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Abstract. We propose a penalty-function method for constrained molecu-

lar dynamics simulation by defining a quadratic penalty function for the con-

straints. The simulation with such a method can be done by using a conven-

tional, unconstrained solver only with the penalty parameter increased in an

appropriate manner as the simulation proceeds. More specifically, we scale the

constraints with their force constants when forming the penalty terms. The

resulting force function can then be viewed as a smooth continuation of the

original force field as the penalty parameter increases. The penalty function

method is easy to implement and costs less than a Lagrange multiplier method,

which requires the solution of a nonlinear system of equations in every time

step. We have first implemented a penalty function method in CHARMM and

applied it to protein Bovine Pancreatic Trypsin Inhibitor (BPTI). We com-

pared the simulation results with Verlet and Shake, and found that the penalty

function method had high correlations with Shake and outperformed Verlet.

In particular, the RMSD fluctuations of backbone and non-backbone atoms

and the velocity auto correlations of Cα atoms of the protein calculated by

the penalty function method agreed well with those by Shake. We have also

tested the method on a group of argon clusters constrained with a set of inter-

atomic distances in their global energy minimum states. The results showed

that the method was able to impose the constraints effectively and the clusters

tended to converge to their energy minima more rapidly than not confined by

the constraints.

Key Words. Constrained molecular dynamics, Verlet algorithm, Shake algo-

rithm, Lagrange multipliers method, penalty function method.

1. Introduction

Molecular dynamics simulation can be used to study many different dynamic
properties of proteins, but a long sequence of iterations has to be carried out even
for small protein motions due to the small time step (1.0e-15sec) required [23].
The bonding forces are among those causing fast protein vibrations that require
small time steps to integrate, but they may be replaced by a set of bond length
constraints, to increase the step size and hence the simulation speed [12]. Several
Lagrange multiplier types of methods have been developed for constrained molec-
ular dynamics simulation. However, in all these methods, the multipliers have to

Received by the editors in January 2007 and, in revised form, in May 2009.
2000 Mathematics Subject Classification. 35R35, 49J40, 60G40.
This research was supported by Department of Mathematics, College of Liberal Arts and

Sciences of Iowa State University.

496



A PENALTY FUNCTION METHOD FOR MOLECULAR DYNAMICS SIMULATION 497

be determined in every time step by solving a nonlinear system of equations so
that the new iterate can satisfy the constraints [3]. Depending on the number of
constraints, the additional computational cost can be large, given the fact that the
force field calculation in every time step is at most O(n2), while the solution of
the nonlinear system of equations may require O(m3), where n is the number of
particles in the system and m the number of constraints.

In this paper, we propose a so-called penalty function method [18] for constrained
molecular dynamics. In this method, a special function is defined so that the
function is minimized if the constraints are satisfied. By adding such a function in
the potential energy function, the constraints can then be removed from the system,
and the simulation can be carried out in a conventional, unconstrained manner. The
advantage of using a penalty function method is that it is easy to implement, and
does not require solving a nonlinear system of equations in every time step. The
disadvantage of the method is that the penalty parameter, i.e., the parameter used
to scale the penalty function, is hard to control and in principle, needs to be large
enough for the penalty function to be truly effective, which on the other hand, may
cause numerical instabilities when used in simulation [10]. It may also arguably
be a disadvantage that the penalty function method only forces the constraints
to be satisfied approximately but not completely. In any case, the method may
possibly be used as an alternatively and computationally more efficient approach
for constrained molecular dynamics simulation than the Lagrange multiplier types
of methods.

