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NUMERICAL APPROXIMATION OF OPTION PRICING MODEL

UNDER JUMP DIFFUSION USING THE LAPLACE

TRANSFORMATION METHOD

HYOSEOP LEE AND DONGWOO SHEEN

Abstract. We propose a LT (Laplace transformation) method for solving the

PIDE (partial integro-differential equation) arising from the financial mathe-

matics. An option model under a jump-diffusion process is given by a PIDE,

whose non-local integral term requires huge computational costs. In this work,

the PIDE is transformed into a set of complex-valued elliptic problems by taking

the Laplace transformation in time variable. Only a small number of Laplace

transformed equations are then solved on a suitable choice of contour. Then the

time-domain solution can be obtained by taking the Laplace inversion based

on the chosen contour. Especially a splitting method is proposed to solve the

PIDE, and its solvability and convergence are proved. Numerical results are

shown to confirm the efficiency of the proposed method and the parallelizable

property.
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1. Introduction

The Black-Scholes formula [3], introduced by Black and Scholes in 1973, has been
adopted as a standard framework for option pricing, particularly due to its closed
form solution. However, the difficulty in capturing a large or sudden movement
of an underlying asset has been pointed out as a major drawback of the Black-
Scholes formula. Practitioners and theorists have tried to extend the model of the
underlying to tackle this phenomena, and among them the implementation of jump-
diffusion processes has become one of the most popular tools. In the pioneering
work of Merton [23], he modeled the underlying assets using a Brownian motion
with drift having jumps arriving accordingly as a compound Poisson process. In
[16], Kou tried to explain high peaks and heavy tails in asset return distributions
incorporating with the volatility smile by proposing a double exponential jump
diffusion model. These jump-diffusion processes are considered as specific examples
of Lévy processes with stationary independent increments, and have been applied
intensively to improve option modeling. For further details, for instance, readers
are referred to the book by Cont and Tankov [6] and the references therein.

To evaluate the value of the option modeled by jump-diffusion process, one needs
to solve a PIDE (partial integro-differential equation) of parabolic type that contains
both partial differential operators and a non-local integral term. Several attempts
have been tried to reduce the expensive computational cost of solving the PIDE.
Most of such attempts may be roughly classified into two types. One is to try to
improve the efficiency in the computation of the non-local integral term, and the
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other is try to reduce the number of time steps. In particular, the discretization of
the non-local integral term generates dense matrices that are very expensive to deal
with: iterative methods or other splitting techniques should be employed instead
of any direct matrix inversion schemes. For example, an implicit-explicit method
was developed by Zhang [32], and an ADI (Alternative Direction Implicit) method
was applied by Andersen and Andersen [2]. A fixed point iteration scheme was
introduced by d’ Halluin et al. [8]. As an effort to reduce the number of time steps,
Almendral and Oosterlee [1] applied a second order backward difference formula
(BDF2) and Feng and Linetsky [9] used a high order extrapolation method.

In spite of the popularity of time marching methods, which all the above men-
tioned works employed, they require usually as many time steps as spatial meshes
in order to balance the errors arising from the spatial and time discretizations.
The schemes in [1, 9] reduce the number of time steps considerably compared to
previous works, but they are still of polynomial convergence in time.

In the present paper, we propose a new approach for a parabolic type PIDE
based on the LT (Laplace transformation) method. As proven in [26], the method
is of exponential convergence in time, and in addition it can be easily parallelized.
In the current paper, the method is coupled with a finite element method to solve
the Laplace transformed complex elliptic equations. The solvability of the Laplace
transformed equations is proved, and numerical experiments are performed to show
the efficiency of the proposed method. The numerical results show an exponential
order of convergence in time, and a second order in space. The LT method has
been already applied to the Black-Scholes equation in [17]. Moreover, in [17], a
precise absorbing boundary condition is derived and the solvability of the set of
complex-valued elliptic problems that are the Laplace transforms of the Black-
Scholes equation. Related with LTmethod there are other approaches; for instance,
see [12, 10, 11, 20], and so on. Also, high-dimensional parabolic problems can be
solved using sparse grids [13, 18, 19, 25]. Application of our LT method using
sparse grids to option pricing will also be interesting. Other approaches in the fast
time-stepping methods can be found in [29, 22, 21]; any of these methods can be
also chosen in the LT method that is to be developed in this paper.

The rest of the paper is organized as follows. In the following subsection, a
brief explanation about the mathematical formulation of the model under jump
diffusion is described in terms of PIDE. §2 introduces the LT method and pro-
vides a convergence theorem with some remarks. In §3, we describe the Laplace
transformed equation and prove its solvability. The finite element method for solv-
ing the complex elliptic equations and the technique to accelerate the numerical
scheme are described in §4. §5 shows numerical results to confirm the convergence
and efficiency results of the proposed method.

1.1. The parabolic integro-differential equation. Let S denote the price of
an underlying asset. Following Merton [23], the underlying asset that is governed
by a Brownian motion with drift having jumps arriving accordingly as a compound
Poisson process is assumed to satisfy the following stochastic differential equation:

(1.1) dS = νS dτ + σS dW + (η − 1)S dq,

where the terms dW and dq represent the increment of a Brownian motion and a
Poisson process, respectively. In (1.1), ν and σ are the drift rate and the volatility
of the Brownian part. The Poisson process dq is defined by

dq =

{
0 with probability 1− λdτ,

1 with probability λdτ,
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where λ is the arrival intensity of the Poisson process. Also, (η − 1) is an impulse
function producing a finite jump in S to Sη where the average jump size E[η −
1] is denoted by κ. It is assumed that the Brownian and Poisson processes are
uncorrelated.

