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BARYCENTRIC COORDINATE BASED MIXED FINITE

ELEMENTS ON QUADRILATERAL/HEXAHEDRAL MESH

RUNHILD A. KLAUSEN, SISSEL S. MUNDAL, AND HELGE K. DAHLE

Abstract. This paper presents barycentric coordinate interpolation reformu-

lated as bilinear and trilinear mixed finite elements on quadrilateral and hexa-

hedral meshes. The new finite element space is a subspace of H(div). Barycen-

tric coordinate interpolations of discrete vector field with node values are also

known as the corner velocity interpolation. The benefit of this velocity interpo-

lation is that it contains the constant vector fields (uniform flow). We provide

edge based basis functions ensuring the same interpolation, and show how these

basis functions perform as separate velocity elements.

Key Words. barycentric coordinate, corner velocity interpolation, mixed fi-

nite elements.

1. Introduction

The mixed finite element methods, e.g. [5] and streamline based simulations, [7],
are commonly used in engineering applications like reservoir simulation. Consider
the Raviart-Thomas or Raviart-Thomas-Nédélec conforming elements in 2 and 3
dimensions respectively denoted the RT r and RT N 0, cf. [22, 26, 17]. Because of
complex reservoir geology, reliable flow simulations will in general require flexibility
in the meshes. In streamline simulations extensions of theRT 0-elements are used to
interpolate the velocity field on irregular grids, see [6, 8, 9, 10, 13, 14, 15, 16, 20, 21].
However, the RT r- and RT N 0-elements do not preserve constant vector fields
(uniform flow) in their interpolation space, [16]. As a consequence they exhibit
optimal-order convergence for the velocity in H(div), the velocity space, on general
meshes, [2, 24].

To circumvent this problem and to improve the accuracy of streamline simu-
lations, Hægland et al. devised the CVI (corner velocity interpolation) method
[8] based on edge fluxes and bilinear or trilinear barycentric vertex interpolation.
Barycentric coordinates φj(x) on a cell with vertex xj , j = 1 . . . , n is the unique
solution of

∑

xjφj(x) = x and
∑

φ = 1, cf. [5] among many standard books.
Over a triangle these are linear functions, scaled to be one or zero in the vertices.
Barycentric coordinates offer linear precision, and used for interpolation of a ve-
locity vector from the vertex values, this would clearly also reproduce a constant
velocity field.

In this paper we take an alternative approach and propose a new multi-linear
H(div) finite elements on quadrilateral and hexahedral meshes based on the idea of
corner velocity interpolation. Hence, rather than constructing a velocity-interpolation
that preserve the constant vectors based on given fluxes as a post processing step,
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we provide edge based shape functions for the CVI. We then employ these func-
tions as the velocity space in a mixed formulation. Some analysis of this velocity
space is shown, and we provide a numerical study demonstrating properties of the
new elements.

For completeness we review some of the main results on mixed finite elements re-
lated to convergence and reproduction of uniform flow on general meshes: Construc-
tion of robust H(div)-conforming mixed elements on deformed mesh, like quadrilat-
erals or hexahedra has been addressed by many authors over the last years, among
many others see for instance [2, 3, 16, 24, 27] Construction of a finite element sub-
space of H(div) relies on a multi-linear map to a unit reference cell. The Piola
transformation relates the reference shape functions to the approximation space on
the arbitrary irregular cell in physical space in a manner that preserves the fluxes.
For general quadrilaterals, an analysis of vector fields defined via the Piola mapping
by Arnold et al. [2], demonstrates a degradation of H(div,Ω) convergence com-
pared to rectangular meshes. The RT 0 elements on shape-regular quadrilaterals,
do in fact not converge in H(div,Ω). For a vector field v, the L2(Ω) estimate is
of optimal-order h, with some additional regularity requirements. In the L2(Ω)
estimate of the divergence of v, on the other hand, accuracy of the interpolation
is lost, and hence convergence is lost. This result was not fully resolved before the
analysis given in [2].