We have first implemented a penalty function method in CHARMM [7] and
tested it on protein Bovine Pancreatic Trypsin Inhibitor (BPTI) by following a
similar experiment done by Gunsteren and Karplus in [12] for the Shake algorithm
[22]. In this implementation, we removed the bond length potentials from the po-
tential energy function and introduced the corresponding bond length constraints.
For each of the bond length constraints, we constructed a quadratic penalty func-
tion and inserted it into the potential energy function. For each different type of
bond, we also scaled the corresponding penalty function with the force constant
of the bond so that the resulting function had the same form as the original bond
length potential if without multiplied by the penalty parameter. In this way, the
resulting force field becomes simply a continuation of the original force field as the
penalty parameter changes continuously from 1 to a value > 1. We conducted a
simulation on BPTI with the penalty function method, and compared the results
with Verlet and Shake, and found that the penalty function method had a high
correlation with the Shake and outperformed the Verlet. In particular, the root-
mean-square-deviations (RMSD) of the backbone and non-backbone atoms and the
velocity auto correlations of the Cα atoms of the protein calculated by the penalty
function method agreed well with those by Shake. Note again that the penalty
function method requires no more than just applying a conventional, unconstrained
simulation algorithm such as the Verlet algorithm to the potential energy function
expanded with additional penalty terms for the bond length constraints.

We have also tested the penalty function method on a group of argon clusters
with the equilibrium distances for a selected set of molecular pairs as the con-
straints. Here by the equilibrium distances we mean the distances for the pairs of
argon molecules when the clusters are in their global energy minimal states. We
generated these distances by using the global energy minimal configuration of the
clusters published in previous studies [19]. A penalty function was constructed for
each of the constraints and incorporated into the potential energy function of the
cluster. The simulation was then conducted by using a conventional, unconstrained
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simulation method, i.e., the Verlet algorithm [26], with the extended potential en-
ergy function. Here, there were no substantial algorithmic changes or computational
overheads required due to the addition of the constraints. The simulation results
showed that the penalty function method was able to impose the constraints effec-
tively and the clusters tended to converge to their lowest energy equilibrium states
more rapidly than not confined by the constraints.

We introduce the theory and the methods for constrained molecular dynamics
simulation in Section 2 and describe the penalty function method in Section 3. In
Section 4, we present the results on BPTI and their comparisons with the Verlet
and the Shake. In Section 5, we present the results of using the penalty function
method on argon cluster simulation. We conclude the paper in Section 6.

2. Constrained Molecular Dynamics Simulation

Based on the theory of classical mechanics, the trajectory of molecular motion
between two molecular states minimizes the total action of the motion [15]. Let x(t)
be the configuration of the molecule at time t, x = {xi : xi = (xi,1, xi,2, xi,3)

T , i =
1, , n}, where xi is the position vector of atom i and n the total number of atoms in
the molecule. Given beginning and ending time t0 and te, x(t) in [t0, te] defines a
trajectory connecting two molecular states x0 = x(t0) and xe = x(te). Let L(x, x

′, t)
be the difference of the kinetic and potential energy of the molecule at time t. The
functional L is called the Lagrangian of the molecule. Let S be the action of the
molecule in [t0, te]. Then, S is defined as the integral of the Lagrangian in [t0, te],
and according to the least action principle [15], the trajectory x minimizes the
action S of the molecular motion in [t0, te],

(2.1) min

[

S(x) =

∫ te

t0

L(x, x′, t)dt

]

Theorem 2.1. Let L be a continuously differentiable functional. Let x be a solution
of problem (2.1). Then, x satisfies the following Euler-Lagrange Equation,

(2.2)
∂L(x, x′, t)

∂x′
−

d

dt

[

∂L(x, x′, t)

∂x

]

= 0

Proof: Let δx be a small variation of x and δx(t0) = δx(te) = 0. By the principle
of variation, the necessary condition for x to be a solution of problem (2.1) is that,

(2.3) δS =

∫ te

t0

(

∂L(x, x′, t)

∂x
δx+

∂L(x, x′, t)

∂x′
δx′

)

dt = 0

Since δx′ = δ

(

dx

dt

)

= d

(

δx

dt

)

, we obtain, after integrating the second term of

(2.3) by parts,

(2.4) δS =

∫ te

t0

(

∂L(x, x′, t)