Let T be the maturity date and set t = T − τ . Denote then by r the risk-free
interest rate and g(η) the probability density function of the jump amplitude η.
Denote by V (S, t) the option value depending on the asset value S ∈ R+ and the
time to maturity t ∈ (0, T ] with a given initial contract V0 = V (S, 0). Under the
above assumptions, V then satisfies the following PIDE ([23]):

(1.2) Vt −
1

2
σ2S2VSS − (r − λκ)SVS + (r + λ)V − λ

∫ ∞

0

V (Sη, t)g(η) dη = 0,

for (S, t) ∈ R+ × (0, T ].
Note that we have restricted our attention to the model presented in [23], where

jumps are log-normally distributed with mean µ and variance σJ , and the log-
normal probability density function is defined by

g(η) =
1√

2πσJη
e−(log(η)−µ)2/2σ2

Jχ{η>0},

and in this case,

κ = eµ+σ2
J/2 − 1.

Let K be the strike price of the option. The changes of variables in (1.2)

S = Kex, η = ey, g(η) = f(y), and V (S, t) = U(x, t),

result in

(1.3) Ut −
1

2
σ2Uxx − (r − λκ− 1

2
σ2)Ux + (r + λ)U − λ

∫

R

U(x+ y, t)p(y) dy = 0,

for (x, t) ∈ R× (0, T ], where the function p(y) is defined by

p(y) =
1√
2πσJ

e−(y−µ)2/2σ2
J .

In order to develop a numerical method, we truncate the infinite domain R into
a bounded domain Ω = (xL, xR) with −∞ < xL ≪ 0 ≪ xR < ∞. In order to
cooperate the non-local integral term in (1.3), which requires the information on
U outside Ω, we need to impose a suitable condition in the exterior to Ω as well
as a boundary condition on ∂Ω. We therefore assume that there exists a suitable
function R : Ωc × (0, T ] → R such that

(1.4) U(x, t) = R(x, t), (x, t) ∈ Ωc × (0, T ],

where the choice of R(x, t) depends on the initial data. For instance, an European
put option has the initial data

U0(x) = max (K(1− ex), 0) ,

and one can choose the following function under the linearity assumption:

R(x, t) =

{
Ke−rt −Kex, if x ≤ xL,

0, if x ≥ xR.

For other initial contracts, one can also deduce a boundary condition based on an
initial data as mentioned in [8].

From now on, the function R : Ωc × (0, T ] → R is assumed to be extended to
the whole domain R × (0, T ], still denoted by R(·, t), for the sake of notational
simplicity.
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2. The Laplace Transformation method

In order to describe the LT method for a class of parabolic-type problems that
include (1.3), we will consider an abstract setting. We thus consider

∂u

∂t
+Au = f, t ∈ (0.T ],(2.1)

u(0) = u0,

where u0 is given initial data and A is a spatial elliptic operator in L2(Ω) with
its eigenvalues located in a sector Σδ for some δ ∈ (0, π2 ), where the sector Σδ is
defined by Σδ = {z ∈ C : | arg(z)| < δ, z 6= 0}. Furthermore, we assume that the
resolvent (zI +A)−1 of A satisfies

‖(zI +A)−1‖ ≤ M

1 + |z| , for z ∈ Σπ−δ ∪B,

where B is a small circle at the origin and M is a constant independent of z.
For z ∈ Σπ−δ ∪B, the Laplace transform in time of a function u(·, t) is given by

û(·, z) := L[u](z) =
∫ ∞

0

u(·, t)e−zt dt,

and for such z, the Laplace transform of (2.1) is given by

(2.2) zû+Aû = u0 + f̂(·, z).
Notice that the solution û(z) = û(·, z) of (2.2) is formally given by

(2.3) û(·, z) = (zI +A)−1(u0(·) + f̂(·, z)),
for each z. The Laplace inversion formula is given by the following Bromwich inte-
gral [4]

(2.4) u(·, t) = 1

2πi

∫

Γ

û(·, z)ezt dz =
1

2πi

∫

Γ

(
zI +A

)−1(
u0 + f̂(z)

)
ezt dz,

where the integral contour Γ, which is contained in Σπ−δ ∪B, is chosen such that
all the singularities of the integrand are enclosed.

Observe that if z ∈ Γ has negative real parts, the discretization error in numeri-
cally evaluating the integrand in (2.4) will be reduced for positive t as |z| becomes
large. There are several types of deformed contours and quadratures for accurate
numerical inversion of Laplace transformation. [12, 10, 11, 20, 30, 28, 31, 14]

The following analysis can be modified without difficulty by choosing any other
alternative contour and quadrature mentioned above instead of using the approach
of the smooth contour of hyperbola type proposed by Sheen et al. [26]. The
hyperbola contour in [26] is defined by

Γ = {z ∈ C : z(ω) = ζ(ω) + isω, ω ∈ R, ω increasing},
where ζ(ω) = γ −

√
ω2 + ν2. In this case, since the contour cuts the real line at

γ − ν, γ and ν must be selected such that γ − ν is larger than the real part of the

negative of the smallest eigenvalue of A and the real parts of singularities of f̂(z).

Also s should be chosen such that all the singularities of û(·, z) and f̂(z) be to the
left of the contour Γ.

Using the above deformed contour, the inversion formula can be written as an
indefinite integral as follows:

u(·, t) = 1

2πi

∫ ∞

−∞
û(·, ζ(ω) + isω)(ζ′(ω) + is)e(ζ(ω)+isω)t dω.
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It is convenient to change the infinite range of the variable ω in the above integral
into to a finite region by the change of variables y : (−∞,∞) → (−1, 1) defined by

y(ω) = tanh
(τω
2

)
and ω(y) =

2

τ
tanh−1(y) =

1

τ
log

1 + y

1− y
,

for some τ > 0. Consequently, the integral (2.4) reduces to the following form:

(2.5) u(·, t) = 1

2πi

∫ 1

−1

û(·, ζ(ω(y))+isω(y))(ζ′(ω(y))+is)e(ζ(ω(y))+isω(y))tω′(y) dy.