However, in L2(Ω), the RT 0 elements retain optimal-order convergence for both
the scalar and the vector fields [24]. Also, what usually is established is conver-
gence in H(div,Ω) for smooth grids, or for a sequence of h2-uniform grids. I.e.;
grids asymptotically reaching parallelogram meshes. The discrete fluxes from the
RT element can immediately also be post-processed with an alternative cell inter-
polation, related to the Arnold-Boffi-Falk elements proposed in [2], to retain full
H(div) convergence on general rough meshes, c.f., [12]. Moreover, in [2] they show
that for full H(div) convergence of finite element soultions built on the Piola map-
ping, the lowest-order discrete space on R has to contain the constants. By exact
representation of uniform flow, we ensure reproduction of constants on the physical
space instead.

Similar results was obtained for the RT N 0 space on hexahedra meshes in [3].
They prove convergence inH(div,Ω) for shape-regular asymptotically parallelepiped
meshes. Numerical experiments support this result by indicating no H(div,Ω) con-
vergence for meshes of trapezoidal shape. These meshes are conceptually similar to
the trapezoidal meshes used in [2], which yield the same numerical results for 2D
RT 0 elements. The lack of convergence for the RT N 0 space on general hexahedra
meshes is also demonstrated in, e.g., [23]. This deficiency of the RT N 0 velocity
space, can be associated to the lack of reproduction of uniform flow. In [16], it
is shown that, on a general hexahedron, a constant flow field does not imply lin-
ear face fluxes. Hence, the RT N 0 velocity space obtained via the Piola mapping,
which implicitly yields a linear flux reconstruction, does not contain the constant
functions. The findings in [19] generalize this observation. They prove that for a
general hexahedron with bilinear faces, both a local reconstruction of velocity based
on the six face fluxes and exact representation of uniform flow (constant velocity
field), can not be satisfied in H(div,Ω).

The rest of this paper is organized as follows; In the next section we define the
preliminaries. Then, in section 3, we present the new CVI finite element space, and
furthermore in section 3.1, we find that the CVI space can be regarded as a per-
turbation of the RT 0 elements. Section 3.2 provides the CVI shape functions for
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hexahedra elements. In section 4 we present numerical results for general quadrilat-
eral meshes, and finally the convergence behavior of the CVI mixed finite element
method is summarized, and compared to the RT 0 mixed finite element method.

2. Preliminaries

Let Ω ⊂ R
d, with d = 2, 3, be a bounded domain, with polygonal boundary

∂Ω. We limit the discussion to the steady-state incompressible single phase flow
problem

− div(K(x) grad p) = g, for x ∈ Ω,

p(x) = p0, for x ∈ ∂Ω.
(1)

For applications in reservoir simulation, Equation (1) is to be viewed as a model
equation for the pressure, and it is based on an underlying principle of conservation
of mass. We denote by p the pressure, and by K the symmetric positive definite
diffusion tensor. To account for a general reservoir geology, we allow for the diffusion
coefficients to be discontinuous. The geology of this kind of problems also require
the use of rough grids, with general hexahedral cells. Finally, any sources or sinks
present are represented by g ∈ L2(Ω).

A mixed finite element formulation of (1) is generally based on a variational
principle utilizing the space of L2(Ω) vector functions. We define the space as
follows

H(div,Ω) = {v ∈ (L2(Ω))d | div v ∈ L2(Ω)},
where L2(Ω) is the set of square Lebesgue integrable functions on Ω, with norm
defined via the inner product, ‖ · ‖2L2(Ω) = (·, ·)L2(Ω). For brevity, we denote the

L2(Ω) inner product by (·, ·) henceforth. The norm in H(div,Ω) is provided by

‖v‖2H(div,Ω) = ‖v‖2L2(Ω) + ‖ div v‖2L2(Ω).

Finally, let < ·, · > be the L2(∂Ω) inner product.
Let q = −K grad p denote the unknown fluid velocity. A variational formulation

of the problem (1) then reads: Find a pair (q, p) ∈ H(div,Ω)× L2(Ω) such that

(2)
(K−1q,v)− (p, div v) = − < v · n, p0 >,

(div q, u) = (g, u),

∀v ∈ H(div,Ω),

∀u ∈ L2(Ω).

