities.
Upper and lower solutions satisfy the inequality

(8) U(p, t) ≤ U(p, t), p ∈ ωh.

Indeed, by the definition of lower and upper solutions and the mean-value theorem,
for δU = U − U we have

LδU(p, t) + fu(p, t,W )δU(p, t) ≥ 0, p ∈ ωh,

δU(p, t) ≥ 0, p ∈ ∂ωh,

where W (p, t) lies between U(p, t) and U(p, t). In view of the maximum principle
in Lemma 1 and assumption (7), we conclude the required inequality.

We now introduce two monotone iterative methods based on the Jacobi and
Gauss–Seidel methods and on the method of upper and lower solutions. On each
time level t ∈ ωτ \ 0, the iterative sequence {U (n)}, n ≥ 1, generated by the Jacobi
and Gauss–Seidel methods, is defined by the recurrence formulae

(9) L∗Z
(n)(p, t) = −R(p, t, U (n−1)), p ∈ ωh,

Z(1)(p, t) = g(p, t)− U (0)(p, t), Z(n)(p, t) = 0, n ≥ 2, p ∈ ∂ωh,

U (n)(p, t) = U (n−1)(p, t) + Z(n)(p, t), p ∈ ωh,

R(p, t, U (n−1)) = LU (n−1)(p, t) + f(p, t, U (n−1))− τ−1U(p, t− τ),
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where R(p, t, U (n−1)) is the residual of the difference scheme (2) on U (n−1), and
U(p, t− τ) is given. For the Jacobi method, L∗ is defined by

LjacZ
(n)(p, t) = (d(p, t) + τ−1 + c∗)Z(n)(p, t),

and for the Gauss–Seidel method,

LgsZ
(n)(p, t) = (d(p, t) + τ−1 + c∗)Z(n)(p, t)−

∑

p′∈σ′

L
(p)

e(p′, t)Z(n)(p′, t),

where σ′
L(p) is a set of stencil points corresponding to a strictly lower triangular

part of σ(p).

Lemma 2. Let the coefficients of the difference operator L from (2) satisfy (3)and
ωh be connected (4). Then for the difference operators Ljac and Lgs, the maximum
principle in Lemma 1 holds with Ljac and Lgs instead of L+ c.

Proof. The coefficients of the difference operators Ljac and Lgs satisfy the condi-
tions from (3). Indeed, in the case of Ljac, d(p, t)+ τ−1+ c∗ > 0 is a diagonal entry
and e(p′, t) = 0, p′ ∈ σ′(p). In the case of Lgs, d(p, t) + τ−1 + c∗ > 0 is a diagonal
entry, e(p′, t) ≥ 0, p′ ∈ σ′

L(p), and

d(p, t) + τ−1 + c∗ −
∑

p′∈σ′

L
(p)

e(p′, t) ≥ d(p, t) + τ−1 −
∑

p′∈σ′(p)

e(p′, t) ≥ 0.

Thus, from Lemma 1, we conclude the maximum principle for Ljac and Lgs. �

3.1. Monotone convergence of the iterative methods. The following theo-
rem gives the monotone property of the iterative methods (9).

Theorem 1. Assume that the coefficients of the difference operator L in (2) satisfy
(3), f(p, t, u) satisfies (7) and ωh is connected (4). Let U(p, t − τ) be given and

U
(0)

(p, t), U (0)(p, t) be upper and lower solutions of (2) corresponding to U(p, t−τ).

Then the upper sequence {U
(n)

(p, t)} generated by (9) converges monotonically from
above to the unique solution U(p, t) of the problem

LU(p, t) + f(p, t, U)− τ−1U(p, t− τ) = 0, p ∈ ∂ωh,

U(p, t) = g(p, t), p ∈ ∂ωh,

the lower sequence {U (n)(p, t)} generated by (9) converges monotonically from below
to U(p, t) and the following inequalities hold

U (n−1)(p, t) ≤ U (n)(p, t) ≤ U(p, t) ≤ U
(n)

(p, t) ≤ U
(n−1)

(p, t), p ∈ ωh.

Proof. We consider only the case of the upper sequence for the Gauss–Seidel method.
All other cases can be proved in a similar way.

If U
(0)

gs
is an upper solution, then from (9) we conclude that

LgsZ
(1)
gs (p, t) ≤ 0, p ∈ ωh, Z

(1)
gs (p, t) = g(p, t)− U

(0)
gs (p, t) ≤ 0, p ∈ ∂ωh.

From Lemma 2, it follows that

(10) Z
(1)
gs (p, t) ≤ 0, p ∈ ωh, U

(1)
gs (p, t) = g(p, t), p ∈ ∂ωh.

Using the mean-value theorem and the equation for Z
(1)
gs from (9), we represent

R(p, t, U
(1)
gs ) in the form

R(p, t, U
(1)
gs ) = −(c∗ − f (1)

u (p, t))Z
(1)
gs (p, t)−

∑

p′∈σ′

U
(p)

e(p′, t)Z
(1)
gs (p

′, t), p ∈ ωh,(11)
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where f
(1)
u (p, t) ≡ fu[p, t, U

(0)

gs
(p)+ θ(1)(p, t)Z

(1)
gs (p, t)], 0 < θ(1)(p, t) < 1, and σ′

U (p)
is a set of stencil points corresponding to a strictly upper triangular part of σ(p).