2.1. Semi-discrete approximation. The integral formula (2.5) can be discretized
in time using a quadrature rule. A semi-discrete approximation of u(·, t) is defined
by a composite trapezoidal rule as follows:

(2.6) UNz,τ (·, t) =
1

2πi

1

Nz

Nz−1∑

j=−Nz+1

û(·, zj)
dz

dω
(ωj)

dω

dy
(yj)e

zjt,

where

zj = z(ωj), ωj = ω(yj) and yj =
j

Nz
, for −Nz < j < Nz.

It is proved in [26] that the convergence rate of the quadrature scheme (2.6) is
as high as the order of the regularity of the source term, stated as follows:

Theorem 2.1. Let u(t) be the solution of (2.1) and let UNz,τ (t) be its approxima-

tion defined by (2.6). Assume that f̂(z) is analytic to the right of the contour Γ

and continuous up to Γ, with f̂ (j)(z) bounded on Γ for j ≤ r and r an integer ≥ 1,
Then, for t > rτ ,
(2.7)

‖UNz,τ (t)−u(t)‖ ≤ Cr,s

N r
z

(
1+tr+

1

τr

)
eγt
(
1+log+

1

t− rτ

)
(‖u0‖+max

k≤r
sup
z∈Γ

‖f̂ (k)(z)‖).

Three important remarks should be stressed.

Remark 2.2. The implication of the above theorem is such that the convergence
of the proposed scheme (2.6) is of order O( 1

Nr
z
) with an arbitrary large r > 0 if

f̂ ≡ 0 or it is analytic. This implies that the time discretization errors using the
LT method are negligible compared to the spatial discretization errors in solving
parabolic problems with a homogeneous term.

Remark 2.3. In the summand (2.6), an important observation is that

û(·, zj)
dz

dω
(ωj)

dω

dy
(yj), j = 0, · · · , Nz,

are independent of t. Therefore, we only have to approximate û(·, zj) only once
by solving the complex-valued elliptic problem (2.2) for a set of zj , j = −Nz +
1, · · · , Nz − 1. Then, if we need the option pricing at different time t, the same set
of spatial solutions û(·, zj), j = −Nz + 1, · · · , Nz − 1, can be used in the evaluation
of the summation (2.6) with the only change in ezjt, with the desired time t.

Remark 2.4. Notice that each elliptic problem (2.2) for a zj from the set of
zj, j = −Nz + 1, · · · , Nz − 1, is independent of all other elliptic problems for the
remaining zj’s. This will minimize communication times in solving the elliptic
problems (2.2) in parallel by assigning each processor to solve an independent ellip-
tic problem without communicating with other processors during solving its assigned
problem.
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3. Laplace transformed equations

In this section, we will apply the LT method to the given PIDE (1.3), and

analyze the solvability of the transformed equation. Let Û = Û(z) = Û(·, z) denote
the Laplace transform of U = U(t) = U(·, t). Taking Laplace transform of (1.3) we
have the following equation:

(3.1) zÛ − 1

2
σ2Ûxx− (r−λκ− 1

2
σ2)Ûx+(r+λ)Û −λ

∫ ∞

−∞
Û(x+ y)p(y) dy = U0,

for each z ∈ Γ.

3.1. Solvability of the Laplace transformed equations. Let u(x, t) = U(x, t)−
R(x, t) such that supp(u(·, t)) ⊂ Ω for all t ∈ (0, T ]. Denote by û and R̂ the Laplace
transforms of u and R in time, respectively. Multiplying (3.1) by a test function
v ∈ H1

0 (Ω) and integrating on Ω, one arrives at the weak problem of (3.1): for each
z ∈ Γ, find û(z) ∈ H1

0 (Ω) such that

(3.2) Az(û, v) = F (v) ∀v ∈ H1
0 (Ω),

where the sesquilinear form Az(·, ·) : H1
0 (Ω)×H1

0 (Ω) → C and the linear functional
F (·) : H1

0 (Ω) → C are defined by

Az(u, v) = z(u, v) +B(u, v)− J(u, v) ∀u, v ∈ H1
0 (Ω),(3.3)

F (v) = (U0, v) +Az(R̂, v) ∀v ∈ H1
0 (Ω).

Here, the two sesquilinear operators B and J on H1(Ω) are defined by

B(u, v) =
1

2

∫

Ω

σ2 ∂u

∂x

∂v

∂x
dx+

∫

Ω

(
− r + λκ+

1

2
σ2 + σ

∂σ

∂x

)∂u
∂x
v dx

+

∫

Ω

(r + λ)uv dx,

J(u, v) = λ

∫

Ω

[∫ ∞

−∞
u(x+ y)p(y) dy

]
v(x) dx

= λ

∫

Ω

[∫

Ω

u(y)p(y − x) dy

]
v(x) dx

= λ

∫

Ω

[∫

Ω

u(y)p(x− y) dy

]
v(x) dx

= λ

∫

Ω

(u ∗ p)(x) v(x) dx,

where p(x) = p(−x).
Assumption 3.1. Assume that σ, ∂σ

∂x and r belong to L∞(Ω). Moreover, assume
that there exist two positive constants σL and σR such that

0 < σL ≤ σ(x) ≤ σR for all x ∈ Ω.