2.1. Quadrilateral Meshes. For the sake of simplicity we assume Ω ⊂ R
2, until

further. Let {Th} denote a family of partitions of Ω into regular quadrilateral cells,
i.e.; all cells are convex, the angles are uniformly bounded away from zero and π,
and the ratio between the length of the smallest edge and the diameter of the cell is
uniformly bounded from below. Then an element E ∈ Th is of general quadrilateral
shape, with h being the maximum element edge. Finally, denote by Eh the set of
all element edges in Th.

In a mixed setting, the finite element space Vh ⊂ H(div,Ω) is generally defined

in terms of shape functions on an element Ê in a reference space R. An arbitrary
quadrilateral cell E ∈ Th is thus the image of the reference element Ê via the
bilinear map F = FE : Ê → E, which is smooth and invertible, see Figure 1. Here,
Ê = (0, 1)× (0, 1) is the unit square.

We denote by xij , i, j = 0, 1, the vertices of element E as shown in Figure 1.

Let (x̂, ŷ) ∈ Ê. The bilinear map reads

(3) FE(x̂, ŷ) = x00(1− x̂)(1 − ŷ) + x10x̂(1− ŷ) + x11x̂ŷ + x01(1 − x̂)ŷ.
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Figure 1. A quadrilateral cell E is seen as the image of a reference
unit square under the bilinear map FE : Ê → E.

Any point x ∈ E can thus be expressed as

(4) x(x̂, ŷ) =

2
∑

ij=1

xijφij(x̂, ŷ),

where the φij > 0 are the nodal functions of the bilinear mapping, or bilinear
barycentric functions. Given the nodes xkl, we have φij(xkl) = δ(ij)(kl) , with
i, j, k, l = 1, 2, and further

(5)
2

∑

ij=1

φij(x̂, ŷ) = 1.

The latter is needed to exactly represent uniform flow.
The Jacobian matrix of FE is denoted by D = DFE(x̂) with a strictly positive

Jacobian J = detD > 0 for all x̂ ∈ Ê.
Also, we will henceforth assume the partitions {Th} to be h2-uniform or smooth.

That is; we assume there exists a constant σ independent of h, such that

(6) |FE(x̂, ŷ)| = |x00 + x11 − (x01 + x10)| ≤ σh2.

This condition is met if the grid refinement asymptotically leads to parallelogram
cells. In particular, this is the case if an initial mesh is refined j times by dividing
the sides of the previous mesh at the face midpoints. To see this, consider the
quadrilateral cell in Figure 1. The cell is divided into four subelements by dividing
each edge into two equal halves. Let all cells of Th be refined in a similar manner.
Thus, since the map (3) is linear along edges, this yields a uniform refinement. As
h decreases, any element E ∈ Th approaches a parallelogram. Let xij , i, j = 1, 2,
specify a given cell, and let a subcell be defined by x′

ij , i = 1, 2. Then for the
subsequent refinement level

(7) |FE(x̂, ŷ)| = |x′
00 + x

′
11 − (x′

01 + x
′
10)| =

1

4
|x00 + x11 − (x01 + x10)|.

Hence, when the element size has been halved j times, |F x̂ŷ| is reduced by a factor

of (1/2)2j, and the mesh size h = H
2j , where H is the mesh size of the original mesh.

A further discussion of h2-uniform grids can be found in [11].

3. CVI Finite Element Space

Let Vh × Qh ⊂ H(div,Ω) × L2(Ω). The following problem is then a discrete
formulation of (2): Find a pair (qh, ph) ∈ Vh ×Qh such that

(8)
(K−1qh,v)− (ph, div v) = − < v · n, p0 >,

(div qh, u) = (g, u),

∀v ∈ Vh,

∀u ∈ Qh.
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x00
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x11x01

ex̂0 = e1

e1ŷ = e2

ex̂1 = e3

e0ŷ = e4 E

Figure 2. The corners and faces of a quadrilateral cell expressed
in terms of the reference space coordinates 0 ≤ x̂, ŷ ≤ 1.