Since the mesh function Z
(1)
gs is nonpositive on ωh and taking into account (3) and

(7), we conclude that U
(1)
gs is an upper solution to (2). By induction on n, we obtain

that Z
(n)
gs (p, t) ≤ 0, p ∈ ωh, n ≥ 1, and prove that {U

(n)

gs (p, t)} is a monotonically
decreasing sequence of upper solutions.

We now prove that the monotone sequence {U
(n)

gs
} converges to the solution of

(2). The sequence {U
(n)

gs } is monotonically decreasing and bounded below by U ,
where U is any lower solution (8). Now by linearity of the operators Lgs, L and
continuity of f , we have also from (9) that the mesh function U defined by

U(p, t) = lim
n→∞

U
(n)

gs
(p, t), p ∈ ωh,

is the exact solution to (2). If by contradiction, we assume that there exist two
solutions U1 and U2 to (2), then by the mean-value theorem, the difference δU =
U1 − U2 satisfies the problem

LδU(p, t) + fuδU(p, t) = 0, p ∈ ωh, δU(p, t) = 0, p ∈ ∂ωh.

By Lemma 1, δU = 0 which leads to the uniqueness of the solution to (2). This
proves the theorem. �

Remark 1. Consider the following approach for constructing initial upper and

lower solutions U
(0)

(p, t) and U (0)(p, t). Suppose that a mesh function M(p, t) is
defined on ωh and satisfies the boundary condition M(p, t) = g(p, t), p ∈ ∂ωh.
Introduce the difference problems

(12) LZ(0)
ν (p, t) = ν|R(p, t,M)|, p ∈ ωh,

Z(0)
ν (p, t) = 0, p ∈ ∂ωh, ν = 1,−1.

Then the functions U
(0)

= M+Z
(0)
1 , U (0) = M+Z

(0)
−1 are upper and lower solutions,

respectively. We check only that U
(0)

is an upper solution. From the maximum

principle in Lemma 1, it follows that Z
(0)
1 ≥ 0 on ωh. Now using the difference

equation for Z
(0)
1 and the mean-value theorem, we have

R(p, t, U
(0)

) = R(p, t,M) + |R(p, t,M)|+ f (0)
u Z

(0)
1 .

Since f
(0)
u ≥ 0 and Z

(0)
1 is nonnegative, we conclude that U

(0)
is an upper solution.

Remark 2. Since the initial iteration in (9) is either an upper or lower solution,
which can be constructed directly from the difference equation without any knowledge
of the solution as we have suggested in Remark 1, this method simplifies considerably
the search for the initial iteration as is often required in Newton’s method. This gives
a practical advantage in the computation of numerical solutions.

3.2. Comparisons of the monotone sequences. We now give a comparison
result for the monotone sequences obtained by the monotone Jacobi and Gauss–

Seidel methods from (9). Let U
(0)

and U (0) be upper and lower solutions to (2).

Denote the upper and lower sequences from (9) by {U
(n)

jac
}, {U

(n)
jac} and {U

(n)

gs
},

{U
(n)
gs }, respectively. The following theorem gives the comparison result for these

sequences.
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Theorem 2. Assume that the coefficients of the difference operator L in (2) satisfy
(3), f(p, t, u) satisfies (7) and ωh is connected (4). Let U(p, t − τ) be given and

U
(0)

(p, t), U (0)(p, t) be upper and lower solutions of (2) corresponding to U(p, t−τ).

If U
(0)

jac = U
(0)

gs = U
(0)

and U
(0)
jac = U

(0)
gs = U (0), then for every n = 1, 2, . . .,

(13) U
(n)

gs
(p, t) ≤ U

(n)

jac
(p, t), U

(n)
gs (p, t) ≥ U

(n)
jac(p, t), p ∈ ωh.

Proof. We prove (13) in the case of the upper sequences. The case of the lower
sequences can be proved in a similar way.

We use the notation

Z
(n)
jac = U

(n)

jac − U
(n−1)

jac , Z
(n)
gs = U

(n)

gs − U
(n−1)

gs , W (n) = U
(n)

gs − U
(n)

jac.

From (9) with n = 1, we conclude

(d(p, t) + τ−1 + c∗)W (1)(p, t) =
∑

p′∈σ′

L
(p)

e(p′, t)Z
(1)
gs (p

′, t).

From here, (3) and (10), it follows that

(14) W (1)(p, t) ≤ 0, p ∈ ωh.

From (9) with n = 2, we get

(d(p, t) + τ−1 + c∗)(W (2)(p, t)−W (1)(p, t)) =
∑

p′∈σ′

L
(p)

e(p′, t)Z
(2)
gs (p

′, t)−

[R(p, t, U
(1)

gs )−R(p, t, U
(1)

jac)].