Due to the Poincaré’s inequality, there exists a positive constant α satisfying

‖u‖L2(Ω) ≤ α|u|H1
0 (Ω) for all u ∈ H1

0 (Ω),

where α is dependent only on Ω. For the sake of simplicity in notation, set

(3.4) δ = ‖r‖L∞(Ω) + λ|κ|+ σR

(1
2
σR + ‖∂σ

∂x
‖L∞(Ω)

)
.

We now have the following two lemmas for the continuity and coercivity of Az(·, ·) :
H1

0 (Ω)×H1
0 (Ω) → C.
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Lemma 3.2. Under Assumption 3.1, the sesquilinear form Az(·, ·) : H1
0 (Ω) ×

H1
0 (Ω) → C is continuous.

Proof. Let u, v ∈ H1
0 (Ω). Then, we have the following estimates:

∣∣∣
∫

Ω

1

2
σ2(x)

∂u

∂x

∂v

∂x
dx
∣∣∣ ≤ 1

2
σ2
R‖u‖H1

0(Ω)‖v‖H1
0 (Ω),

∣∣∣
∫

Ω

(
− r(x) + λκ+

1

2
σ2(x) + σ(x)

∂σ

∂x

)∂u
∂x
v dx

∣∣∣

≤ δ ‖u‖H1
0(Ω)‖v‖L2(Ω)

≤ δ ‖u‖H1
0(Ω)‖v‖H1

0(Ω),
∣∣∣
∫

Ω

(
z + r(x) + λ

)
uv dx

∣∣∣ ≤ (|z|+ ‖r‖L∞(Ω) + λ)‖u‖H1
0(Ω)‖v‖H1

0(Ω),

∣∣∣
∫

Ω

[∫ ∞

−∞
λu(x + y)p(y) dy

]
v(x) dx

∣∣∣

≤ λ‖v‖L2(Ω)

[∫

Ω

(∫ ∞

−∞
u(x+ y)p(y) dy

)2
dx

] 1
2

≤ λ‖v‖L2(Ω)

[∫

Ω

(∫

Ω

u(ξ)p(ξ − x) dξ
)2

dx

] 1
2

≤ λ‖v‖L2(Ω)‖u‖L2(Ω)

[∫

Ω

(∫

Ω

p(ξ − x)2 dξ
)
dx

] 1
2

≤ λ‖v‖L2(Ω)‖u‖L2(Ω)

[∫

Ω

∫ ∞

−∞
p(y)2 dy dx

] 1
2

≤ λ
( |Ω|
2
√
πσJ

) 1
2 ‖v‖L2(Ω)‖u‖L2(Ω).

Therefore the sesquilinear form Az(·, ·) : H1
0 (Ω)×H1

0 (Ω) → C is continuous. �

Lemma 3.3. Under Assumption 3.1, there is a non-negative constant C1, which
is independent of u and z, such that

Re (Az(u, u)) ≥
σ2
L

4

∥∥∥∥
∂u

∂x

∥∥∥∥
2

L2(Ω)

− (|z|+ C1)‖u‖2L2(Ω) for all u ∈ H1
0 (Ω).
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Proof. Let u ∈ H1(Ω) be arbitrary. Then, the following estimates are immediate:

∫

Ω

1

2
σ2(x)

∂u

∂x

∂u

∂x
dx ≥ σ2

L

2

∥∥∥∥
∂u

∂x

∥∥∥∥
2

L2(Ω)

,(3.5a)

∣∣∣Re
( ∫

Ω

(
− r(x) + λκ+

σ2(x)

2
+ σ(x)

∂σ

∂x

)∂u
∂x
u dx

)∣∣∣

≤ δ

∥∥∥∥
∂u

∂x

∥∥∥∥
L2(Ω)

‖u‖L2(Ω)

≤ σ2
L

4

∥∥∥∥
∂u

∂x

∥∥∥∥
2

L2(Ω)

+

(
δ

σL

)2

‖u‖2L2(Ω),(3.5b)

∣∣∣Re
(∫

R+

(
z + r(x) + λ

)
uudx

) ∣∣∣ ≤ (|z|+ ‖r‖L∞(Ω) + λ)‖u‖2L2(Ω),(3.5c)

∣∣∣Re
(∫

Ω

∫ ∞

−∞
λu(x+ y)p(y) dy u(x) dx

)∣∣∣ ≤ λ
( |Ω|
2
√
πσJ

) 1
2 ‖u‖2L2(Ω),(3.5d)

where Young’s inequality is used in the bound of the second inequality and δ is
defined in (3.4). A combination of these inequalities completes the lemma. �

Due to the Gärding’s inequality given in the above Lemma 3.3 and the continuity
in 3.2, we obtain the following existence and uniqueness theorem.

Theorem 3.4. Suppose U0 ∈ L2(Ω). Then, under Assumption 3.1 Problem (3.2)

has a unique solution û(·, z)− R̂(·, z) ∈ H1
0 (Ω) for each z ∈ C.

4. Numerical solution of the transformed equation

4.1. Finite element discretization. Let (Vh)0<h<1 be the set of standard piece-
wise linear finite-element subspaces of H1

0 (Ω) associated with uniform grids of mesh

size h = xR−xL

Nx
. Let {φh,j}Nx−1

j=1 be the space of basis functions defined by

φh,j =





(x− xj−1)/h, xj−1 ≤ x ≤ xj ,

(xj+1 − x)/h, xj < x ≤ xj+1,

0, x /∈ [xj−1, xj+1],

where xj = xL + jh and j = 0, 1, 2, · · · , Nx. Then, for fixed z a finite element
solution of (3.2) is represented as a linear combination of φh,j ’s in the following
form:

(4.1) ûh(x, z) =

Nx−1∑

j=1

ûj(z)φh,j(x).