∂x
−

d

dt

[

∂L(x, x′, t)

∂x′

])

δxdt = 0

Since δS should be zero for all δx, the integrand of (2.4) must be zero and (2.2)
follows. �

Corollary 2.2. Let L =
x′TMx′

2
−E(x), where M is the mass matrix of a molecule

and E the potential energy. Then, a necessary condition for x to minimize an action
S is that,

(2.5) Mx′′ = −∇E(x)
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Proof: It follows from Theorem 2.1 and the facts that
d

dt

∂L

∂x′
= Mx′′ and

∂L

∂x
=

−∇E. �

Equation (2.5) is well known as the equation of motion for a molecule of n atoms.
It can be equivalently stated as,

(2.6) mix
′′
i = fi(x1, ..., xn), fi = −

∂E

∂xi
, i = 1, ..., n

where mi and fi are the mass and force for atom i, respectively and
M = diag[m1, ...,mn].

Note that Theorem 2.1 and Corollary 2.2 imply that a trajectory that minimizes
the molecular action between two system states necessarily satisfies the classical
mechanical equation of motion. In other words, the solution of the equation of
motion can be considered as an attempt for the minimization of the molecular
action of motion.

Verlet [26] developed an algorithm, now called the Verlet algorithm, for numeri-
cally integrating the equations in (2.6), started with a given set of initial positions
and velocities for the atoms. There are two versions of the Verlet algorithm, the
position Verlet and the velocity Verlet [25], as given in formulas (2.7) and (2.8),
respectively:

Position Verlet:

xk+1
i = 2xk

i − xk−1
i + h2fk

i /mi,(2.7)

i = 1, ..., n, k = 1, 2, ...

Velocity Verlet:

xk+1
i = xk

i + hvki + h2fk
i /(2mi),(2.8)

vk+1
i = vki + h(fk

i + fk+1
i )/(2mi),

i = 1, ..., n, k = 1, 2, ...

Being symplectic, the velocity Verlet preserves the energy and volume of the
molecular system and exhibits superior numerical stability for long time simulation
[2]. However, the simulation has to be carried out with a small time step (in order
of 1.0e-15sec) to keep up with all rapid atomic level movements. The potential of
simulating molecular motions in longer time scales beyond pico- or nano-seconds has
therefore been limited. For proteins, the bonding forces are believed among those
responsible for fast protein vibrations that require small time steps to integrate.
Therefore, one of the approaches to increase the step size and hence the simulation
speed is to remove the bonding forces from the force field while enforcing them
through a set of bond length constraints. The simulation can then be done by
integrating the constrained equation of motion with larger time steps [12].

Let g = {gj : j = 1, ...,m} be a vector of functions that can be used to define
the constraints on the molecule. The constrained simulation problem can then be



500 A. GUNARATNE AND Z. WU

considered as a constrained least action problem.

min [S(x) =

∫ te

t0

L(x, x′, t)dt](2.9)

subject to g(x) = 0

Then, by the theory of constrained optimization, a necessary condition for a molec-
ular trajectory x between x0 and xe to be a solution of problem (2.9) is that,

δS(x) +

m
∑

j=1

λjδgj(x) = 0(2.10)

g(x) = 0

where λj is a vector of Lagrange multipliers [5].

Theorem 2.3. Let L =
x′TMx′

2
−E(x), where M is the mass matrix of a molecule

and E the potential energy. Then, a necessary condition for x to minimize an action
S subject to g(x) = 0 is that,

Mx′′ = −∇E(x)−G(x)T λ,(2.11)

g(x) = 0

where λ is a vector of Lagrange multipliers and G(x) the Jacobian of g(x).

