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CONDITIONING DISCRETE FRACTURE NETWORK MODELS

OF GROUNDWATER FLOW

K. CLIFFE, D. HOLTON, P. HOUSTON, C. JACKSON, S. JOYCE, AND A. MILNE

Abstract. Many geological formations consist of crystalline rock that have

very low matrix permeability but allow flow through an interconnected net-

work of fractures. Understanding the flow of groundwater through such rocks

is important in considering disposal of radioactive waste in underground reposi-

tories. A specific area of interest is the conditioning of fracture transmissivities

on measured values of pressure in these formations. While there are exist-

ing methods to condition transmissivity fields on transmissivity, pressure and

flow measurements for a continuous porous medium, considerably less work has

been devoted to conditioning discrete fracture networks. This article presents

two new methods for conditioning fracture transmissivities on measured pres-

sures in a discrete fracture network. The first approach adopts a linear ap-

proximation when fracture transmissivities are mildly heterogeneous, while the

minimisation of a suitable objective function is undertaken when fracture trans-

missivities are highly heterogeneous. The second conditioning algorithm is a

Bayesian method that finds a maximum a posteriori (MAP) estimator which

maximises the posterior distribution defined by Bayes’ theorem using informa-

tion from the prior distribution of fracture transmissivities and observations in

the form of measured pressures. The conditioning methods are tested on two

separate, large scale test cases that model a potential site for radioactive waste

disposal. Results from these test cases are shown and comparisons between the

two conditioning methods are made.

Key Words. Conditioning, Groundwater Flow, Discrete Fracture Network,

Finite Element Methods.

1. Introduction

Many geological formations consist of crystalline rock that have very low matrix
permeability but allow flow through an interconnected network of fractures. Un-
derstanding the flow of groundwater through such rocks is important in considering
disposal of radioactive waste in underground repositories. In our work it is assumed
that there is no interaction between groundwater flow (and the pollutants it may
carry) in the fractures and the surrounding rock matrix; this setting is known as a
discrete fracture network (DFN). A DFN is characterised by the properties of the
fractures, namely, the density of the fractures, their size, orientation and transmis-
sivity. The transmissivity of a fracture is defined as the rate of groundwater flow per
unit pressure gradient. It thus gives a measure of the ease with which groundwater
can pass through a material (a fracture in our case). In our work the fractures are
modelled such that the fracture walls are represented as two parallel plates with
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groundwater flowing between them. In this setting, the fracture transmissivity is
proportional to the cube of the fracture aperture (width between the fracture walls)
[21], and both the aperture and transmissivity are constant over the fracture. In a
problem of practical relevance, there are generally too many fractures for all of their
properties to be measured. To remedy this problem when numerically modelling a
DFN, a stochastic approach can be exploited; here distributions of fracture prop-
erties (aperture, length, orientation, location) are inferred from field measurements
and are subject to uncertainty [12, 17]. Realisations of fractures can be generated
in a given domain with fracture properties (aperture, length, orientation, location)
sampled from distributions consistent with observed measurements. Fractures with
known properties can also be included deterministically in a model of this type.
This paper develops two numerical methods in a DFN setting to condition fracture
transmissivities on measured values of the pressure available from test site data.
The groundwater flow equation [1] can be used to calculate the pressure in a frac-
ture. DFNs are modelled numerically with suitable boundary conditions at both
fracture intersections and the domain boundaries [8]. Our work exploits a finite
element approach to modelling groundwater flow in a DFN. Alternative numerical
methods for solving flow in a DFN are discussed in Jing [10].

The problem considered in this article can be summarised in a continuous setting
(before discretisation of the domain) as follows: determine T such that

‖P (XM )−PM‖ = min!,

under the constraint,

∇ · (T∇P ) = 0 in Ω,

subject to appropriate boundary conditions. Here, T is a vector of fracture trans-
missivities (containing hundreds or thousands of fracture transmissivities), PM ,
M ≥ 1, is a vector of measured pressures that are to be matched, XM , M ≥ 1,
denotes the locations of the measurement points, P is the pressure, Ω is the do-
main of the fracture network and ‖ · ‖ denotes an appropriate norm. Boundary
conditions are imposed both on the boundaries of the problem domain Ω, as well as
at fracture intersections. Generally, there are far less pressure measurements than
fracture transmissivities.

When studying DFNs it is common to use more than one realisation of the
DFN due to uncertainties in the fracture properties. In this setting, the geometry
of the fractures is sampled from various distributions; thus each realisation will
have different fracture geometry. Calibration is the process of modifying input
parameters to a model until the output from the model matches observed data.
Each realisation should be calibrated using as much available data as possible.
In our work the model parameters are the fracture transmissivities and they are
conditioned on measured pressures.

While there are existing methods to condition transmissivity fields on transmis-
sivity, pressure and flow measurements for a continuous porous medium [9, 19, 20],
there is considerably less work within the literature on conditioning DFNs. An
exception is the recent work by Frampton and Cvetkovic [5] who condition the pa-
rameters of a fracture transmissivity distribution in a DFN setting, but they do not
condition fracture transmissivities directly. Conditioning fracture transmissivities
on pressure or flow values is a complex problem because the measured pressures
are dependent on all the fracture transmissivities in the DFN.

In this article, we present two new methods for conditioning fracture transmissiv-
ities in a DFN on measured pressure values. Both methods consider one realisation,
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where the geometry of the DFN is assumed fixed. In particular, only fracture trans-
missivities are adjusted to fit measured pressures, while keeping the position and
orientation of each fracture fixed. The first method adopts a linear approxima-
tion when fracture transmissivities are mildly heterogeneous and generalises this
approach to the minimisation of an appropriate objective function when fracture
transmissivities are highly heterogeneous. This method is based on a generalisation
of previous work undertaken on conditioning transmissivity values in a continuous
porous medium [3] and shares some of the techniques used in inverse problems in
hydrology for a continuous porous medium [9, 14, 15, 19, 20].