Let v̂ be a vector field in H(div, Ê). Then, the Piola transformation P = PE

yields the natural way to represent a vector field v = PE v̂ ∈ H(div, E) by

(9) v(x) = P(x̂)v̂(x̂) =
1

J
Dv̂ ◦ F−1(x).

The Piola transformation relates the two vector fields so that the normal fluxes are
preserved. If p = p̂ ◦ F−1 for some p̂ : Ê → R, we have

(10)

∫

e

v · n p ds =

∫

ê

v̂ · n̂ p̂ dŝ,

where n and n̂ are the outward unit normal vectors on ∂E and ∂Ê, respectively.
The construction of finite element subspaces of H(div,Ω) necessitates continuity

of normal fluxes. Let V̂h ⊂ H(div, Ê) denote the space of shape functions on a

reference element Ê. Thus, by applying (9) to some function ψ̂ ∈ Vh, we obtain a
shape function ψ ∈ Vh on E.

Henceforth, we let Pi,j denote a piecewise polynomial of degree at most (i, j)
in (x̂, ŷ), respectively, associated with Th. The classical family of finite elements

for H(div) approximation is the Raviart-Thomas elements RT r := Pr+1,r(Ê) ×
Pr,r+1(Ê), r ≥ 0.

Here we consider the lowest-order Raviart-Thomas space RT 0. Let P0,0 denote

piecewise constants on (0, 1) × (0, 1). On the reference square Ê the RT 0 veloc-
ity space is defined as the four-dimensional space given as all vector fields of the
following form

RT 0(Ê) = (P0,0 + x̂P0,0)× (P0,0 + ŷP0,0).

Element wise, this gives rise to the following shape functions as functions of the
reference space coordinates.

(11) ψi(x̂) = P(x̂, ŷ)ψ̂i(x̂),

for i = 1, . . . , 4. Here ψ̂1 = [0, 1 − ŷ]T , ψ̂2 = [x̂, 0]T , ψ̂3 = [0, ŷ]T and ψ̂4 =
[1− x̂, 0]T .

Finally, the space of scalar variables Qh is simply given as

(12) Qh := {u ∈ L2 : u|E ∈ P0(E), ∀E ∈ Th}.

3.1. CVI Shape Functions. We will now define the CVI elements. Note, that
for simplicity of exposition, we let P(x̂, ŷ) = Px̂ŷ, with x̂, ŷ = 0 or 1, from this
point on, while φij = φij(x̂, ŷ), i, j = 0, 1, is defined in Equation (4). Further, the
numbering of the corners and faces are shown in Figure 2.
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Definition 1.

ψ
cvi
1 = P00

(

0
φ00

)

+ P10

(

0
φ10

)

,(13)

ψcvi
2 = P10

(

φ10

0

)

+ P11

(

φ11

0

)

,(14)

ψcvi
3 = P11

(

0
φ11

)

+ P01

(

0
φ01

)

,(15)

ψcvi
4 = P00

(

φ00

0

)

+ P01

(

φ01

0

)

.(16)

The shape functions ψcvi
i are constructed to fulfill the next lemma.

Lemma 1. Let nj, j = 1, . . . , 4, be the (positive) normal vector to edge ej of an
element, with length equal to the length of ej. Then

ψcvi
i (ej) · nj = δij .

Proof. We prove Lemma 1 for ψcvi
4 . The other ψcvi

i , for i = 1, . . . , 3, follow in
a similar manner. From (9), we have P00 = 1

J00

D00, with D00(φ00, 0)
T = (x10 −

x00)φ00. Now, (x10−x00)·n1 = 0, and (x10−x00)·n4 = (x10−x00)×(x01−x00) =
J00, while φ00 is zero along e2 and e3. Similarly, for P01 we have, (x11−x01)·n3 = 0,

and (x11 − x01) · n4 = J01, while φ01 is zero along e1 and e2. Hence, ψcvi
4 · n4 =

(φ00 + φ01), which equals 1 along e4, while ψ
cvi
4 (ej) · nj = 0 for j = 2, 3, 4. �

To more clearly see the relation to the RT 0 elements, we provide the following
lemma.