Proof: For L =
x′TMx′

2
− E(x), condition (2.10) translates to,

Mx′′ = −∇E(x) −
m
∑

j=1

λj∇gj(x),(2.12)

g(x) = 0

and hence to (2.11) with G = [∇g1,∇g2, ...,∇gm]T . �

For each atom, equation (2.11) can be written as,

mix
′′
i = fi(x1, ..., xn) +

m
∑

j=1

λjgji(x1, ..., xn),(2.13)

0 = gj(x1, ..., xn)

j = 1, ...,m, i = 1, ..., n.

where

fi = −
∂E

∂xi
, gji = −

∂gj
∂xi

, j = 1, ...,m, i = 1, ..., n.(2.14)

Note that in (2.13), the right-hand side of the first equation can be treated as
a single force function (with the original force function plus a combination of the
derivatives of the constraint functions), and therefore, the equation can be inte-
grated in the same way as equation (2.6) by the Verlet algorithm, except that
in every step, the Lagrange multipliers λj , j = 1, ...,m, have to be determined
so that the new positions xi, i = 1, ..., n, for the atoms satisfy the constraints
gj(x1, ..., xn) = 0, j = 1, ...,m. Indeed, several algorithms have been developed
along this line including the Shake [22] and Rattle [1] algorithms, corresponding to
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the position and velocity Verlet algorithms for unconstrained simulation, respec-
tively.

Shake:

xk+1
i = 2xk

i − xk−1
i + h2(fk

i +
m
∑

j=1

λk
j g

k
ji)/mi,(2.15)

0 = gj(x
k+1
1 , ..., xk+1

n )

j = 1, ...,m, i = 1, ..., n k = 1, 2, ...

Rattle:

xk+1
i = xk

i + hvki + h2(fk
i +

m
∑

j=1

λk
j g

k
ji)/(2mi),(2.16)

vk+1
i = vki + h(fk

i +

m
∑

j=1

λk
j g

k
ji + fk+1

i +

m
∑

j=1

λk+1
j gk+1

ji )/(2mi),

0 = gj(x
k+1
1 , ..., xk+1

n )

j = 1, ...,m, i = 1, ..., n k = 1, 2, ...

In both Shake and Rattle, a nonlinear system of equations needs to be solved
in every step so that the new iterates can satisfy the constraints. A Gauss-Seidel
method has been used in the algorithms for the solution of the nonlinear system
of equations [20]. Barth et al [3] developed an SOR (Successive Over-Relaxation)
method to improve the performance of the Gauss-Seidel approach, and also tested
a Newton-type method. The Gauss-Seidel method runs fast for each iteration
but converges slow, while the Newton-type method converges quickly but requires
expensive computation in each iteration step. As a result, all the methods are
somehow equivalently costly, and in the worst case, take O(m3) floating point
operations in every time step of the simulation, where m is the number of constraints
[3]. Note that simulation without constraints requires at most O(n2) floating point
operations per time step, where n is the number of atoms. When the number of
constraints is comparable to the number of atoms, the computational overhead for
constrained dynamics will certainly be more than significant.

3. The Penalty Function Method

The penalty function method has a long history of being used as an alternative
approach to constrained optimization. The idea is simply to combine the objec-
tive function and the constraints so that the objective function and the constraint
violation are both minimized when the combination is minimized. The solution
of the original constrained optimization problem can then be achieved by solving
an unconstrained one [18]. As described in previous section, constrained molecular
dynamics simulation is essentially seeking the solution to a constrained optimiza-
tion problem - a constrained least action problem. Therefore, the problem may be
approached by a penalty function method as well.
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Courant [8] first proposed a penalty function method using the squared Euclidean
norm of the constraint violations as the penalty term. Fletcher [11] studied the
theoretical basis for a class of exact penalty function methods for the solution of
equality constrained optimization problems. The exact penalty function methods
were further investigated by Di Pillo [9]. The idea of Fletcher of defining a class of
smooth penalty functions and that of Courant of using a quadratic penalty term
were also combined [21]. Variants of the penalty function methods also include
using so-called barrier functions to prevent optimization from becoming infeasible
by setting an infinitely large barrier around the border of the feasible region [24].