By the mean-value theorem,

(d(p, t) + τ−1 + c∗)W (2)(p, t) = (c∗ − f (1)
u (p, t))W (1)(p, t) + τ−1W (1)(p, t) +

∑

p′∈σ′(p)

e(p′, t)W (1)(p′, t) +

∑

p′∈σ′

L
(p)

e(p′, t)Z
(2)
gs (p

′, t),

where f
(1)
u (p, t) ≡ fu[p, t, U

(1)

jac(p, t) + θ(1)(p, t)W (1)(p, t)], 0 < θ(1)(p, t) < 1. From

here, (3), (7), (10) for Z
(2)
gs and (14), it follows that

W (2)(p, t) ≤ 0, p ∈ ωh.

By induction on n, we can prove that

W (n)(p, t) ≤ 0, p ∈ ωh, n ≥ 1.

This proves the theorem. �

Remark 3. The comparison result (13) shows that with the same initial itera-
tion, which is either an upper or lower solution, the sequence of the Gauss–Seidel
iterations converges not slower than the sequence of the Jacobi iterations.
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4. Convergence rates of the monotone methods

Here we analyze convergence rates of the monotone Jacobi and Gauss–Seidel
methods from (9).

Theorem 3. Suppose that the coefficients of the difference operator L in (2) satisfy
(3), f(p, t, u) satisfies (7) and ωh is connected (4). Let U(p, t − τ) be given and

U
(0)

(p, t), U (0)(p, t) be upper and lower solutions of (2) corresponding to U(p, t−τ).
Then the monotone Jacobi and Gauss–Seidel methods from (9) converge at the
following convergence rates:

(15) ‖Z
(n)
jac(·, t)‖ωh ≤ qjac‖Z

(n−1)
jac (·, t)‖ωh , qjac = 1−

1

1 + τ(d∗ + c∗)
,

(16) ‖Z
(n)
gs (·, t)‖ωh ≤ qgs‖Z

(n−1)
gs (·, t)‖ωh , qgs = 1−

1

1 + τ(e∗ + c∗)
,

‖Z
(n)
jac(·, t)‖ωh = max

p∈ωh
|Z

(n)
jac(p, t)|, ‖Z

(n)
gs (·, t)‖ωh = max

p∈ωh
|Z

(n)
gs (p, t)|,

where d∗ and e∗ are defined by

d∗ = max
(p,t)∈ωh×ωτ

d(p, t), e∗ = max
(p,t)∈ωh×ωτ

∑

p′∈σU (p)

e(p′, t).

Here σ′
U (p) is a set of stencil points corresponding to a strictly upper triangular

part of σ(p).

Proof. Monotone convergence of upper and lower solutions has been proved in
Theorem 1.

We now prove (15). Using the mean-value theorem, we represent the residual

R(p, t, U
(n−1)
jac ) in the form

R(p, t, U
(n−1)
jac ) = LZ

(n−1)
jac (p, t) + fu(p, t)Z

(n−1)
jac (p, t) +R(p, t, U

(n−2)
jac )

From here and (9) with Z
(n−1)
jac , we have

−R(p, t, U
(n−1)
jac ) = LjacZ

(n−1)
jac (p, t)− (LZ

(n−1)
jac (p, t) + fu(p, t)Z

(n−1)
jac (p)),

where

LZ
(n−1)
jac (p, t) = (d(p, t) + τ−1)Z

(n−1)
jac (p, t)−

∑

p′∈σ′(p)

e(p′, t)Z
(n−1)
jac (p, t),

LjacZ
(n−1)
jac (p, t) = (d(p, t) + τ−1 + c∗)Z

(n−1)
jac (p, t).

Thus,

(17) −R(p, t, U
(n−1)
jac ) = (c∗ − fu(p, t))Z

(n−1)
jac (p, t) +

∑

p′∈σ′(p)

e(p′, t)Z
(n−1)
jac (p, t).

From here and (9), we conclude that

(d(p, t)+τ−1+c∗)Z
(n)
jac(p, t) = (c∗−fu(p, t))Z

(n−1)
jac (p, t)+

∑

p′∈σ′(p)

e(p′, t)Z
(n−1)
jac (p, t).

Let max |Z
(n)
jac(p, t)| over ωh attain at point p∗. Then from the last equation, (3)

and (7), we have

(d(p∗, t) + τ−1 + c∗)γ(n)(t) ≤ c∗γ(n−1)(t) +
∑

p′∈σ′(p∗)

e(p′, t)γ(n−1)(t),

where γ(n)(t) = ‖Z
(n)
jac(·, t)‖ωh . From here and (3), we conclude (15).
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Similar to (17), we can obtain

−R(p, t, U
(n−1)
gs ) = (c∗ − fu(p, t))Z

(n−1)
gs (p, t) +

∑

p′∈σ′

U
(p)

e(p′, t)Z
(n−1)
gs (p, t).

From here and (9), we conclude that

(d(p, t) + τ−1 + c∗)Z
(n)
gs (p, t)−

∑

p′∈σ′

L
(p)

e(p′, t)Z
(n)
gs (p, t) =

(c∗ − fu(p, t))Z
(n−1)
gs (p, t) +

∑

p′∈σ′

U
(p)

e(p′, t)Z
(n−1)
gs (p, t).