The second method we develop is a Bayesian conditioning method similar to the
work developed in a continuous porous medium setting in the articles [2, 11]. Stuart
[18] gives a concise review of the Bayesian setting used in inverse methods for PDEs.
Here, Bayes’ theorem is used to give an expression of proportionality for the pos-
terior distribution of fracture log transmissivities in terms of the prior distribution
and the data available through pressure measurements. The fracture transmissivi-
ties are assumed to be normally distributed with a given mean and covariance, and
the measured pressures are assumed to be normally distributed values, each with
a given error. From the expression of proportionality for the posterior distribution
of fracture transmissivities, the modes of the posterior distribution (the points of
highest likelihood for the fracture transmissivities given the measured pressures)
are computed numerically.

The paper is structured as follows. In Section 2 we introduce the PDE model
used to determine the pressure in a fracture network, together with details of the
application of the finite element method to the DFN. Section 3 introduces the
two conditioning methods, while section 4 describes the two test cases that will be
considered in this article. Results obtained from both the conditioning methods are
presented in section 5. Here, both algorithms are implemented in the existing finite
element code ConnectFlow [8] developed and marketed by Serco, which numerically
models groundwater flow in a DFN using a finite element approach. Finally, we
summarise the work presented in this article and draw some conclusions in Section 6.

2. Finite Element Treatment of Intersecting Fractures

In this section we outline the finite element (FE) method implemented within
ConnectFlow to discretise a DFN in order to compute the residual pressure on
fracture intersections. The FE method employed here is based on a standard FE
discretisation of each fracture, together with a static condensation technique which
eliminates the internal degrees of freedom on each fracture, thereby leading to a
global system of equations for the unknowns defined on the fracture intersections
only. In order to present this algorithm in the simplest possible setting, here we
shall confine ourselves to the case of two intersecting fractures. The extension of the
FE method to a large scale DFN follows analogously; for further details, we refer to
Milne [13] and Hartley [8]. With this in mind, we assume that the problem domain
Ω ⊂ R

3 is partitioned into two two–dimensional planes f1 and f2 (which represent
the fractures) with boundaries ∂f1 and ∂f2, respectively. Here, we assume that the
fractures f1 and f2 do not overlap, in the sense that their orientations in R

3 are not
identical, but that the fractures do intersect one another along a one–dimensional
line Γ := f1 ∩ f2. The residual pressure

(1) P = PG + ρg (z − z0) ,

is to be calculated across f1 and f2, where PG is the groundwater pressure, ρ is
the groundwater density, g is gravitational acceleration, z is the elevation and z0
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is a reference elevation. Defining T̃f = Tf/(ρg), the steady state groundwater flow
equation is given by: find P such that

∇ ·
(

T̃fi∇P
)

= 0, in fi, i = 1, 2,(2)

P = PD, on ∂fi, i = 1, 2,(3)

where the transmissivities T̃f1 and T̃f2 are assumed constant on f1 and f2, re-
spectively, and ∇ denotes the two dimensional gradient operator. At the fracture
intersection Γ, the following conditions hold:

(1) The groundwater pressure is continuous between intersecting fractures; i.e.,
P |f1∩Γ = P |f2∩Γ.

(2) Groundwater is conserved at the intersection, so that groundwater which
flows out of one fracture flows into the other fracture and there is no build
up of groundwater at the intersection. In the continuous setting, this is
written as Qf1 := Tf1∇Pf1 = Qf2 := Tf2∇Pf2 , where Qf1 and Qf2 are the
flows coming from f1 and f2, respectively, and Pf1 and Pf2 are the pressures
defined on f1 and f2, respectively.

We now outline the FE method employed to discretise (2), (3), together with the
above intersection conditions. To this end, we assume that the fractures fi, i = 1, 2,
can be subdivided into shape-regular meshes Tfi = {κfi}, i = 1, 2, respectively,
consisting of triangular elements κfi , i = 1, 2. Moreover, we define Nfi , i = 1, 2, to
denote the set of vertices contained in the meshes Tfi = {κfi}, i = 1, 2, respectively.
In the following, we shall refer to these sets as the sets of so–called local nodes.
Further, we write nfi to denote the cardinality of Nfi , i = 1, 2.

The fracture intersection Γ is subdivided into a set NΓ of so–called global nodes;
here, we write nΓ to denote the cardinality of the set NΓ. For simplicity of pre-
sentation, we assume that each global node contained in the set NΓ corresponds
to a local node on f1 and f2. That is, we may define the set of global nodes as
NΓ := Nf1 ∩ Nf2 . In general, this condition is rather restrictive, since it requires
Tf1 and Tf2 to match on Γ. We emphasise that this constraint is only imposed for
simplicity of presentation; for the case of the more general setting, see [13]. With
this notation, we introduce the finite element spaces

Vfi = {v ∈ H1
0 (fi) : v|κfi

∈ P1(κfi), κfi ∈ Tfi}, i = 1, 2,

where P1(κfi) denotes the set of linear polynomials on κfi , i = 1, 2.
For each global node I, I = 1, ..., nΓ, a corresponding global basis function ΨI is

calculated over the problem domain Ω. With this in mind, we denote Ψfi
I , i = 1, 2,

to be the restriction of ΨI over fi, i = 1, 2, respectively, such that ΨI = Ψf1
I +Ψf2

I ,

where Ψfi
I ∈ Vfi , i = 1, 2.

On each fracture, ΨI is calculated as the FE solution to the steady state ground-
water flow equation (2) with P replaced by ΨI , subject to the boundary conditions:

ΨI = 1 at global node I and ΨI = 0, otherwise. Therefore, the contributions Ψf1
I

and Ψf2
I to the global basis function ΨI corresponding to the global node I are

calculated by solving the linear systems: find Ψfi
I ∈ Vfi , i = 1, 2, such that

(4)

∫

fi

T̃fi∇Ψfi
I · ∇vfidx = 0 ∀vfi ∈ Vfi ,

subject to the boundary conditions: Ψfi
I = 1, i = 1, 2, at global node I and Ψfi

I = 0,
i = 1, 2, at all other global nodes on Γ.
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The FE space VΓ consisting of the global basis functions may now be defined as

VΓ = span {ΨI}
nΓ

I=1 .