Let f be the objective function and g = {gj : j = 1, .....,m} be a set of constraint
functions. Consider a general equality constrained optimization problem,

min f(x1, ..., xn)(3.1)

subject to gj(x1, ..., xn) = 0 j = 1, ...,m.

The unconstrained optimization problem with a quadratic penalty function for (3.1)
can be defined as follows,

min f(x1, ..., xn) + µ

m
∑

j=1

|gj(x1, ..., xn)|
2

(3.2)

where µ is a parameter called the penalty parameter. In principle, the solution
for problem (3.1) can be recovered by solving problem (3.2) with the parameter µ
gradually increased to infinity.

A so-called exact penalty function can also be defined, such as using the l1-norm.
Then, problem (3.2) becomes,

min f(x1, ..., xn) + µ

m
∑

j=1

|gj(x1, ..., xn)|(3.3)

and the solution for problem (3.1) can be recovered by solving problem (3.3) with
the parameter µ only raised to a sufficiently large value.

If the constraints are inequalities, i.e., gj(x1, ....., xn) ≥ 0, j = 1, ...,m, the
penalty functions in (3.2) and (3.3) can still be used in the same way as for equality
constraints, only with gj replaced by g−j for all j, where g−j = min{gj, 0} gives the
amount of violation for constraint j. Another approach is to introduce a barrier
function for each constraint. Then, the problem becomes minimizing the combina-
tion of the objective function and the barrier functions such as the following,

min f(x1, ..., xn)− r

m
∑

j=1

log [gj(x1, ..., xn)](3.4)

where log[gj(x1, ..., xn)] is called the log barrier function for gj(x1, ..., xn) as the
function is not defined when gj(x1, ..., xn) < 0 and is infinity when gj(x1, ..., xn) = 0.
The parameter r is used to control the barrier term. In principle, the solution of
the original constrained optimization problem can be asymptotically approached
by solving problem (3.4) as r is gradually decreased to zero.

In this work, we will only use the formulation in (3.2) for the development of
the penalty function method for constrained molecular dynamics simulation. The
primary reasons are that in this work, we only consider the equality constraints,
and the squared Euclidean norm used in (3.2) also provides smoother properties
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than the l1-norm in (3.3) for optimization. By using the formulation in (3.2), the
constrained least action problem as given in (2.9) can be transformed to,

min S(x) + µ
‖g(x)‖2

2
(3.5)

where ‖.‖ is the Euclidean norm and g = (g1, ..., gm)T . In principle, a solution for
the constrained least action problem (2.9) can be obtained by solving a sequence of
problems in (3.5) with µ selected from an increasing sequence of parameters {µk}.

Theorem 3.1. Let µ = µk and µk ↑ ∞ as k → ∞. Let xk be a global solution to
(3.5) with µ = µk, and xk → x∗ as k → ∞. Then, g(xk) → 0 as xk → x∗, and x∗

is a global solution to the constrained least action problem (2.9).

Proof: Let φ(x, µ) = S(x) +
µ‖g(x)‖2

2
. Then,

φ(xk, µk) ≤ φ(xk+1, µk) ≤ φ(xk+1, µk+1)(3.6)

showing that the sequence of global minima {φ(xk, µk)} of (3.5) is non-decreasing.
By using the facts that φ(xk, µk) ≤ φ(xk+1, µk) and φ(xk+1, µk+1) ≤ φ(xk, µk+1),
we have,

φ(xk+1, µk+1)− φ(xk+1, µk) ≤ φ(xk, µk+1)− φ(xk, µk)(3.7)

and
(

µk+1 − µk
) (

‖g(xk)‖2 − ‖g(xk+1)‖2
)

≥ 0(3.8)

It follows that {‖g(xk)‖2} is non-increasing. Since φ(xk, µk) ≤ φ(xk+1, µk), {S(xk)}
is also non-decreasing.