Let max |Z
(n)
gs (p, t)| over ωh attain at point p∗. Then from the last equation, (3)

and (7), we have

(d(p∗, t) + τ−1 + c∗)δ(n)(t) −
∑

p′∈σ′

L
(p∗)

e(p′, t)δ(n)(t) ≤ c∗δ(n−1)(t) +

∑

p′∈σ′

U
(p∗)

e(p′, t)δ(n−1)(t),

where δ(n)(t) = ‖Z
(n)
gs (·, t)‖ωh . From (3), we have

d(p, t)−
∑

p′∈σ′

L
(p)

e(p′, t) ≥
∑

p′∈σ′

U
(p)

e(p′, t).

From here and the previous inequality, we conclude (16). �

Without loss of generality, we assume that the boundary condition g = 0. This
assumption can always be obtained via a change of variables. On each time level,

let U
(0)
ν (p, t) be chosen in the form of (12), that is, U

(0)
ν (p, t) is the solution of the

difference problem

(18) LU (0)
ν (p, t) = ν

∣

∣f(p, t, 0)− τ−1U(p, t− τ)
∣

∣ , p ∈ ωh,

U (0)
ν (p, t) = 0, p ∈ ∂ωh, ν = 1,−1,

where M(p, t) = 0. Then the functions U
(0)
1 (p, t), U

(0)
−1 (p, t) are upper and lower

solutions.

Theorem 4. Let initial upper or lower solutions be chosen in the form of (18),
and let f satisfy (7). Suppose that on each time level the number of iterates n∗ ≥ 2.
Then for the monotone iterative methods (9), the following estimates on convergence
rates hold

(19) max
1≤k≤Nτ

‖Ujac(·, tk)− U(·, tk)‖ωh ≤ Cjac(c
∗ + d∗)qn∗−1

jac ,

max
1≤k≤Nτ

‖Ugs(·, tk)− U(·, tk)‖ωh ≤ Cgs(c
∗ + e∗)qn∗−1

gs ,

Ujac(p, tk) = U
(n∗)
jac (p, tk), Ugs(p, tk) = U

(n∗)
gs (p, tk),

where U(p, t) is the solution to (2), constants Cjac, Cgs are independent of τ , and
qjac, qgs, d

∗ and e∗ are defined in Theorem 3.

Proof. We prove estimate (19) for the monotone Gauss–Seidel method. Similar to

(11), using the mean-value theorem and the equation for Z
(n)
gs from (9), we have

LU
(n)
gs (p, t) + f(p, t, U

(n)
gs )− τ−1Ugs(p, t− τ) = −[c∗ − f (n)

u (p, t)]Z
(n)
gs (p, t)−

∑

p′∈σ′

U
(p)

e(p′, t)Z
(n)
gs (p′, t),(20)
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f (n)
u (p, t) ≡ fu[p, t, U

(n−1)
gs (p, t) + θ(n)(p, t)Z

(n)
gs (p, t)], 0 < θ(n)(p, t) < 1.

Introduce the notation

W (p, t) = U(p, t)− Ugs(p, t),

where Ugs(p, t) = U
(n∗)
gs (p, t). Using the mean-value theorem, from (2) and (20), we

conclude that W (p, τ) satisfies the problem

LW (p, τ) + fu(p, τ)W (p, τ) = (c∗ − f (n∗)
u (p, τ))Z

(n∗)
gs (p, τ) +

∑

p′∈σ′

U
(p)

e(p′, t)Z
(n∗)
gs (p′, τ), p ∈ ωh,

W (p, τ) = 0, p ∈ ∂ωh,

where f
(n∗)
u (p, τ) ≡ fu[p, τ, U(p, τ) + θ(p, τ)W (p, τ)], 0 < θ(p, τ) < 1, and we have

taken into account that Ugs(p, 0) = U(p, 0) = u0(p). By (6), (7) and (16),

‖W (·, τ)‖ωh ≤ (c∗ + e∗)τqn∗−1
gs ‖Z

(1)
gs (·, τ)‖ωh .

Using (7), (18) and the mean-value theorem, estimate Z
(1)
gs (p, τ) from (9) by (6),

‖Z
(1)
gs (·, τ)‖ωh ≤ τ‖LU

(0)
gs (·, τ)‖ωh + c∗τ‖U

(0)
gs (·, τ)‖ωh

+τ‖f(p, τ, 0)− τ−1u0‖ωh

≤ (2τ + c∗τ2)‖f(p, τ, 0)− τ−1u0‖ωh

≤ (2 + c∗τ)(τ‖f(p, τ, 0)‖ωh + ‖u0‖ωh) ≤ C1,

where C1 is independent of τ (τ ≤ T ). Thus,

(21) ‖W (·, τ)‖ωh ≤ (c∗ + e∗)C1τq
n∗−1
gs

.

Similarly, from (2) and (20), it follows that

LW (p, 2τ) + fu(p, 2τ)W (p, 2τ) = (c∗ − f (n∗)
u (p, 2τ))Z

(n∗)
gs (p, 2τ) +

∑

p′∈σ′

U
(p)

e(p′, t)Z
(n∗)
gs (p′, 2τ) + τ−1W (p, τ).

Using (16), by (6),

(22) ‖W (·, 2τ)‖ωh ≤ ‖W (·, τ)‖ωh + (c∗ + e∗)τqn∗−1
gs ‖Z

(1)
gs (·, 2τ)‖ωh .