In order to take into account the Dirichlet boundary conditions, it is necessary
to calculate a (boundary) contribution ΨI,D to the global basis function ΨI , I =

1, . . . , nΓ. To this end, we define the contributions Ψf1
I,D on f1 and Ψf2

I,D on f2 to

ΨI,D as follows: find Ψfi
I,D ∈ PD + Vfi , i = 1, 2, such that

(5)

∫

fi

T̃fi∇Ψfi
I,D · ∇vfidx = 0 ∀vfi ∈ Vfi ,

subject to the (additional) boundary condition Ψfi
I,D = 0 on Γ, i = 1, 2.

The flow QI at a global node I, I = 1, ..., nΓ, from a fracture f = f1, f2, is
calculated as follows:

(6) QI =

∫

f

∇ΨI ·
(

T̃f∇Ph

)

dx ∀ΨI ∈ VΓ,

where Ph is defined by

(7) Ph =

nΓ
∑

J=1

(ΨJ,D +ΨJPΓJ
) .

Here, PΓJ
denotes the value of the pressure at the Jth global node. The pressure PΓ

at the fracture intersection Γ can now be calculated by enforcing the condition that
flow is conserved at the fracture intersection. Thereby, employing (6), we deduce
that

(8)

∫

f1

∇Ψf1
I ·
(

T̃f1∇Ph

)

dx+

∫

f2

∇Ψf2
I ·
(

T̃f2∇Ph

)

dx = 0, I = 1, ..., nΓ.

Inserting (7) into (8) gives
nΓ
∑

J=1

(

T̃f1

∫

f1

∇Ψf1
I · ∇Ψf1

J,Ddx+ T̃f1PΓJ

∫

f1

∇Ψf1
I · ∇Ψf1

J dx

)

+

nΓ
∑

J=1

(

T̃f2

∫

f2

∇Ψf2
I · ∇Ψf2

J,Ddx+ T̃f2PΓJ

∫

f2

∇Ψf2
I · ∇Ψf2

J dx

)

= 0,

(9)

for I = 1, ..., nΓ. Introducing the notation

(10) AIJ = T̃f1

∫

f1

∇Ψf1
I · ∇Ψf1

J dx+ T̃f2

∫

f2

∇Ψf2
I · ∇Ψf2

J dx

for I, J = 1, ..., nΓ, and

(11) BI = −T̃f1

nΓ
∑

J=1

∫

f1

∇Ψf1
I · ∇Ψf1

J,Ddx− T̃f2

nΓ
∑

J=1

∫

f2

∇Ψf2
I · ∇Ψf2

J,Ddx,

for I = 1, ..., nΓ, the matrix system corresponding to (9) may be written in the
following form

(12)





A11 · · · AnΓ1

· · · · · · · · ·
A1nΓ

· · · AnΓnΓ









PΓ1

· · ·
PΓnΓ



 =





B1

· · ·
BnΓ



 .

The matrix system (12) may now be inverted in order to compute PΓ; thereby, sub-
stituting PΓ into (7), the pressure over the two fractures f1 and f2 can subsequently
be calculated. The overall computational implementation is now summarised in Al-
gorithm 2.1 below.
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Algorithm 2.1. FE method on a DFN.

(1) Construct finite element meshes Tfi = {κfi}, i = 1, 2, over each fracture
fi, i = 1, 2, in the DFN, respectively.

(2) Discretise the fracture intersection Γ into nΓ global nodes belonging to the
set NΓ, such that NΓ = Nf1 ∩Nf2 .

(3) DO I = 1, 2, . . . , nΓ

Compute Ψfi
I and Ψfi

I,D using (4) and (5), respectively, i = 1, 2.
END DO

(4) Calculate AIJ and BJ defined in (10) and (11), respectively, I, J = 1, . . . , nΓ.
(5) Calculate PΓI

, I = 1, .., nΓ, by solving the matrix system (12).
(6) Calculate the pressure across the fracture network using the approximation

Ph =
∑nΓ

J=1 (ΨJ,D +ΨJPΓJ
) .

The FE method outlined in this section is equivalent to applying a standard
FE method on the entire fracture network, under the assumption that the global
nodes present on a given fracture intersection correspond to local nodes on both
of the intersecting fractures. The advantage of the proposed FE approach over the
standard FE method is two–fold: firstly, the FE method outlined in this section
does not require the assembly and inversion of a global stiffness matrix; instead
only local problems on each individual fracture need to be computed, together with
the inversion of the linear system (12). Secondly, the number of global nodes can be
reduced by performing a suitable coarsening algorithm at the fracture intersections.
In large scale DFNs, such as the ones considered in this article, this approach can
greatly reduce the computational work needed to solve the underlying groundwater
flow problem; see [8, 13] for further details.

3. Conditioning Methods

In this section we develop two numerical methods to condition fracture trans-
missivities in a DFN on measured pressure values: the so-called Basis Vector Con-
ditioning Method and the Bayesian Conditioning Method. For ease of notation,
from hereon we shall refer to the residual pressure as defined in (1) as simply the
‘pressure’.

The general problem setting is the following: we suppose that we are given a
(deterministically defined) DFN consisting of n, n ≥ 1, fractures, each with an

initial transmissivity T̃fi , i = 1, . . . , n. Moreover, we assume that field data has
been supplied which provides a set of m measurement points {Mi}

m
j=1 at which

the pressure has been evaluated. We collect these measured pressure values in the
vector PM . Once the finite element approximation Ph to the analytical solution
P has been computed, based on employing Algorithm 2.1, we may now evaluate
Ph at the corresponding measurement points. The aim of this section is then to
develop appropriate conditioning algorithms which are capable of adjusting the
transmissivity field T̃fi , i = 1, . . . , n, so that the error ‖PM −Ph,M‖2 is minimised,
where ‖ · ‖2 denotes the standard ℓ2–norm and Ph,M = (Ph(M1), . . . , Ph(Mm))⊤.

3.1. Basis Vector Conditioning Method. The material in this section is based
on a conditioning method proposed by Cliffe and Jackson [3, 4], where an isotropic
transmissivity field was conditioned on pressure measurements in a continuous
porous medium. In this section, we extend this technique so that it is applica-
ble to a DFN.