Let S∗ be the global minimum of (2.9). Then, φ(xk, µk) ≤ φ(x, µk) = S∗ , where
x = global argmin{S(x) : g(x) = 0}. Then,

S(xk) + µk‖g(xk)‖2 ≤ S∗(3.9)

Since {S(xk)} is non-decreasing and {µk} is increasing, g(xk) → 0, and it follows
that if xk → x∗, g(x∗) = 0 and S(x∗) ≤ S∗. By the definition of S∗, S(x∗) ≥ S∗,
and therefore, S(x∗) = S∗. �

We now define an extended Lagrangian

L̃(x, x′, t) = L(x, x′, t) + µ‖g(x)‖2/(te − t0)/2(3.10)

Then, problem (3.5) can be written in the following form,

minS̃(x) =

∫ te

t0

L̃(x, x′, t)dt(3.11)

By applying Theorem 2.1 and Corollary 2.2 to (3.11), we obtain the extended
equation of motion as the necessary condition for any x to be a solution to problem
(3.5),

Mx′′ = −∇E(x) − µG(x)T g(x)(3.12)

where G is the Jacobian of g. The following theorem shows that a solution to
problem (2.9) that satisfies the necessary condition (2.11) for the problem can be
obtained by solving the extended equation of motion (3.12) with µ increasing to
infinity. The solution is equivalent to the one that can be obtained by using a
Lagrange multiplier type method.
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Theorem 3.2. Let µ = µk and µk ↑ ∞ as k → ∞. Let xk be a solution to problem
(3.5) with µ = µk, and xk → x∗ as k → ∞. Let G be the Jacobian of g and G(x∗)
be of full rank. Then, x∗ satisfies the necessary condition (2.11) for x∗ to be a
solution to the constrained least action problem (2.9).

Proof: Based on (3.12), for each pair of (xk, µk), necessarily,

M [xk]′′ = −∇E(xk)− µkG(xk)T g(xk)(3.13)

Let λk = µkg(xk). Then,

M [xk]′′ = −∇E(xk)−G(xk)Tλk(3.14)

and

λk = −
[

G(xk)T
]+ [

M [xk]′′ +∇E(xk)
]

(3.15)

→ −
[

G(x∗)T
]+

[M [x∗]′′ +∇E(x∗)] = λ∗

where [G(xk)T ]+ is the pseudo-inverse of G(xk)T . Then, g(xk) =
λk

µk
→

λ∗

µk
→ 0.

It follows that,

M [x∗]′′ = −∇E(x∗)−G(x∗)Tλ∗(3.16)

g(x∗) = 0

�

In the atomic form, equation (3.12) can be written as,

mix
′′
i = fi(x1, ..., xn) + µ

m
∑

j=1

gji(x1, ..., xn)gj(x1, ..., xn)(3.17)

fi = −
∂E

∂xi
, gji = −

∂gj
∂xi

, i = 1, ..., n

By treating the entire right-hand side of each equation in (3.17) as a force function,
we can then apply standard Verlet algorithms to obtain our numerical formulas for
the solution of the equations in (3.17):

Penalty Position Verlet:

xk+1
i = 2xk

i − xk−1
i + h2(fk

i + µ

m
∑

j=1

gkjig
k
j )/(mi),(3.18)

i = 1, ..., n, k = 1, 2, ...

Penalty Velocity Verlet:

xk+1
i = xk

i + hvki + h2(fk
i + µ

m
∑

j=1

gkjig
k
j )/(2mi),(3.19)

vk+1
i = vki + h(fk

i + fk+1
i + µ

m
∑

j=1

(gk+1
ji gkj + gk+1

ji gk+1
j ))/(mi),

i = 1, ..., n, k = 1, 2, ...

Note that formulas (3.18) and (3.19) do not involve solving nonlinear systems and
can therefore be updated much more efficiently than Shake and Rattle. However,
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the parameter µ needs to be selected appropriately. It is required to be sufficiently
large. There is also an issue that for different penalty terms, different scales may
need to be used for the parameters. We discuss these issues in greater details in
the specific implementations of the algorithms in the following sections.