Lemma 2. Let ψ̂i, i = 1, . . . , 4, be the RT 0 shape functions on the element Ê, see
Equation (11). Then, we have

ψcvi
1 (x̂, ŷ) = P00ψ̂1 + (P10 − P00)[0, x̂(1− ŷ)]T ,

ψcvi
2 (x̂, ŷ) = P10ψ̂2 + (P11 − P10)[x̂ŷ, 0]

T ,

ψ
cvi
3 (x̂, ŷ) = P01ψ̂3 + (P11 − P01)[0, x̂ŷ]

T ,

ψcvi
4 (x̂, ŷ) = P00ψ̂4 + (P01 − P00)[(1 − x̂)ŷ, 0]T ,

and for parallelogram cells, the CVI element degenerates to the RT 0-element.

Proof. The proof of Lemma 2 follows immediately from Definition 1, and the fact
that on parallelogram cells, the Piola mapping is constant. �

Finally, the CVI basis elements also fulfill exact representation of uniform flow,
or equivalently, they preserve constant vector fields.

Lemma 3. Let ek, k = 1, 2, be the unit vector, and ni the (positive) edge normal
with length equal to the edge length. Then the CVI basis functions for i = 1, . . . , 4,
fulfil

(17) ek =

4
∑

i=1

fkiψ
cvi
i ,

with flux fki = (ek · ni).

Proof. For simplicity of notation, let ξi be the edge vector along edge ei, such that
ξ1 = (x10 − x00), and let the vertices be indexed from 1 to 4 in counter-clockwise
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direction, so that i = 1 corresponds to vertex x00. Finally, let i = 0 or 5 correspond
to i = 4 or 1. With this notation,

fk1ψ
cvi
1 = (ek · n1)P1

(

0
φ1

)

+ (ek · n1)P2

(

0
φ2

)

,

where P1 = 1
J(x1)

[ξ1, ξ4], and P2 = 1
J(x2)

[ξ1, ξ2]. Now,

4
∑

i=1

fkiψ
cvi
i =

4
∑

i=1

(ek · ni) ξi−1

J(xi)
φi +

4
∑

i=1

(ek · ni) ξi+1

J(xi+1)
φi+1

=

4
∑

i=1

(ek · ni+1) ξi
J(xi+1)

φi+1 +

4
∑

i=1

(ek · ni) ξi+1

J(xi+1)
φi+1

=

4
∑

i=1

[

(ek · ni+1) ξi + (ek · ni) ξi+1

] φi+1

J(xi+1)
.

Since ek is the unit vector;

(ek · ni+1) ξi + (ek · ni) ξi+1 =
1

2

(

ξin
T
i+1 + ξi+1n

T
i

)

ek.

Note that all vectors are taken in positive direction with regards to the reference
space. Thus, with ξi = [ξ1i , ξ

2
i ]

T = ±[n2
i ,−n1

i ]
T , we have

(

ξin
T
i+1 + ξi+1n

T
i

)

/2 = J(xi+1)I ,

with I the identity matrix. Summing up and using eq. (5),

4
∑

i=1

fkiψ
cvi
i =

4
∑

i=1

J(xi+1)I ek
φi+1

J(xi+1)
= ek

4
∑

i=1

φi = ek.

�

For each cell, the CVI basis functions can also be viewed as barycentric edge
based H(div) coordinates. In this sense, Equation (17) is analogous to Equation
(5).

3.2. Hexahedral 3D Mesh. We limit the 3D discussion to shape-regular hex-
ahedral cells, with six faces and eight vertices. Extension of face based elements
from 2D to 3D is unfortunately a bit more complicated from quadrilaterals to hex-
ahedra, than from triangulations to tetrahedra. In 2D, both quadrilaterals and
triangulations have two vertices per edge, while in 3D, a hexahedral face has four
vertices compared to three on a tetrahedral face. This implies that the adjacent
edge vectors to a vertex do not provide us enough information for a definition of the
face for a hexahedral element. As we will show below, we need to provide additional
information.