Given a DFN consisting of n fractures, with corresponding transmissivities T̃fi ,
i = 1, . . . , n, we define the vector X = (X1, . . . , Xn)

⊤ to be equal to the values
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of the logarithm of the fracture transmissivities; more precisely, Xi = log10 T̃fi ,
i = 1, . . . , n. The reason why we condition on the log transmissivities instead of
directly on the transmissivities themselves, is that it ensures that the correspond-
ing conditioned transmissivities are always positive. It can be shown, see [3], for
example, that for the case of small variability in fracture transmissivities and small
deviations of the pressure from the mean pressure field, the conditioned realisations
XC of X are given by adding the product of a suitable set of basis vectors W and
the vector of coefficients δP to the unconditioned fracture log transmissivities XU ,
i.e.,

XC = XU +W δP ,

where the coefficients in δP are the difference between the measured pressures
PM and the calculated pressure Ph computed at the m measurement points, i.e.,
δP = PM −Ph,M . The matrix W, which contains the m basis vectors associated
with each of the measurement points, can be obtained by solving the system

(13) (LCL⊤)W⊤ = LC ,

cf. [3]. The matrix L is known as the sensitivity matrix, while the covariance
matrix C represents the correlation of the fracture transmissivities in the DFN. It
is assumed that the sensitivity matrix L contains pressure measurements only; it
represents the linear relationship between the values of X on the n fractures and the
m measured values of pressure for small variability and small deviations of pressure
from the mean pressure field. The entries of L = {Lij}, i = 1, . . . ,m, j = 1, . . . , n,
are thus defined as

(14) Lij =
∂PB(Mi)

∂Xj

, i = 1, . . . ,m, j = 1, . . . , n,

where PB(Mi), i = 1, . . . ,m, is the computed pressure at a borehole evaluated at
the ith measurement point Mi. It is defined as

(15) PB(Mi) = Ph(Mi) +
Q(Mi)

T̃f,Mi
κ
,

where Q(Mi) is the flow produced from pumping the borehole at Mi, i = 1, . . . ,m,

T̃f,Mi
is the transmissivity of the fracture at the measurement point, and κ is a

geometrical constant dependent on the FE discretisation used. Full details on the
derivation of κ can be found in Milne [13]. The consequence G = (G1, . . . , Gm)⊤ is
also defined at each of the m measurement points to be the difference between the
calculated borehole pressure and the measured pressure PM , i.e., defining PB =
(PB(M1), . . . , PB(Mm))⊤, we have

(16) G(Ph,X) = PB −PM .

There are two terms needed to calculate the entries in the sensitivity matrix (14)
for the case of a DFN; indeed, for a fracture fj, 1 ≤ j ≤ n, we have that

(17) Lij =

∫

fj

1

ρg

∂T̃fj

∂Xj

∇θ · ∇Phdx+
∂

∂Xj

(

Q(Mi)

T̃f,Mi
κ

)

, j = 1, ..., n.

Here, the first term on the right-hand side of (17) may be rewritten as

(18)

∫

fj

1

ρg

∂T̃fj

∂Xj

∇θ · ∇Phdx =

∫

fj

T̃fj loge 10

ρg
∇θ · ∇Phdx ,

where ∇Ph is the gradient of the pressure on the fracture, fj , j = 1, . . . , n, ρ is the
groundwater density, g is the gravitational acceleration and ∇θ is the gradient of
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an associated adjoint solution on the fracture. The adjoint solution is derived in
Milne [13]; it is defined at global nodes as follows

(

θ⊤
)

ir
=

∂Gi

∂PΓr

(

∂Φs

∂PΓr

)−1

, i = 1, . . . ,m, r, s = 1, . . . , nΓ,

where nΓ is the number of global nodes in the DFN at which the pressure PΓ on
a fracture intersection is calculated and Φs represents the finite element equations
at the fracture intersections, i.e.,

Φs :=





A11 · · · AnΓ1

· · · · · · · · ·
A1nΓ

· · · AnΓnΓ









PΓ1

· · ·
PΓnΓ



−





B1

· · ·
BnΓ



 = 0,

cf. (12). The adjoint solution is then calculated across the fracture network in a
similar manner to the pressure (7). The second term on the right-hand side of (17)

is calculated by differentiating (15) with respect to Xj = log10 T̃fj , j = 1, . . . , n, for
the single fracture it corresponds to, i.e.,

(19)
∂

∂Xj

(

Q(Mi)

T̃f,Mi
κ

)

= −
Q(Mi)δij log10 e

T̃fjκ
,

where δij denotes the Kronecker delta function. The integral in (18) can be calcu-
lated using a numerical quadrature technique while (19) is easily evaluated. Details
on the derivation of the sensitivity terms can be found in Milne [13].

The case of large variability of fracture transmissivities and large deviations of
the pressure from the mean pressure field is now considered. The unconditioned
log transmissivity values and basis vectors W are computed as before. The log of
the unconditioned fracture transmissivities is denoted by XU and an update to the
log transmissivities is evaluated assuming the following relationship [3]

(20) X = XU +

m
∑

i=1

αiWi ,

where Wi, i = 1, . . . ,m, denotes the ith column of the matrix W and αi, i =
1, . . . ,m, are coefficients that are to be determined. Initially, the values of αi, i =
1, . . . ,m, are set equal to zero. The coefficients αi, i = 1, . . . ,m, are chosen so that
they minimise an error function E(α) defined as the weighted sum of consequences
defined in (16), namely,

(21) E(α) =

N
∑

i=1

G2
i

σ2
i

,

where σi is a weight corresponding to the estimated experimental error in the
measurement of the pressure at measurement point Mi, i = 1, . . . ,m. Our fracture
network model depends non-linearly on αi, i = 1, . . . ,m, thereby minimisation
of (21) will proceed in an iterative manner. There are many different algorithms
for non-linear minimisation and the Levenberg-Marquardt method [16] is exploited
to efficiently minimise E(α). The Levenberg-Marquardt algorithm requires the
derivative