Using (18), estimate Z
(1)
gs (p, 2τ) from (9) by (6),

‖Z
(1)
gs (·, 2τ)‖ωh ≤ (2 + c∗τ)(τ‖f(p, 2τ, 0)‖ωh + ‖Ugs(·, τ)‖ωh) ≤ C2,

where Ugs(p, τ) = U
(n∗)
gs (p, τ). As follows from Theorem 1, the monotone sequences

{U
(n)

gs
(p, τ)} and {U

(n)
gs (p, τ)} are bounded from above and below by, respectively,

U
(0)

gs (p, τ) and U
(0)
gs (p, τ). Applying (6) to problem (18) at t = τ , we have

‖U
(0)
gs (·, τ)‖ωh ≤ τ‖f(p, τ, 0)− τ−1u0(p)‖ωh ≤ K1,

where constant K1 is independent of τ . Thus, we prove that C2 is independent of
τ . From (21) and (22), we conclude

‖W (·, 2τ)‖ωh ≤ (c∗ + e∗)(C1 + C2)τq
n∗−1
gs .

By induction on k, we prove

‖W (·, tk)‖ωh ≤ (c∗ + e∗)

(

k
∑

l=1

Cl

)

τqn∗−1
gs , k = 1, . . . , Nτ ,
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where all constants Cl are independent of τ . Taking into account that Nττ = T ,
we prove the estimate (19) with Cgs = T max1≤l≤Nτ

Cl.
Estimate (19) for the monotone Jacobi method can be proved in a similar man-

ner. In this case the summation over σ′
U (p) in (20) becomes the summation over

σ′(p), and e∗ must be changed on d∗. �

5. Applications to solving nonlinear singularly perturbed problems

We consider the two dimensional singularly perturbed reaction-diffusion problem

(23) ut − µ2(uxx + uyy) + f(x, y, t) = 0, (x, y, t) ∈ ω × (0, T ],

u(x, y, t) = g(x, t), (x, y, t) ∈ ∂ω × (0, T ],

u(x, y, 0) = u0(x, y), (x, y) ∈ ω, ω = (0, 1)× (0, 1),

where µ is a small positive parameter and f satisfies (7).
The solution of problem (23) can be decomposed into two parts u = S + E,

where S and E are the regular and singular parts of u, respectively. In turn, the
singular part can be decomposed in the form

E = Φ+Ψ+ (Υ00 +Υ10 +Υ01 +Υ11) ,

where Φ and Ψ are essentially one-dimensional boundary layer functions in some
neighborhoods of sides x = 0, x = 1 and y = 0, y = 1, respectively, and Υmn,m, n =
0, 1 are corner layers in the neighborhood of (m,n). The following bounds on the
derivatives hold true:

∣

∣

∣

∣

∂kS(x, y, t)

∂xkx∂yky∂tkt

∣

∣

∣

∣

≤ C,

∣

∣

∣

∣

∂kΦ(x, y, t)

∂xkx∂yky∂tkt

∣

∣

∣

∣

≤ Cµ−kxΠ(x), Π(x) = Π0(x) + Π1(x),

∣

∣

∣

∣

∂kΨ(x, y, t)

∂xkx∂yky∂tkt

∣

∣

∣

∣

≤ Cµ−ky Π̂(y), Π̂(y) = Π̂0(y) + Π̂1(y),

∣

∣

∣

∣

∂kΥmn(x, y, t)

∂xkx∂yky∂tkt

∣

∣

∣

∣

≤ Cµ−(ky+ky)Πm(x)Π̂n(y), m, n = 0, 1,

Π0(x) = exp (−κ1x/µ) , Π1(x) = exp (−κ1(1 − x)/µ) ,

Π̂0(y) = exp (−κ2y/µ) , Π̂1(y) = exp (−κ2(1− y)/µ) ,

where k = (kx, ky, kt), kx + ky + 2kt ≤ l, κ1 and κ2 are positive constants, and
constant C is independent of µ and the mesh parameters (see [5] for details). For
µ ≪ 1, problem (23) is singularly perturbed and characterized by boundary layers
of width O(µ| lnµ|) near ∂ω.

On ω introduce nonuniform mesh ωh = ωhx × ωhy:

ωhx = {xi, 0 ≤ i ≤ Nx; x0 = 0, xNx
= 1; hxi = xi+1 − xi} ,

ωhy =
{

yj , 0 ≤ j ≤ Ny; y0 = 0, yNy
= 1; hyj = yj+1 − yj

}

.

To approximate (23), we use the classical difference scheme based on the five-
point stencil

(24) LU(p, t) + f(p, t, U)− τ−1U(p, t− τ) = 0, (p, t) ∈ ωh × (ωτ \ 0),

L = Lh + τ−1, LhU(p, t) = −µ2(D2
x +D2

y)U(p, t),

where D2
xU and D2

yU are the central difference approximations to the second deriva-
tives

D2
xU

k
ij = (~xi)

−1[(Uk
i+1,j − Uk

ij)(hxi)
−1 − (Uk

ij − Uk
i−1,j)(hx,i−1)

−1],
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D2
yU

k
ij = (~yj)

−1[(Uk
i,j+1 − Uk

ij)(hyj)
−1 − (Uk

ij − Uk
i,j−1)(hy,j−1)

−1],

~xi = 2−1(hx,i−1 + hxi), ~yj = 2−1(hy,j−1 + hyj),

where p = (xi, yj) ∈ ωh and Uk
ij = U(xi, yj, tk).