Due to the result of [19], which proves that for a general hexahedron with bilinear
faces, both a local reconstruction of velocity based on the six faces and reproduction
of uniform flow cannot be satisfied inH(div,Ω), the CVI shape functions are limited
to grids with planar faces henceforth. We note that even when this is the case, the
RT 0 elements are generally not able to preserve uniform flow. An example is a
grid of truncated pyramids [16].

Let x̂ = (x̂, ŷ, ẑ) ∈ R
3 denote a point in the reference space. A hexahedron

in physical space is represented as the image of a reference element Ê under the
trilinear map H = HE : Ê → E. Here, Ê = {x̂ |0 ≤ x̂, ŷ, ẑ ≤ 1} is the unit cube.
Let xijk , i, j, k = 0, 1, be the vertices of the physical hexahedron E, where the index
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(a) The map HE and the vertex numbering.
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1jk
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(b) Illustration of the face number-
ing.

Figure 3. A physical element E is the image under the trilinear
map HE from a reference element Ê.

refers to the corresponding (x̂, ŷ, ẑ) value. Then, under the map HE , any point
x ∈ E is given as

(18) x(x̂, ŷ, ẑ) =

2
∑

ijk=1

xijkφijk(x̂, ŷ, ẑ),

where φijk(x̂, ŷ, ẑ) is the trilinear node functions on Ê, or barycentric basis func-
tions. That is; φijk(xlmn) = δ(ijk)(lmn) and

∑

φijk = 1 on E.
We number the columns of the Jacobian matrix of HE from 1 to 3, i.e. D =

[D1,D2,D3], and we evaluate the Jacobian matrix at the eight vertices xijk,
i, j, k = 0, 1. Further, we denote the faces by the four vertex indices defining
the face, e.g., the face with the four vertices x0jk, j, k = 0, 1, will be indexed by
0jk. We denote the face area Aijk and the unit normal n̄ijk in the same manner.
Note that the unit normals are always orientated in the positive reference space
direction.

For a definition of face elements in accordance with an analogue of Lemma 1,
note that the Jacobian determinant of the trilinear mapping HE evaluated at a
vertex xijk, does not provide us with enough information. Therefore, we define the
diagonal matrix

J̄ijk = diag(D1
ijk · n̄îjkAîjk,

D2
ijk · n̄iĵkAiĵk,

D3
ijk · n̄ijk̂Aijk̂),

(19)

for i, j, k = 0, 1. Here, hats indicate indices pointing to faces. Similarly, we define

P̄ijk = Dijk J̄
−1
ijk .

Due to the limitation to planar faces, observe that v · n̄ijkAijk on a face eijk
corresponds to the face flux. Now, on the six faces of a hexahedron, the CVI shape
functions can be defined by
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Definition 2.

ψcvi
αjk =

1
∑

jk=0

P̄αjk





φαjk

0
0



 , for face eαjk, α = 0, 1,(20)

ψcvi
iαk =

1
∑

ik=0

P̄iαk





0
φiαk

0



 , for face eiαk, α = 0, 1,(21)

ψcvi
ijα =

1
∑

ij=0

P̄ijα





0
0

φijα



 , for face eijα, α = 0, 1.(22)

With Definition 2, we can immediately provide a lemma analogous to Lemma 1.

Lemma 4. Let the six faces of a hexahedron be denoted by elmn, with l,m, n = 0, 1.
Then

ψcvi
ijk(elmn) · nlmnAlmn = δ(ijk)(lmn).

Proof. It holds to prove Lemma 4 for one face. For ψcvi
0jk, we start with the vertex at

x000, whereD000(φ000, 0, 0)
T = (x100−x000)φ000. Further, from the Definition (19)

(x100−x000)·n0jkA0jk = (J̄000)1,1, and (x100−x000)·ni0k = (x100−x000)·nij0 = 0,
while φ000 is zero on face e1jk, ei1k and eij1. A similar derivation applies to the

other three vertices of e0jk. It follows that ψ
cvi
0jk ·n0jkA0jk =

∑1
jk=0 φ0jk , which is

1 on face e0jk, while ψ
cvi
0jk · nlmn = 0 for the other five faces. �

In [18], a first version of one of the CVI shape functions for hexahedral cells was
defined. There, a counterexample on coercivity of (K−1v,v) in the full H(div)
norm was presented.