(22) βk =
∂E

∂αk

=

m
∑

i=1

2Gi

σ2
i

∂Gi

∂αk

, k = 1, . . . ,m ,
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and

(23) γkl =
∂2E

∂αk∂αl

≈

m
∑

i=1

2

σ2
i

[

∂Gi

∂αk

∂Gi

∂αl

]

, l, k = 1, . . . ,m ;

here, for simplicity of implementation, the second derivative of Gi, i = 1, . . . , n, has
been neglected. The term ∂Gi/∂αk can be calculated using the chain rule with the
sensitivity values. The increments of the coefficients δα are calculated by solving
the system

(24)
m
∑

l=1

γ́klδαl = βk, k = 1, . . . ,m ,

where

γ́jk =

{

γjk(1 + λ) , j = k ,
γjk , j 6= k ,

and λ is a parameter initially set to a small value which is adaptively updated at
each iteration. Here, λ controls whether the Levenberg-Marquardt method corre-
sponds to a steepest descent method or a Newton method for the minimisation at
each iteration.

The overall minimisation algorithm is summarised as follows.

Algorithm 3.1. Basis Vector Conditioning Algorithm

(1) Compute the initial log transmissivity field XU and calculate an initial error
from (21).

(2) Calculate the sensitivities using (18) and (19).
(3) Calculate the basis vectors W using (13).
(4) Select an initial guess for the coefficients α.
(5) Update X using (20).
(6) Re-calculate pressures with the new X value.
(7) Update the new derivatives β (22) and γ (23).
(8) Calculate new increment for the coefficients δα from (24).
(9) If the error (21) has converged then stop. If the error has not been reduced

then increase λ by a factor of 10 and return to step 6. If the error has been
reduced then decrease λ by a factor of 10 and update X(α) to X(α + δα)
and return to step 6.

3.2. Bayesian Conditioning Method. The vector of fracture log transmissivi-
ties is denoted by X and m denotes the vector of mean fracture log transmissivities.
X is assumed to have a prior Gaussian distribution, defined as

(25) f(X) = A1 exp

{

−
1

2
(X−m)⊤C−1(X−m)

}

,

where the matrix C is the covariance matrix of the fracture log transmissivities
X, which may or may not be correlated, and A1 is a constant vector. The pres-
sures Ph,M calculated at measurement points are a function of the fracture log
transmissivities, i.e.,

Ph,M = Ph,M (X).

Furthermore, the measured pressures are assumed to be known to within some mea-
surement error ε and it is assumed that they are independent, normally distributed
random variables with possibly different standard deviations for each measurement.
Accordingly, the measured pressures PM are equal to the sum of the mean values
of the measured pressures P̄M and a vector of measurement errors ε, i.e.,

(26) PM = P̄M + ε .
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Bayes’ Theorem can be used to write down the posterior distribution for X defined
as

(27) f(X|PM ) =
f (PM |X) f(X)

f(PM )
.

The term f(X) is the prior distribution of fracture log transmissivities defined in
(25), while the term f(PM |X) takes into account the measured pressure values and
is given by

(28) f(PM |X) = A2 exp

{

−
1

2
(Ph,M −PM )⊤Σ−1(Ph,M −PM )

}

,

where A2 is a constant vector, the matrix Σ is the covariance matrix of the error
ε in the measured pressures; thus Σ will be a diagonal matrix if the measured
pressures are independent. The normalisation constant f(PM ) is unknown, but
using (25), (27) and (28) we can state

f(X|PM ) ∝ exp

{

−
1

2
(X−m)⊤C−1(X−m)

}

× exp

{

−
1

2
(Ph,M −PM )⊤Σ−1(Ph,M −PM )

}

.

(29)

Equation (29) can be used to compute the posterior mode for X, where f(X|PM )

is at a maximum and can be found by solving df(X|PM )
dX

= 0. This finds the most
probable set of fracture log transmissivities that yield the given measured pressures.
The exponential function is monotonic so it is also true that the posterior mode for
X occurs when d

dX
{ln f(X|PM )}= 0 and it follows that

d

dX

{

−

[(

1

2
(X−m)⊤C−1(X−m)

)

+

(

1

2
(Ph,M −PM )⊤Σ−1(Ph,M −PM )

)]}

= 0 .(30)

Applying the product rule for vectors to (30), the mode of the posterior distribution
f(X|PM ) can be found when

(31) F(X) ≡ (X−m)⊤(C−1 +C−⊤) + (Ph,M −PM )⊤(Σ−1 +Σ−⊤)
dPh,M

dX
= 0 .

Equation (31) can be solved using the Newton method to compute the posterior
mode of X. The Newton method generates a sequence for updating the log trans-
missivities Xk at the kth iteration by the recurrence formula

Xk+1 = Xk + dk ,

where dk solves (31) linearised at Xk, i.e., dk satisfies

F(Xk) +
dFk

dXk

dk = 0 ,

and so if dFk

dXk
is non-singular

dk = −

(

dFk

dXk

)−1

F(Xk) .
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Now,

dFk

dXk

=(C−1 +C−⊤) +

(

dPh,M

dXk

)⊤

Σ−1 dPh,M

dXk

+ (Ph,M (Xk)−PM )⊤(Σ−1 +Σ−⊤)
d2Ph,M

dX2
k

.

(32)

In minimisation problems such as ours it is common to drop the term
d2

Ph,M

dX2
k

from

(32), cf. [16]. Thus, from hereon we use the approximation

(33)
dFk

dXk

≈ (C−1 +C−⊤) +

(

dPh,M

dXk

)⊤

Σ−1 dPh,M

dXk

.

The algorithm to condition fracture log transmissivities X on pressure measure-
ments PM is now summarised in Algorithm 3.2.

Algorithm 3.2. Bayesian Conditioning Algorithm

(1) Take the initial set of fracture log transmissivities X0 = m and set k = 0.

(2) Compute F(Xk) and
dFk

dXk
.

(3) Compute the increment dk from the system
(

dFk

dXk

)

dk = −F(Xk).

(4) Update the fracture log transmissivities Xk+1 = Xk + dk.
(5) Calculate the new pressures Ph,M (Xk+1)

(6) Update the sensitivities
dPh,M (Xk+1)

dXk+1
.