The difference scheme (24) satisfies the assumptions in (3). Thus, for the mono-
tone Jacobi and Gauss–Seidel methods (9) applied to the difference scheme (24),
Theorems 1–4 hold true.

5.1. Uniform convergence of the monotone iterative methods on layer-

adapted meshes. Here we investigate convergence of the monotone iterative meth-
ods (9) to the difference scheme (2) defined on meshes of general type introduced
in [8].

A mesh of this type is formed in the following manner. We divide each of the
intervals ωx = [0, 1] and ωy = [0, 1] into three parts [0, ςx], [ςx, 1− ςx], [1− ςx, 1],
and [0, ςy], [ςy , 1− ςy], [1− ςy, 1], respectively. Assuming that Nx, Ny are divisible
by 4, in the parts [0, ςx], [1− ςx, 1] and [0, ςy], [1− ςy, 1] we allocate Nx/4 + 1 and
Ny/4 + 1 mesh points, respectively, and in the parts [ςx, 1− ςx] and [ςy, 1− ςy] we
allocate Nx/2+1 and Ny/2+1 mesh points, respectively. Points ςx, (1− ςx) and ςy,

(1− ςy) correspond to transition to the boundary layers. We consider meshes ωhx

and ωhy which are equidistant in
[

xNx/4, x3Nx/4

]

and
[

yNy/4, y3Ny/4

]

but graded

in
[

0, xNx/4

]

,
[

x3Nx/4, 1
]

and
[

0, yNy/4

]

,
[

y3Ny/4, 1
]

. On
[

0, xNx/4

]

,
[

x3Nx/4, 1
]

and
[

0, yNy/4

]

,
[

y3Ny/4, 1
]

let the mesh be given by a mesh generating function φ
with φ(0) = 0 and φ(1/4) = 1 which is supposed to be continuous, monotonically
increasing, and piecewise continuously differentiable. Then the mesh is defined by

xi =







ςxφ(ξi), ξi = i/Nx, i = 0, . . . , Nx/4;
ςx + (i−Nx/4)hx, i = Nx/4 + 1, . . . , 3Nx/4;
1− ςxφ(ξi), ξi = (Nx − i)/Nx, i = 3Nx/4 + 1, . . . , Nx,

yj =







ςyφ(ξj), ξj = j/Ny, j = 0, . . . , Ny/4;
ςy + (j −Ny/4)hy, j = Ny/4 + 1, . . . , 3Ny/4;
1− ςyφ(ξj), ξj = (Ny − j)/Ny, j = 3Ny/4 + 1, . . . , Ny,

hx = 2(1− 2ςx)N
−1
x , hy = 2(1− 2ςy)N

−1
y .

We also assume that d(φ(ξ))/dξ does not decrease. This condition implies that

hxi ≤ hx,i+1, i = 1, . . . , Nx/4− 1, hxi ≥ hx,i+1, i = 3Nx/4 + 1, . . . , Nx − 1,

hyj ≤ hy,j+1, j = 1, . . . , Ny/4− 1, hyj ≥ hy,j+1, j = 3Ny/4 + 1, . . . , Ny − 1.

5.1.1. Uniform convergence on the piecewise uniform mesh. We choose
the transition points ςx, (1− ςx) and ςy, (1− ςy) as in [10],

ςx = min
{

4−1, υ1µ lnNx

}

, ςy = min
{

4−1, υ2µ lnNy

}

,

where υ1 and υ2 are positive constants. If ςx,y = 1/4, then Nx,y are very large
compared to 1/µ which means that the difference scheme (2) can be analyzed using
standard techniques. We therefore assume that

ςx = υ1µ lnNx, ςy = υ2µ lnNy.

Consider the mesh generating function φ in the form

φ(ξ) = 4ξ.

In this case the meshes ωhx and ωhy are piecewise uniform with the step sizes

(25) N−1
x < hx < 2N−1

x , hxµ = 4υ1µN
−1
x lnNx,

N−1
y < hy < 2N−1

y , hyµ = 4υ2µN
−1
y lnNy.



610 BOGLAEV

The difference scheme (24) on the piecewise uniform mesh (25) converges µ-
uniformly to the solution of (23):

(26) max
t∈ωτ

‖U(·, t)− u(·, t)‖ωh ≤ C(N−1 lnN + τ), N = min{Nx, Ny},

where C denotes a generic constant that is independent of µ, N and τ . The proof
of this result can be found in [5].

Lemma 3. For the monotone Jacobi and Gauss–Seidel methods (9) applied to the
difference scheme (24) on the piecewise uniform mesh (25), the convergent factors
qjac and qgs are defined by (15) and (16), respectively, with

(27) d∗ =
N2

x

8υ2
1 ln

2 Nx

+
N2

y

8υ2
2 ln

2 Ny

, e∗ =
d∗

2
.

Proof. From (23), we have

dij =
µ2

~xi

(

1

hx,i−1
+

1

hxi

)

+
µ2

~yj

(

1

hy,j−1
+

1

hyj

)

.