Substituting (4.1) into (3.3) and applying the test functions {φh,k}Nx−1
k=1 , one obtains

the following linear system:

(4.2) zMû+ Bû− Jû = F,

where û = (û1, û2, · · · , ûNx−1)
t, Mjk = (φh,k, φh,j), Bjk = B(φh,k, φh,j), Jjk =

J(φh,k, φh,j) and Fj = (U0, φh,j) +Az(R̂, φh,j).
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We follow [9] in order to compute the non-local integral term Jjk. First, one gets

ψh,k(x) :=

∫

Ω

φh,k(y)p(y − x) dy

=
σJ√
2πh

{
e
− (xk−1−x−µ)2

2σ2
J − 2e

− (xk−x−µ)2

2σ2
J + e

− (xk+1−x−µ)2

2σ2
J

}

−σ
2
J

2h

{(x− xk−1 + µ

h

)
erf
(xk−1 − x− µ√

2σJ

)

+
(x− xk+1 + µ

h

)
erf
(xk+1 − x− µ√

2σJ

)

+
(2x− xk−1 − xk + 2µ

h

)
erf
(xk − x− µ√

2σJ

)}
,

where erf(x) represents the error function, erf(x) = 2√
π

∫ x

0
e−t2dt. Then the ap-

proximated value of Jjk is obtained using the finite element interpolation of ψh,k(x)
as follows:

Jjk = λ

∫

Ω

ψh,k(x)φh,j(x) dx

≈ λ

∫

Ω

( Nx∑

l=0

ψh,k(xl)φh,l(x)
)
φh,j(x) dx

= λh
(1
6
ψh,k(xj−1) +

2

3
ψh,k(xj) +

1

6
ψh,k(xj+1)

)
.(4.3)

Now we turn our attention to the computation of the right hand side (F)j =

(U0, φh,j) + Az(R̂, φh,j). The first term (U0, φh,j) is computed by a numerical

quadrature rule, and the term z(R̂, φh,j)+B(R̂, φh,j) inside Az(R̂, φh,j) is computed

analytically. The remaining term J(R̂, φh,j) is approximated based on the finite

element interpolation again, R̂(x) ≈
∑

k∈Z
R̂kφh,k(x) where R̂k = R̂(xk); explicitly

we have

J(R̂, φh,j) ≈ λ

∫

Ω

[∫

Ω

∞∑

k=−∞
R̂kφh,k(y)p(y − x) dy

]
φh,j(x) dx

= λ

∫

Ω

∞∑

k=−∞
R̂kψh,k(x)φh,j(x) dx

= λ
∞∑

k=−∞
R̂kJjk ≈ λ

j+Nx−1∑

k=j−Nx+1

R̂kJjk.

Due to the exponential decay of the jump size probability density p(y), the value of
integration is negligibly small if |j − k| > Nx, and thus we can replace the infinite
summation by a finite one.

In the meanwhile, for the integral part, it is sufficient to use the midpoint rule
to keep a second order convergence order in space, that is,

Jjk = λ

∫

Ω

∫

Ω

φh,k(y)p(y − x) dy φh,j(x) dx

≈ λ

∫

Ω

hp(xk − x)φh,j(x) dx ≈ λh2p(xk − xj).(4.4)

The calculation given in (4.4) gives less accurate approximation than (4.3). How-
ever, it still preserves the second order convergence rate, and thus the numerical
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results are almost indifferent regardless of the choice of the approximation schemes
between (4.3) and (4.4). In §5, we will compare these.

4.2. An iterative method to deal with the convolution integral term. As
seen in the previous subsection, the discretization of the integral part leads to a
full matrix J, whose calculation requires a huge computational cost. In most earlier
works, as mentioned in §1, the authors have tried to improve the computational ef-
ficiency by avoiding the inversion of the full matrix using various implicit-explicit or
fixed point iteration methods. Since these methods are based on the real-valued par-
abolic problem of the original PIDE, we may not apply these previous approaches
to our complex-valued problems directly.

Instead, we employ a regular splitting method to avoid the inversion of the full
matrix. In the discretized setting, we can formulate the regular splitting as follows:

(4.5) zMûn+1 + Bûn+1 − Jûn = F.

To check the convergence region, we examine the regular splitting method for (3.2)
in the continuous setting instead of investigating (4.5) directly. We then have to
find ûn+1 ∈ H1

0 (Ω) such that

(4.6) z(ûn+1, v) +B(ûn+1, v) = (ûn ∗ p, v) + F (v), ∀v ∈ H1
0 (Ω).

By denoting ên = û− ûn, where û is the solution of (3.2), we have the problem to
find ên+1 such that

(4.7) z(ên+1, v) +B(ên+1, v) = (ên ∗ p, v), ∀v ∈ H1
0 (Ω).

Then we have the following lemma, which is a modification of Lemma 2.1 in [7].

Lemma 4.1. Let ên ∈ H1
0 (Ω) satisfy (4.7) for n = 1, 2, · · · . Under Assumption 3.1,

for any θ ∈ (12π, π) there exist C ≥ 0 and ς > 0, independent of z and ên, such that

‖ên+1‖L2(Ω) ≤
C

|z − ς | ‖ê
n‖L2(Ω), for z ∈ σς,θ, ê

n ∈ L2(Ω)

where σς,θ = {z ∈ C : | arg(z − ς)| ≤ θ}. Explicitly, the coefficients are given by

C = (1 + 1
2̺)(1 + ̺2) and ς =

(
1 + ̺2

2

)(
δ
σL

)2
+ ‖r‖L∞(Ω) + λ, where ̺ = tan θ

2 .