(7) If the convergence criteria has been met then stop. Otherwise set k = k+1
and return to step 2.

4. Test Cases

In this section we outline two DFN models which are used as test cases. The
first test case comprises of 501 fracture transmissivities to be conditioned on nine
measured pressures obtained at boreholes. The second test case contains two
large macro fractures tessellated (divided into smaller sub fractures) into 900 sub-
fractures each. This second test case is divided into two subcases: Test case 2a
is used to model the two macro fractures, while Test case 2b consists of the two
macro fractures, together with a background fracture population of 24926 smaller
sized fractures.

For the two test cases under consideration, we assume that the transmissivity is
constant on each individual fracture (or subfracture tessellation, in the case of test
case 2). Moreover, we point out that the unconditioned pressure values calculated
on both DFN test cases fail to match the measured pressures at the measurement
points.

4.1. Test Case 1. This test case is a DFN model of a potential site for nuclear
waste disposal in Finland. It is planned to construct a repository in the centre of
an island called Olkiluoto which lies in the Baltic sea and is approximately 10 km2

in size. The site has been characterised through various surface and subsurface
measurements [7]. Boreholes have been drilled at locations spread across the site,
which provide pressure measurements at given depths. Pumping tests undertaken
on boreholes give an idea of approximate transmissivity properties of fracture zones
located between the drilled boreholes.

The Olkiluoto site data [7] was implemented in ConnectFlow to produce a DFN
model of the site containing 11 fracture sets that were generated based on pumping
test results, and on fracture orientation and length estimates and ranges [6]. Each
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Figure 1. Test Case 1: DFN containing 11 fracture sets coloured
by fracture transmissivity and 9 borehole measurement points
shown as purple dots; a total of 501 fractures make up the en-
tire network.

fracture set contains fractures with similar geometry and a total of 501 fractures are
contained in the different fracture sets. The domain of the model containing these
fracture sets is 7800m by 7800m by 1000m. The fracture set transmissivities were
assumed to be homogeneous; that is all initial fracture transmissivities contained
in the same fracture zone are equal. Measured pressure values were obtained at
measurement points at nine boreholes. The boundary conditions of the model
are as follows: the top surface has pressure proportional to elevation; the lateral
sides which are in contact with the Baltic Sea have pressure set to zero; and the
bottom surface has a no-flow boundary condition. Figure 1 shows the location of
the borehole measurement points and the geometry of the 501 fractures coloured
according to their transmissivity value.

The model has been simplified by only modelling borehole measurement points
instead of including complete boreholes which would further connect some of the
fractures.

4.2. Test Case 2. This test case focuses on a smaller area of the Olkiluoto site
than that modelled by test case 1. The problem domain is a 300m by 300m by
500m cube approximately centred around nine boreholes located in the middle of
the Olkiluoto island. It should be noted that these boreholes do not correspond to
those used in test case 1. This scenario was designed to analyse a series of cross-hole
pump tests with the nine boreholes, where one borehole is pumped with a given
flow rate and the responses of the remaining boreholes are recorded as measured
pressures.

The geometry of the DFN is semi-deterministic; it contains two large scale tessel-
lated macro fractures which are known to provide flow paths through the domain.
Additionally, there is a background fracture population consisting of many smaller
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Figure 2. Test Case 2a: Domain of test case 2a with two tessel-
lated macro fractures (macro fracture 1 and 2) intersected by nine
boreholes. Macro fracture 1 is mainly green coloured with macro
fracture 2 mainly blue coloured.

fractures throughout the domain. To study the effect of the background popula-
tion, test case 2 has been split into two separate test cases. The same value of
measured pressures and measurement locations were used to condition the fracture
transmissivities in both of these test cases.

4.2.1. Test Case 2a. Test case 2a contains the two macro fractures, each tessel-
lated into 900 sub-fractures. Here, zero pressure boundary conditions are used on all
the boundaries of the domain. The two macro fractures are shown in Figure 2 with
the hydraulic aperture (which is proportional to the cube of the fracture transmis-
sivity) shown, as this shows the fracture tessellation more clearly. Macro fracture 1
and macro fracture 2 have mean transmissivities estimated from field experiments
of 2.2E-4m2/s and 1.0E-5m2/s, respectively. The initial fracture apertures were
generated by sampling from a normal distribution using corresponding aperture
means to the transmissivity means. The initial transmissivities of the sub-fractures
on each macro fracture were then assigned by converting the fracture apertures to
fracture transmissivities using the cubic law [21].

The sub-fractures were assumed to be exponentially correlated. Defining the
separation Sij of two sub-fractures i and j as the distance between the centre
of sub-fracture i and the centre of sub-fracture j, the standard deviation of sub-
fracture log transmissivities as σX (assumed to be constant for all sub-fractures
on the same macro fracture) and the correlation scale as ap, then the covariance
matrix Ck of the sub-fractures transmissivities on macro fracture k is defined as

(34) Ck(i, j) =

{

σ2
X , i = j ,

σ2
X exp

{

−Sij

ap

}

, i 6= j .
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Figure 3. Test Case 2b: Domain of test case 2b with two tessel-
lated macro fractures intersected by nine boreholes and the addi-
tion of a background fracture population.

4.2.2. Test Case 2b. In addition to the two tessellated macro fractures, a back-
ground fracture population was added into the model domain providing additional
flow paths between the two macro fractures and the boreholes contained in the
model. A total of 24926 background fractures were included, whose statistical
properties were derived from borehole orientation and location data. The main un-
known of the background fracture population was the fracture size which was chosen
so that the background fractures were large enough to make a well connected sys-
tem between the macro fractures and the domain boundaries. The model domain
is shown in Figure 3.

5. Results

In this section, we now present computational results to highlight the perfor-
mance of the conditioning methods outlined in Section 3. Here, in addition to
computing the (absolute) error ‖PM −Ph,M‖2 between the measured pressure val-
ues, and those computed using each of the above conditioning algorithms, we shall
also compute the following relative error:

‖PM −Ph,M‖R =
1

m

m
∑

i=1

|(PM )i − Ph(Mi)|

(PM )i
.