From (25), we obtain

max{h−1
xµ ;h

−1
x } = h−1

xµ , max{h−1
yµ ;h

−1
y } = h−1

yµ .

Thus,

d∗ = max
ij

dij = 2µ2(h−2
xµ + h2

yµ).

From here and (25), we conclude (27) for d∗. The result for e∗ follows from the
fact that for interior mesh points with step-sizes hxµ, hyµ and not adjacent to the
boundary, we have

∑

p′∈σU (p)

e(p, p′) = d(p)/2.

�

Theorem 5. Let initial upper or lower solutions be chosen in the form of (18) and
f satisfy (7). Suppose that on each time level the number of iterates n∗ ≥ 2. Then
the monotone iterative methods (9), applied to the difference scheme (24) on the
piecewise uniform mesh (25), converge µ-uniformly to the solution of the difference
scheme (24), where the parameters d∗ and e∗ in the convergence rates (19) are
defined in (27).

Proof. As follows from the proof of Theorem 4, for the monotone iterative methods
(9) on the piecewise uniform mesh (25), constants Cjac and Cgs are independent
of τ , µ and N . Thus from here, Theorem 4 and Lemma 3, we prove uniform
convergence of the monotone iterative methods (9). �

Remark 4. From (26) and Theorem 5, we conclude that the monotone iterative
methods (9), applied to the difference scheme (24) on the piecewise uniform mesh
(25), converge µ-uniformly to the solution of the differential problem (23).

5.1.2. Uniform convergence on the log-mesh. Here we assume that µ ≤ µ0 =
const < 1, and choose the transition points ςx, (1− ςx) and ςy, (1 − ςy) as in [2],

(28) ςx = υ1µ ln (1/µ) , ςy = υ2µ ln (1/µ) ,

φ(ξ) =
ln[1− 4(1− µ)ξ]

lnµ
.
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The difference scheme (24) on the log-mesh (28) converges µ-uniformly to the
solution of (23):

(29) max
t∈ωτ

‖U(·, t)− u(·, t)‖ωh ≤ C(N−1 + τ), N = min{Nx, Ny},

where constant C is independent of µ, N and τ . The proof of this result can be
found in [5].

Lemma 4. For the monotone Jacobi and Gauss–Seidel methods (9) applied to the
difference scheme (24) on the log-mesh (28), the convergent factors qjac and qgs are
defined by (15) and (16), respectively, with

(30) d∗ = 2(υ1 ln(1−4(1−µ0)N
−1
x ))−2+2(υ2 ln(1−4(1−µ0)N

−1
y ))−2, e∗ =

d∗

2
.

Proof. From (28), it follows that

max
i,j

dij =
µ2

~x,1

(

1

hx,0
+

1

hx,1

)

+
µ2

~y,1

(

1

hy,0
+

1

hy,1

)

≤
2µ2

h2
x,0

+
2µ2

h2
y,0

,

hx,0 = −υ1µ ln(1− 4(1− µ)N−1
x ), hy,0 = −υ2µ ln(1 − 4(1− µ)N−1

y ).

From here and taking into account that µ ≤ µ0 we prove (30). �

Remark 5. If Nx and Ny are sufficiently large, then from (30), we conclude the
estimate

d∗ ≈
N2

x

8υ2
1(1− µ0)2

+
N2

y

8υ2
2(1− µ0)2

.

Theorem 6. Let initial upper or lower solutions be chosen in the form of (18) and
f satisfy (7). Suppose that on each time level the number of iterates n∗ ≥ 2. Then
the monotone iterative methods (9), applied to the difference scheme (24) on the
log-mesh (28), converge µ-uniformly to the solution of the difference scheme (24),
where the parameters d∗ and e∗ in the convergence rates (19) are defined in (30).

Proof. As follows from the proof of Theorem 4, for the monotone iterative methods
(9) on the log-mesh (28), constants Cjac and Cgs are independent of τ , µ and N .
Thus from here, Theorem 4 and Lemma 4, we conclude uniform convergence of the
monotone iterative methods (9). �

Remark 6. From (29) and Theorem 6, we conclude that the monotone iterative
methods (9), applied to the difference scheme (24) on the log-mesh (28), converge
µ-uniformly to the solution of the differential problem (23).

5.2. Numerical experiments. As a test problem for the singularly perturbed
problem (23), we use f(u) = exp(−1)− exp(−u), g = 0 and u0 = 0. This problem
gives c∗ = exp(−1), c∗ = 1, and the initial lower and upper solutions are chosen in
the form of (18).

The stopping criterion for the monotone methods (9) is

‖U (n)(·, t)− U (n−1)(·, t)‖ωh ≤ δ,

where δ = 10−5 is the prescribed accuracy. We denote by n and n numbers of
iterative steps required to get the required accuracy on each time level over 10 time
steps using lower and upper sequences, respectively.

It is found that in all numerical experiments the basic feature of monotone
convergence of the upper and lower sequences is observed. In fact, the monotone
property of the sequences holds at every mesh point in the domain. This is, of
course, to be expected from the analytical consideration.
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We mention here that our numerical results on the piecewise uniform mesh (25)
and log-mesh (28) are almost the same, thus we present the results only on the
piecewise uniform mesh. In (25), we use Nx = Ny = N and υ1 = υ2 = 1.