Proof. Let θ ∈
(
π
2 , π

)
, and ς > 0 be arbitrary. For z ∈ σς,θ, we write

z − ς = (ξ + iη)2 = ξ2 − η2 + 2iξη with ξ + iη ∈ σ0,θ/2, ξ, η ∈ R.

Setting ̺ = tan θ
2 , we see that ξ > 0, ̺ > 1, and |η| ≤ ̺ξ. Thus the following

inequality holds:

(4.8) ξ2 ≤ |z − ς | = ξ2 + η2 ≤ (1 + ̺2)ξ2.

Set

F = B(ên+1, ên+1) + z‖ên+1‖2L2(Ω).

Taking the real part of F , we obtain

(4.9) ReB(ên+1, ên+1) + (ς + ξ2 − η2)‖ên+1‖2L2(Ω) = ReF.

Combining (4.9) with (3.5a)–(3.5c), we have

(4.10)
σ2
L

4

∥∥∥∂ê
n+1

∂x

∥∥∥
L2(Ω)

+ (ς + ξ2 − η2 − µ̃)‖ên+1‖2L2(Ω) ≤ |F |,

where µ̃ = (δ/σL)
2 + ‖r‖L∞ + λ. By taking the imaginary part of F , we have

ImB(ên+1, ên+1) + 2ξη‖ên+1‖2L2(Ω) = ImF,
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and thus,

2ξ|η| ‖ên+1‖2L2(Ω) ≤ |F |+
∣∣ImB(ên+1, ên+1)

∣∣

≤ |F |+
∣∣∣∣Im

∫

Ω

(
− r(x) + λκ+

σ2(x)

2
+ σ(x)

∂σ

∂x

)∂ên+1

∂x
en+1 dx

∣∣∣∣

≤ |F |+ δ
∥∥∥∂ê

n+1

∂x

∥∥∥
L2(Ω)

‖ên+1‖L2(Ω).

Multiplying by 1
2̺ = 1

2 tan(
θ
2 ) the last estimate, we have

η2‖ên+1‖2L2(Ω) ≤ ̺ξ|η| ‖ên+1‖2L2(Ω) ≤
1

2
̺|F |+ ̺δ

2

∥∥∥∂ê
n+1

∂x

∥∥∥
L2(Ω)

‖ên+1‖L2(Ω).

Adding this to (4.10), we have

σ2
L

4

∥∥∥∂ê
n+1

∂x

∥∥∥
2

L2(Ω)
+ (ς + ξ2 − µ̃)‖ên+1‖2L2(Ω)

≤ (1 +
1

2
̺)|F |+ σ2

L

8

∥∥∥∂ê
n+1

∂x

∥∥∥
2

L2(Ω)
+
̺2δ2

2σ2
L

‖ên+1‖2L2(Ω),

from which the choice of

ς = µ̃+
̺2δ2

2σ2
L

,

leads to the following estimate:

(4.11)
σ2
L

8

∥∥∥∂ê
n+1

∂x

∥∥∥
2

L2(Ω)
+ ξ2‖ên+1‖2L2(Ω) ≤ (1 +

1

2
̺)|F |.

Since (ên ∗ p) ∈ L2(Ω) for ên ∈ L2(Ω), by taking ên+1 ∈ H1
0 (Ω) in (4.7) instead of

v, we have from (4.11) that

σ2
L

8

∥∥∥∂ê
n+1

∂x

∥∥∥
2

L2(Ω)
+ ξ2‖ên+1‖2L2(Ω) ≤ (1 +

1

2
̺)
∣∣∣
∫

Ω

(ên ∗ p)ven+1 dx
∣∣∣

≤ (1 +
1

2
̺)‖(ên ∗ p)‖L2(Ω)‖ên+1‖L2(Ω)

≤ (1 +
1

2
̺)‖ên‖L2(Ω)‖ên+1‖L2(Ω),

since ‖ên ∗ p‖L2(Ω) ≤ ‖ên‖L2(Ω)‖p‖L1(Ω) ≤ ‖ên‖L2(Ω). Therefore, due to (4.8), it
follows that

‖ên+1‖L2(Ω) ≤
1 + 1

2̺

ξ2
‖ên‖L2(Ω) ≤

(1 + 1
2̺)(1 + ̺2)

|z − ς | ‖ên‖L2(Ω).

This completes the proof. �

This lemma implies that if one chooses a contour Γ such that the point z ∈ Γ
satisfying the condition |z − ς | > C, the splitting scheme (4.6) is convergent. In
particular, if the parameters in (1.2) are constants, one can calculate ς and C in
the closed forms as follows:

ς =
(r + λκ+ 1

2σ
2

σ

)2(
1 +

tan2(12 arctan(s))

2

)
+ r + λ,

and C =
(
1 +

tan(12 arctan(s))

2

)(
1 + tan2

(1
2
arctan(s)

))
,

where s denotes the slope of the contour.
The following lemma describes the convergence region of the proposed method

(4.5) with respect to z if the parameters in (1.2) are constants.
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Lemma 4.2. The iterative scheme (4.5) is convergent to the solution of (4.2) if
the parameters in (1.2) satisfy

(4.12)
∣∣∣|α(z)| −

(
|β−(z)|+ |β+(z)|

)∣∣∣ > 1√
2πσJ

λh2,

where α = α(z), β− = β−(z), and β+ = β+(z) are given by

α =
2h(z + r + λ)

3
+
σ2

h
, β− = −h(z + r + λ)

6
+
σ2

2h
+

−2r + 2λκ+ σ2

4
,

and β+ = −h(z + r + λ)

6
+
σ2

2h
− −2r + 2λκ+ σ2

4
.