A lemma analogous to Lemma 3 can be stated also for the CVI space in 3D. Due
to the properties of the barycentric coordinates, we have that the CVI elements
preserve uniform flow. The details are omitted here.

3.3. Deficiencies. The CVI finite elements do represent uniform flow exactly, but
the price to pay is that the divergence of the CVI elements is not contained in the
discrete pressure space of cellwise constants. This means that

div(vcvi) 6⊂ Qh.

Define the interpolation, Ph : L2 → Qh, and as L2-interpolation, Πcvi : H(div) →
CVI, by (div(Πcviv−v), u) for all u ∈ Qh. Then, we do not meet the commutative
hypothesis, i.e.; Ph div v 6= divΠcviv for v ∈ H(div). For classical mixed finite
elements, like the Raviart-Thomas elements or the Brezzi-Douglas-Marini elements,
this is usually fulfilled. These properties play an essential part in the analysis of the
classical mixed methods, however, this hypothesis may be too strong a requirement.

4. Numerical Examples

In this section, we illustrate the convergence of the CVI mixed finite element
space by simulations on smooth grids. A definition of smooth meshes was given in
section 2. We employ a sequence of the mesh shown in Figure 4.

The errors are measured in discrete L2 norms for both variables. Let AE be the
area of a grid cell E ∈ Th. Then, for the pressure, we define

‖p− ph‖(L2,h) =

(

∑

E∈Th
AE(pE − ph,E)

2

∑

E∈Th
AE

)1/2

.
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Figure 4. Smooth refinement of grid.

Let We be the area associated to an edge e ∈ Eh. Here, We is set to be half the
area sum of the two cells adjacent to edge e. Then, the discrete L2 norm for the
normal velocities are given by

‖q − qh‖(L2,h) =

(

∑

e∈Eh
We((qe − qh,e)/|eh|)2
2
∑

e∈Eh
We

)1/2

,

where qe is the normal velocity across the edge e. We also provide the results
measured in discrete maximum norm.

We note that since, by construction, the CVI method preserves a constant flow
field, it is expected to return the exact solution for a linear pressure field. Moreover,
for parallelogram grids, the CVI scheme degenerates exactly to the RT 0 interpo-
lation. Thus, numerical results should be identical for the two discretizations for
such grids. This is observed in the simulations.

First, we apply the smooth solution

(23) u(x, y) = cosh(πx) cos(πy),

where we assume the permeability to be the identity matrix. The discrete L2

convergence is seen in Figure 5(a). We observe that both the pressure and the
normal velocity converge as h2 in discrete L2 norm. The results in maximum norm
is seen in Figure 5(b)
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(a) Results in discrete L
2 norm.
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(b) Results in discrete L
∞ norm.

Figure 5. Numerical convergence of solution (23). N is the num-
ber of elements in each direction.

The next cases apply to a more realistic simulation where we let the permeability
vary throughout the domain. Denote the four regions in our domain from 1 to 4, as
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seen in Figure 6. We may impose different conductivities in the four regions, which
again may render a singularity at the corner where they meet.

θ 12

3 4

Figure 6. Regions 1 to 4 may have different permeabilities.

First, we assume an isotropic, heterogeneous medium, and let the conductivities
in region 2, 3 and 4 equal. If r is the distance from the corner, and θ denotes the
angle from the x-axis, we have the following analytical solution

(24) u (r, θ) = rα
{

cosα(θ − π/3) for θ ∈ [0, 2π/3],
d cosα(4π/3− θ) for θ ∈ [2π/3, 2π],

where α = (3/π) arctan
√

1 + 2/κ and d = cos(απ/3)/cos(2απ/3). Denote by κ =
k1/k2 the conductivity ratio. Here, k1 is the permeability for region 1 and k2
for the rest of the medium. We have κ ≥ 0, which yields α ∈ [0.75, 1.5]. This
parameter describes the regularity of the solution, that is; we find that the solution
(24) belongs to the space H1+α−ǫ

π for an arbitrary ǫ > 0. Here, the subscript π
means that we operate in interpolated Hilbert spaces [25].