5.1. Test Case 1 Results. In this section, we assume that the fracture transmis-
sivities are uncorrelated and accordingly set the covariance matrix C equal to the
(n× n) identity matrix In.

5.1.1. Basis Vector Conditioning Results. In this section, we first consider
the application of the basis vector conditioning method to Test Case 1. To this end,
Figure 4 compares the conditioned pressure to both the measured pressure and the
initial unconditioned pressures at all nine measurement points in test case 1. It
can be seen that the conditioned pressures give a closer match to the measured
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Figure 4. Test Case 1. The measured pressures, unconditioned
pressures and conditioned pressures at the nine measurement
points using the basis vector conditioning algorithm.

‖PM −Ph,M‖2 ‖PM −Ph,M‖R
Initial 1.1128E+5 0.6828
Final 6.2327E+4 0.3574

Table 1. Test Case 1: Initial and final absolute and relative errors
using the basis vector conditioning algorithm.

pressures at every measurement point compared to the unconditioned pressures,
though an exact match is not achieved. In Table 1 we compute the initial and
final absolute and relative errors between the calculated pressures and the mea-
sured pressure values. Here, we clearly observe that the basis vector conditioning
algorithm yields a significant improvement in the computed pressure values when
compared to the initial (unconditioned) solution. Indeed, norms of the error are
approximately half of their initial values. It is clear that, while the conditioned
pressures give a far better match to the measured pressures than the unconditioned
pressures, the match is perhaps not as close as one would like; indeed, the final
relative error is still around 36%, which is quite high. With this in mind, we now
proceed to apply the Bayesian algorithm to this test case.

5.1.2. Bayesian Conditioning Results. For all of the Bayesian conditioning
results presented in this article, we assume that each pressure measurement is
independent and that all measurements have the same standard deviation σP in
the measured pressure. Thus, the covariance matrix Σ from (31) takes the form

Σ = σ2
P Im ,

where Im is the m×m identity matrix and the variance σ2
P at a pressure measure-

ment point Mi, i = 1, . . . ,m, is defined as

σ2
P = C((PM )i, (P̄M )i) = E(((PM )i − (P̄M )i)((PM )i − (P̄M )i)) ,
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Figure 5. Test Case 1: Variance σ2
P of the pressure measurements

against the relative error using the Bayesian conditioning algo-
rithm.

where C(·, ·) denotes the covariance, E(·) denotes the expectation and P̄M denotes
the mean value of the measured pressure. In Figure 5, we plot the relative error
against the variance of the pressure measurements σ2

P . It can be seen that the
relative error possesses a minimum when the variance in the pressure measurements
is σ2

P = 1.0E+3; indeed, here ‖PM − Ph,M‖R = 0.1866. We recall, that this is
around half the relative error achieved when the basis vector conditioning method is
employed, cf. Section 5.1.1. However, as the variance in the pressure measurements
σ2
P increases beyond a value of 1.0E+8, we observe that the relative error starts to

increase. This represents the point at which the standard deviation of the pressure
measurements is of the same magnitude as the pressure measurements themselves
(σP = 1.0E+4).

In order to improve the match to measured pressures even further, we consider
the following algorithm outlined below, which is based on adaptively selecting the
variance in the pressure measurements.

Algorithm 5.1. Updating the Variance.

(1) Set the initial fracture log transmissivities values X = X0 and set i = 0.
(2) Run the Bayesian conditioning algorithm for step i on the fracture log trans-

missivities X with variance σ2
P of the pressure measurements ranging from

1.0E+0 to 1.0E+10.
(3) Take the conditioned log transmissivity values XC that correspond to the

variance value σ2
P with the smallest final absolute error as the new initial

fracture transmissivities. That is set X = XC

(4) If the absolute error is below a given tolerance then stop. Otherwise, set
i = i+ 1 and go to (2).

In Figure 6 we plot the variance σ2
P in the measured pressure values against the

relative error for each step in Algorithm 5.1. Each point represents one run of the
Bayesian conditioning algorithm. Here, we observe that as the algorithm proceeds,
the relative error in the computed pressures becomes relatively insensitive to the
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Figure 6. Test Case 1: Variance σ2
P of the pressure measurements

against the relative error for each iteration (step) of Algorithm 5.1.

Step ‖PM −Ph,M‖2 ‖PM −Ph,M‖R
Unconditioned 1.1128E+5 0.6828

1 4.1522E+4 0.1866
2 1.4791E+4 0.0587
3 5.6679E+3 0.0243
4 4.7318E+3 0.0175
5 4.5264E+3 0.0158
6 4.3127E+3 0.0141
7 4.2446E+3 0.0133

Table 2. Test Case 1: Minimum absolute and relative errors at
each step of Algorithm 5.1.

specified value of the variance σ2
P in the measured pressure values. Indeed, from

steps 4 onwards, the curves are essentially horizontal. Table 2 presents a summary
of the minimum absolute and relative errors at each step of Algorithm 5.1. Here, we
observe that both the absolute and relative errors converge to a relatively constant
value after the first 4 steps of Algorithm 5.1 have been computed. In Figure 7
we compare the conditioned pressures computed from step 7 of Algorithm 5.1 to
the unconditioned and measured pressures. Here, we clearly observe the excellent
match that has been attained based on employing Algorithm 5.1. Indeed, with
the exception of the third and sixth measurement points, the measured pressure is
almost identically matched at the other seven measurement points.

Finally, in Table 3 we compare the final absolute and relative errors of the two
newly proposed conditioning methods applied to test case 1. As already noted,
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Figure 7. Test Case 1: The measured pressure, unconditioned
pressure and conditioned pressure from Algorithm 5.1 at each mea-
surement point.

Method ‖PM −Ph,M‖R ‖PM −Ph,M‖R
Unconditioned 1.1128E+5 0.6828
Basis vector 6.2327E+4 0.3574
Algorithm 5.1 4.2446E+3 0.0133

Table 3. Test Case 1: Final absolute and relative errors for the
conditioning methods.

we observe that Algorithm 5.1 produces the smallest absolute and relative errors.
Indeed, the relative error from Algorithm 5.1 is more than 26 times smaller than
that from the basis vector conditioning method and 51 times smaller than the
unconditioned relative error.