Proof. Let ê be the eigenvector of the matrix (zM + B)−1J associated with an
eigenvalue λ

ê
such that |êi| = 1 and |ê| ≤ 1. It follows from the definitions of M

and B that, for j = 1, · · · , Nx − 1,

λ
ê

(
αêj − β−êj−1 − β+êj+1

)
=

Nx−1∑

k=1

Jjkêk,

which yields the inequality

∣∣λ
ê

∣∣ ≤
∑Nx−1

k=1 |Jjk||êk|∣∣|αêj | − |β−êj−1 + β+êj+1|
∣∣ .

Due to the inequality |Jjk| ≤ λh2 1√
2πσJ

from (4.4), we arrive at

∣∣λ
ê

∣∣ ≤ 1√
2πσJ

λh2∣∣|α| − (|β−|+ |β+|)
∣∣ ,

and thus we have the convergent region

|α| −
(
|β−|+ |β+|

)
>

1√
2πσJ

λh2.

This completes the proof. �

Since J is a full matrix, a lot of CPU time is required to computing (4.5) even
though we do not invert J, To reduce the computation time, we employ the FFT
(Fast Fourier Transform). Recall that the element Jjk is dependent only on (k−j).
Denote by pk−j the (j, k)-component of J. That is,

J =




p0 p1 p2 · · · pNx−3 pNx−2

p−1 p0 p1 · · · pNx−4 pNx−3

p−2 p−1 p0 · · · pNx−5 pNx−4

...
...

...
. . .

. . .
...

...
...

...
. . .

. . .
...

p−Nx+2 p−Nx+3 p−Nx+4 · · · p−1 p0




.

Since this is a Toeplitz matrix, Jû can be computed by FFTs. As described in
[5, 15] we embed the matrix J into a [2(Nx − 1) − 1] × [2(Nx − 1) − 1] circulant
matrix, and extend û to [2(Nx − 1)− 1]-column vector by padding 0 terms to get
(û, 0, 0, · · · , 0︸ ︷︷ ︸

Nx−2

), and then we apply the FFT. Finally, we retrieve the matrix-vector

multiplication by the inverse FFT again.
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5. Numerical experiments

In this section we present and analyze some numerical results for pricing options
under the jump diffusion process. In the first example, we confirm the convergence
of the proposed scheme corresponding to its series solution, and the parallel effi-
ciency is verified by measuring the parallel speed up. In the second example we
examine the applicability of the proposed method by applying to an exotic option
such as the knock-in option.

In what follows, we define the error reduction rate ρ and speedup by

ρ := log2

∣∣∣error of previous step
error of current step

∣∣∣,

and

speed up =
time consumption

time consumption when using 1-CPU
.

Example 5.1 (European put option under jump diffusion). We consider an Eu-
ropean put option with parameters r = 0.03, σ = 0.3, µ = 0, σJ = 0.35, λ = 0.5,
T = 1.0 and K = 100 on a truncated domain xL = −5 and xR = 5.

We compare the numerical solution with the analytic solution given in [23] as
follows:

V (S, t) =

∞∑

k=0

e−λ(1+κ)t(λ(1 + κ)t)k

k!
VBS(S,K, t, σk, rk),

where κ = E[η − 1] = e(µ+σ2
J/2) − 1 and VBS if given by the Black-Scholes formula

as follows:

VBS(S,K, t, σk, rk) = Ke−rt
N(−d2)− SN(−d1),

σ2
k = σ2 +

kσ2
J

t
, rk = r − λκ+

k log(1 + κ)

t
,

d1 =
log(S/K) + (rk + σ2

k/2)t

σk
√
t

, and d2 = d1 − σk
√
t,

where S is the price of an underlying asset and N is the standard normal cumulative
distribution function. When approximating the value of the normal cumulative
distribution, we used the subroutine provided in [24], and the infinite series is
truncated at k = 8.

Tables 1 and 2 show the spatial convergence orders according to the increment
in the number of space meshes. In these tables also comparison is shown between
the two different approximation schemes (4.3) and (4.4) described in §4.1 on the
calculation of the integral part. In both results the reduction rates ρ are almost
two. The L2(Ω)-errors in Table 2 are indifferent from those in Table 1, but the
L∞(Ω)-errors in Table 2 are slightly smaller than those in Table 1. However, if
numerical costs are considered in addition, we conclude that (4.4) seems to be a
better choice than (4.3).

Also from Tables 1 and 2, at most 15 Nz-points in a contour are sufficient for
the computation of the numerical solution until 2048 spatial meshes. Table 3 shows
the convergence order in Nz number of points. Due to the exponential convergence
property of the LT method, it shows almost a constant reduction rate ρ up to the
choice of Nz = 15 contour points while Nz increases by a constant number. As Nz

exceeds 15, the convergence order becomes almost 0 since the overall errors from
this moment are dominated by spatial discretization.



OPTION PRICING WITH JUMP DIFFUSION USING LAPLACE TRANSFORM METHOD 579

Nz Nx L2(Ω)-Error ρ L∞(Ω)-Error ρ
15 16 1.491 0.6955
15 32 0.4115 1.857 0.1797 1.952
15 64 0.1052 1.968 0.5755E-01 1.643
15 128 0.2645E-01 1.992 0.1460E-01 1.979
15 256 0.6622E-02 1.998 0.3680E-02 1.988
15 512 0.1656E-02 1.999 0.9215E-03 1.998
15 1024 0.4141E-03 2.000 0.2305E-03 1.999
15 2048 0.1036E-03 1.999 0.5760E-04 2.001

Table 1. Example 5.1 with increment in Nx using (4.3). Nz, Nx,
and ρ represent the numbers of contour points z, the number of
subintervals in space, and the reduction rate, respectively.