Let κ = 10−3 and 102, and thus we have α ≈ 1.4787 and α ≈ 0.7547, respectively.
The convergence behavior in discrete L2 norm and discrete maximum norm can be
found in Figures 7(a) and 7(b), respectively.

Further, we let the conductivities in regions 1 and 3 equal, and similarly, regions
2 and 4 have the same conductivities. We still assume an isotropic permeability.
This accommodates a solution where α ∈ [0, 1.5], and moreover it satisfies u(r, θ) =
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(a) Estimates in discrete L
2 norm.
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(b) Estimates in discrete L
∞ norm.

Figure 7. Numerical convergence for solution (24) with κ =
10−3 and 102, respectively. N is the number of grid cells.
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Figure 8. Numerical L2 convergence for solution (25) with κ =
3, 10 and 102, respectively. N is the number of grid cells.
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Figure 9. Numerical L∞ convergence for solution (25) with κ =
3, 10 and 102, respectively. N is the number of grid cells.

−u(r, θ − π). The solution reads

(25) u (r, θ) = rα
{

cosα (θ − π/3) for θ ∈ [0, 2π/3],
d sinα (5π/6− θ) for θ ∈ [2π/3, π],

and here α = (6/π) arctan(1/
√
1 + 2κ) and d = cos(απ/3)/sin(απ/6). We choose

conductivity ratios of 3, 10 and 100 to illustrate the convergence behavior for various
regularities of the solution (25). This is seen in Figures 8 and 9 for estimates in
discrete L2 and L∞ norm, respectively.

We can summarize the observed convergence rates for solution (23), (24) and
(25), the latter two for various values of the parameter α, as follows. Measured in
discrete L2 norm we find, for the potential, the relation

(26) ‖p− ph‖(L2,h) ∼ hmin{2,2α}.

For the normal velocity we have

(27)
‖q − qh‖(L2,h) ∼ h2, for p ∈ H2,

‖q − qh‖(L2,h) ∼ hα, else.
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Figure 10. Rough grid. Each cell is distorted by O(h) at each
refinement level.

This is in consistency with the finite element theory [25]. Similar results for some
control-volume multipoint flux approximation methods can be found in [1].

For geophysical applications, rough grids honoring the geology are often required
for accurate simulations. Thus, it is appropriate to apply such meshes to the CVI
method presented here. By a rough grid, or h-perturbed grid, we mean a sequence
of grids not approaching parallelograms as the grid is refined, see Figure 10. At
every refinement level, each element is randomly distorted by O(h), with h being
the maximum element edge. The CVI method is seen not to yield a convergent
approximation to any of the solutions for h-perturbed meshes, whereas the RT 0

elements converges in discrete L2 norm also for the rough meshes. Note that,
according to analysis, if measured in full H(div,Ω) norm, the RT 0 velocity space
will not convergence for rough meshes either.

Finally, we remark that the implementation of the CVI velocity space is much
more comprehensive than the RT 0 elements.

5. Discussion

In this work, we have presented an analysis of the CVI elements as velocity
elements in a mixed finite element setting. The CVI shape functions are derived
both in 2D and 3D. Numerical convergence behavior is provided for the CVI space
on smooth quadrilateral grids.

In 2D, we have seen that the CVI elements fulfill Lemma 1 - 3. That is; the
CVI velocity space lies in H(div), and is closely related to the RT 0 space. In fact,
for parallelogram shaped meshes, the CVI space degenerates to the RT 0 space.
Finally, by Lemma 3, the method preserves uniform flow. For the CVI functions
in 3D, we can show that the same property applies.

However, since the divergence of the CVI velocity space is not contained in the
space of constant pressures, it does not meet the commutative qualities, which is an
essential part in classical analysis of the RT 0 mixed method. Thus, compared to
the RT 0 method, we would expect some drawbacks of the proposed CVI method.
This is also observed in the numerical simulations, where the CVI elements exhibit
convergence in discrete L2 norm for h2-uniform grids, contrary to h-perturbed grids,
where the elements do not convergence.
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