5.2. Test Case 2 Results. On the basis of the computations undertaken for test
case 1, we only consider the application of the Bayesian conditioning method based
on Algorithm 5.1 to condition the fracture transmissivities in test case 2.

5.2.1. Test Case 2a Results. In this section we set σX = 1/6 and ap = 5 in
order to construct the fracture log transmissivity covariance matrix C defined in
(34). As for the previous example, in Figure 8 we plot the relative error against
the variance in the pressure measurements for each step of Algorithm 5.1. As
previously observed, we see that as the algorithm proceeds, the relative error in
the computed pressures becomes relatively insensitive to the specified value of the
variance σ2

P in the measured pressure values. However, in this setting we notice
that while the curves become flatter as the algorithm proceeds, there is still a
visible growth in ‖PM − Ph,M‖R as the variance is increased. A summary of
the minimum absolute and corresponding relative errors at each step of Algorithm
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Figure 8. Test Case 2a: Plot of the relative error against variance
in the pressure measurements for each step of Algorithm 5.1.

Figure 9. Test Case 2a: Conditioned pressures after step 5 of Al-
gorithm 5.1 at each measurement point compared to the measured
and unconditioned pressure values.

5.1 are shown in Table 4 for this test case. Here, we now observe that after 5
steps of Algorithm 5.1, the conditioned pressures provide an excellent match to
the measured pressures. Indeed, this is clearly visible in Figure 9, where we plot
the final conditioned pressures after step 5 of Algorithm 5.1, together with the
unconditioned and measured values at each measurement point.
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Step ‖PM −Ph,M‖2 ‖PM −Ph,M‖R
Unconditioned 8.5860E+4 0.7929

1 3.8363E+4 0.4094
2 1.3904E+4 0.1695
3 7.9760E+3 0.1242
4 1.9890E+3 0.0429
5 8.1150E+1 0.0007

Table 4. Test Case 2a: Minimum absolute and relative errors at
each step of Algorithm 5.1.

Step ‖PM −Ph,M‖2 ‖PM −Ph,M‖R
Unconditioned 8.9737E+4 0.7984

1 4.0773E+4 1.0812
2 1.5625E+4 0.7318
3 4.1325E+3 0.0960
4 1.6182E+2 0.0048

Table 5. Test Case 2b: Minimum absolute and relative errors at
each step of Algorithm 5.1.

5.2.2. Test Case 2b Results. This final test case involves a total of 26727 frac-
ture transmissivities which need to be conditioned. Given the size of this problem,
it was computationally too expensive to run the Bayesian conditioning algorithm to
condition every fracture transmissivity. Instead, fractures to be conditioned were
selected depending on their sensitivity values. To this end, fractures that had a sen-
sitivity value of 1.0 or greater with respect to any of the measured pressures were
selected for conditioning. This resulted in 2205 fracture transmissivities (with the
greatest sensitivity values) being conditioned, while leaving the remaining fracture
transmissivities constant at their initial value throughout the Bayesian conditioning
algorithm. In other words, only selected fracture transmissivities were conditioned
but pressure values were re-calculated using all of the fracture transmissivities in
the DFN (including those held constant). Furthermore, due to the computational
time taken to perform the conditioning of fracture transmissivities, the values of
σ2
P in each step of Algorithm 5.1 were limited to 1.0E+3, 1.0E+4, 1.0E+5, and

1.0E+6. This selection was based on results from the previous test cases where no
values of σ2

P less than 1.0E+3 or greater than 1.0E+6 minimised the absolute error
at any step of Algorithm 5.1.

In Table 5 we show the minimum absolute and relative errors for each step of
Algorithm 5.1 for test case 2b. The relative error at steps 1 and 2 are higher than
would be expected compared to the previous test cases. This was due to the small
measured pressure value at measurement point 8. At steps 1 and 2 the conditioned
pressure at measurement point 8 was considerably higher than the measured pres-
sure which greatly affected the value of ‖PM−Ph,M‖R. Notwithstanding this issue,
we see that after 4 steps of Algorithm 5.1, the relative error is less than 0.5%. In-
deed, Figure 10 clearly highlights the excellent match with the measured pressures
attained by the conditioned pressures. For completeness, in Figure 11 we plot the
absolute error against the variance in the pressure measurements for each step of
Algorithm 5.1; the absolute error was chosen, rather than the relative error, due to
the issue with measurement point 8 outlined above.
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Figure 10. Test Case 2b: Conditioned pressures after step 4 of
Algorithm 5.1 at each measurement point compared to the mea-
sured and unconditioned pressure values.
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Figure 11. Test Case 2b: Plot of the absolute error against vari-
ance in the pressure measurements for each step of Algorithm 5.1.

6. Summary and Conclusion

In this article, we have presented two new conditioning methods which are capa-
ble of conditioning fracture transmissivities in a DFN on measured pressure values.
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The first approach is based on the computation of suitable basis vectors, together
with the solution of a nonlinear optimisation problem. This method represents the
extension of the work, undertaken by Cliffe and Jackson [3, 4] in the context of
continuous porous media problems, to DFNs. The second approach outlined is a
Bayesian conditioning method that calculates a mode (point of highest likelihood
for the fracture transmissivities given the measured pressures) of the posterior dis-
tribution of the fracture transmissivities numerically. Both methods have been
numerically tested on a potential site for nuclear waste disposal at the Olkiluoto
site in Finland. While both conditioning methods improved the match of the com-
puted pressures to the measured experimental values, the Bayesian approach was
seen to be superior, in the sense that it gave rise to the smallest relative error
between the measured and conditioned pressures, evaluated at the measurement
points. This method was further tested on a smaller area of the Olkiluoto site. In
this setting, we considered two cases: firstly, when the DFN consists of only two
large tessellated fractures, and secondly, when these two large tessellated fractures
are supplemented by a background fracture population. In both cases, the Bayesian
conditioning method provided an excellent match to the measured pressure values.
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