Nz Nx L2(Ω)-Error ρ L∞(Ω)-Error ρ
15 16 2.149 3.602
15 32 0.4314 2.316 0.7427 2.278
15 64 0.1068 2.014 0.1857 2.000
15 128 0.2665E-01 2.003 0.4648E-01 1.999
15 256 0.6661E-02 2.001 0.1167E-01 1.994
15 512 0.1665E-02 2.000 0.2918E-02 2.000
15 1024 0.4161E-03 2.000 0.7295E-03 2.000
15 2048 0.1040E-03 2.001 0.1823E-03 2.000

Table 2. Example 5.1 with increment in Nx using (4.4). Nz,
Nx, ρ represent the numbers of contour points z, the number of
subintervals in space, and the reduction rate, respectively.

Nz Nx L2(Ω)-Error ρ γ ν s τ
3 2048 0.6530 13.47594 12.41899 0.42126 0.16501
6 2048 0.1561E-01 5.387 26.95187 24.83798 0.42126 0.09385
9 2048 0.3636E-03 5.424 40.42781 37.25697 0.42126 0.06809
12 2048 0.1200E-03 1.599 53.90374 49.67596 0.42126 0.05430
15 2048 0.1040E-03 0.207 67.37968 62.09495 0.42126 0.04556
18 2048 0.1041E-03 -0.002 80.85561 74.51394 0.42126 0.03947
21 2048 0.1042E-03 -0.001 94.33155 86.93293 0.42126 0.03494
24 2048 0.1042E-03 0.000 107.80748 99.35192 0.42126 0.03144

Table 3. Example 5.1 with increment in Nz. Nz, Nx, and ρ rep-
resent the numbers of contour points z, the number of subintervals
in space, and the reduction rate, respectively.

Next, we address the efficiency of the scheme (4.5) for the treatment of the
Toeplitz matrix part. With Nx = 1024 the iteration is set to stop if the difference
‖ûn+1 − ûn‖ℓ2 = (

∑
i |ûn+1

i − ûn
i |2)1/2 is less than 10−5, which is sufficient to keep

the exact 2nd order convergence as Tables 1 and 2. The iteration numbers required
to meet this criterion are shown in Table 4. We observe that, for each z, at most 13
number of iterations are sufficient. We remark that a larger stopping criterion such
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as 10−3 also provides almost same numerical results with the iteration numbers less
than 9.

z Niter ‖ûn+1 − ûn‖ℓ2 z Niter ‖ûn+1 − ûn‖ℓ2
(5.28,0.00) 13 0.74E-5 (5.22,1.23) 13 0.70E-5
(5.01,2.38) 13 0.57E-5 (4.65,3.75) 13 0.40E-5
(4.14,5.05) 12 0.94E-5 (3.45,6.41) 12 0.54E-5
(2.56,7.83) 12 0.28E-5 (1.43,9.35) 11 0.58E-5
(-1.77,12.82) 10 0.58E-5 (-4.06,14.88) 10 0.24E-5
(-7.08,17.31) 9 0.58E-5 (-11.24,20.31) 9 0.22E-5
(-17.54,24.40) 8 0.53E-5 (-29.15,31.13) 8 0.13E-5

Table 4. The number of iterations (Niter) for the iterative scheme
(4.5) in Example 5.1 where Nz = 15, Nx = 1024.

As mentioned in the remarks in §2, since the linear equations in (4.2) for z =
zk, k = −Nz + 1, · · · , Nz − 1, are independent each other, no communication is re-
quired during the computation except for the last summation step in the numerical
Laplace inversion. Thus the LT method is very well fitted for parallel computa-
tion of the option pricing problem. The results in Table 5 are obtained on 2048
uniform spatial meshes with Nz = 15 points in a contour using IBM PowerPC97
with 2.2GHz clock speed. The results show almost an ideal speedup because of the
minimization of communication time.

Number of CPUs 1 3 5 15
Time (sec) 33.65 12.37 7.48 2.50
Speedup 1.00 2.72 4.50 13.46

Table 5. Parallel speed up in Example 5.1

In Figure 1, we plot the analytic solution, the numerical solution, and the option
value under a pure diffusion process to show the differences explicitly.

Example 5.2 (Knock-in put option under jump diffusion). We consider a knock-in
put option with parameters r = 0.03, σ = 0.3, µ = 0, σJ = 0.35, λ = 0.5, T = 1.0,
K = 100 and knock-in barrier B = 80 on a truncated domain where xL = −5 and
xR = 5.

A knock-in put option has no value until the underlying asset price touches the
barrier B, but from this moment it starts to act as an ordinary put option. As
described in [27], the barrier B being monitored continuously, it is considered as a
boundary condition

Vki(S, t) = Vsp(S, t), for S ≤ B,

where Vki(S, t) is the value of the knock-in option and Vsp(S, t) is the value of the
standard put option. If a time marching scheme is employed, Vsp(·, tn) should be
computed for every discretized time step tn, in order to be used as the boundary
condition in the computation of Vki(·, tn). Instead, if the LT method is used, the
boundary condition is also transformed into

V̂ki(B, z) = V̂sp(B, z) for S ≤ B,
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Figure 1. Comparison of option values in Example 5.1. The solid
line and ◦’s represent the numerical and analytic solutions, and the
�’s the option value under a pure diffusion process.

and thus, for each z on a contour, the Laplace transformed value V̂sp(S, z) of the

ordinary put option, is imposed as the boundary value in computing V̂ki.
We evaluate the option value on 1024 uniform spatial meshes withNz = 15 points

in a contour. Figure 2 depicts the option values and the delta of the standard put
option and the knock-in put option. As the stock price becomes close to the knock-
in barrier, due to the higher probability to hit the barrier, the more expensive
value of the knock-in option is observed. After hitting the barrier, the option value
approaches the standard option value.
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