In Tables 1 and 2, for various values of N , µ and τ = 10−2, 10−1, we present
convergence iteration counts for the monotone Jacobi and Gauss–Seidel methods
(9), respectively. From the data, we conclude that for µ ≤ 10−2, the numbers
of iterations are independent of the perturbation parameter µ. These numerical
results confirm our theoretical results stated in Theorem 5.

µ\N 16 32 64 128 256
n
jac

; njac (τ = 10−2)
10−1 42; 40 74; 70 166; 159 463; 442 1410; 1337

µ ≤ 10−2 32; 30 42; 40 61; 59 94; 90 188; 180
n
jac

; njac (τ = 10−1)
10−1 122; 116 308; 294 910; 864 2738; 2574 7791; 7215

µ ≤ 10−2 67; 65 106; 102 195; 187 431; 411 1049; 994

Table 1. Convergence iteration counts over ten time steps for the
monotone Jacobi method.

µ\N 16 32 64 128 256
n
gs
; ngs (τ = 10−2)

10−1 44; 40 62; 60 116; 113 281; 272 817; 782
µ ≤ 10−2 31; 30 41; 40 52; 50 72; 71 128; 124

ngs; ngs (τ = 10−1)
10−1 90; 88 195; 189 534; 513 1598; 157 4695; 4397

µ ≤ 10−2 59; 57 81; 79 133; 129 266; 257 617; 592

Table 2. Convergence iteration counts over ten time steps for the
monotone Gauss–Seidel method.

Convergence rates of the monotone Jacobi and Gauss–Seidel methods, λjac and
λgs, respectively, can be estimated using the formulae

λjac(2N) =
njac(2N)

njac(N)
, λgs(2N) =

ngs(2N)

ngs(N)
.

For τ = 10−2, 10−1, Tables 3 and 4 present uniform convergence rates of the mono-
tone Jacobi and Gauss–Seidel methods, respectively. From (15) and (16), we can
estimate theoretical convergence rates of the monotone methods in the form

λth
jac(2N) ≈

ln(qjac(N))

ln(qjac(2N))
, λth

gs(2N) ≈
ln(qgs(N))

ln(qgs(2N))
,

where qjac, qgs are defined in (15) and (16), respectively, and d∗, e∗ are given in
(27). In Tables 3 and 4, we give the theoretical convergence rates as well. From
the data in these tables, we can conclude that the numerical convergence rates are
close to the theoretical convergence rates.

We next compare the monotone iterative methods (9) with the monotone itera-
tive method from [3]. The last method is defined by the recurrence formulae

(L+ c∗)Z(n)(p, t) = −R(p, t, U (n−1)), p ∈ ωh,
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τ λ
jac

; λjac; λth
jac

10−2 1.31; 1.33; 1.18 1.45; 1.48; 1.31 1.54; 1.53; 1.53 2.00; 2.00; 1.90
10−1 1.58; 1.57; 1.37 1.84; 1.83; 1.71 2.21; 2.20; 2.18 2.43; 2.42; 2.67
2N 32 64 128 256

Table 3. Convergence rates for the monotone Jacobi method.

τ λ
gs
; λgs; λth

gs

10−2 1.32; 1.33; 1.12 1.27; 1.25; 1.23 1.39; 1.42; 1.40 1.78; 1.75; 1.67
10−1 1.37; 1.39; 1.23 1.64; 1.63; 1.48 2.01; 1.93; 1.90 2.32; 2.30; 2.42
2N 32 64 128 256

Table 4. Convergence rates for the monotone Gauss–Seidel method.

Z(1)(p, t) = g(p, t)− U (0)(p, t), Z(n)(p, t) = 0, n ≥ 2, p ∈ ∂ωh,

U (n)(p, t) = U (n−1)(p, t) + Z(n)(p, t), p ∈ ωh,

R(p, t, U (n−1)) ≡ LU (n−1)(p, t) + f(p, t, U (n−1))− τ−1U(p, t− τ),

where L is defined in (2). As a linear solver at each iterative step, we employ the
conjugate gradient method with the preconditioner based on the incomplete LU
factorization (ILUCG) (see [1] for details).

µ\N 128 256 512
tjac; tgs; tilucg (τ = 10−2)

10−1 20; 12; 15 231; 136; 116 2581; 1653; 873
µ ≤ 10−2 4; 3; 9 31; 24; 50 342; 196; 273

tjac; tgs; tilucg (τ = 10−1)
10−1 111; 62; 48 1105; 659; 394 8362; 6209; 3386

µ ≤ 10−2 17; 11; 20 176; 104; 127 1447; 943; 1006

Table 5. Execution times for the monotone Jacobi, monotone
Gauss–Seidel and ILUCG methods over twenty time levels.

Table 5 displays the execution times of the monotone Jacobi, monotone Gauss–
Seidel and ILUCG methods over 20 time levels. All execution times are rounded
up to the nearest second. The data show that for µ ≤ 10−2 the monotone Gauss–
Seidel method executes faster than the monotone Jacobi and ILUCG methods. For
τ = 10−2, µ ≤ 10−2, N ≤ 256 and τ = 10−1, µ ≤ 10−2, N ≤ 128 the monotone
Jacobi method executes faster than ILUCG method.
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