4. Results on Bovine Pancreatic Trypsin Inhibitor

We have implemented a penalty function algorithm in molecular dynamics sim-
ulation software CHARMM developed by Brooks, et al [7] and tested it for simu-
lation of protein BPTI (bovine pancreatic trypsin inhibitor). The simulation was
performed with three different schemes, one with Verlet (VL) algorithm, one with
Shake (SH), and one with Penalty (PL). The bond lengths were used to generate
the constraints for the protein in SH and PL runs. There were no external solvent
molecules included except for four water molecules in specified spots in the protein.
The protein is chosen for this study because it has been well studied and widely used
as a test case for various simulations [12], [13], [16], [17]. To compare the meth-
ods and determine if they sample approximately the same part of phase space,
various statistical properties were analyzed, including the average fluctuations and
correlation functions for various physical quantities.

The CHARMM potential energy function is defined as follows.

E =
∑

Bonds

kb(b − b0)
2 +

∑

Angles

kθ(θ − θ0)
2(4.1)

+
∑

Dihedrals

kφ(1 + cos(nφ− δ)) +
∑

Impropers

kω(ω − ω0)
2

+
∑

Urey−Bradley

ku(u− u0)
2

+
∑

Non−bonded

εi,j





(

Rmin
i,j

ri,j

)12

−

(

Rmin
i,j

ri,j

)6


+
qiqj
εri,j

There are several versions of the CHARMM force field. We used CHARMM22
(released in 1991). The first term in the energy function accounts for the bond
stretches where kb is the bond force constant and (b − b0) is the distance from
equilibrium that the atoms have moved. The second term in the equation accounts
for the bond angles where kθ is the angle force constant and (θ − θ0) is the angle
from equilibrium between 3 bonded atoms. The third term is for the dihedral angles
where kφ is the dihedral force constant and n is the multiplicity of the function,
φ is the dihedral angle and δ is the phase shift. The fourth term accounts for the
improper angles, that are out of plane bending, where kω is the force constant and
(ω − ω0) is the out of plane angle. The Urey-Bradley component comprises the
fifth term, where ku is the respective force constant and u is the distance between
the 1,3 atoms in the harmonic potential. Non-bonded interactions between (i, j)
pairs of atoms are represented by the last two terms. By definition, the non-bonded
forces are only applied to atom pairs separated by at least three bonds. The van
Der Waals energy is calculated with a standard 12-6 Lennard-Jones potential and
the electrostatic energy with a Coulomb potential. In the Lennard-Jones potential
above, the Rmin term is not the minimum of the potential, but rather where the
Lennard-Jones potential crosses the x-axis.

The protein BPTI has 58 amino acid residues [4]. It consists of 454 atoms. With
the four water molecule, the total number of atoms included in the simulation was
458 (without counting the hydrogen atoms). When the bond-length constraints
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were applied, the bond stretching potential terms were omitted from the potential
energy function, and the bond lengths except for the hydrogen bonds were kept
fixed by the constraints. Note that the constraint for the bond-length between a
bonded pair of atoms i and j can be formed by using the equality constraint

ri,j − di,j = 0, with ri,j = ‖xi − xj‖ or(4.2)

r2i,j − d2i,j = 0, with ri,j = ‖xi − xj‖,(4.3)

where di,j are the equilibrium distance between atoms i and j. The equation (4.3)
is smoother than (4.2) and has been used in Shake because the Shake algorithm
requires solving such equations in every time step and it is important to keep the
equations differentiable. However, in the penalty function method, both (4.2) and
(4.3) can be used since the derivatives of the equations are only used for force field
calculations in reasonably defined domains. The equation (4.2), when used to form
a penalty term, is actually more stable than (4.3), because the penalty is amplified
(squared) in (4.3). For this reason, we used (4.2) in the implementation of the
penalty function method in CHARMM. The penalized energy function becomes
the following,

E = µ
∑

Bonds

ki,j(ri,j − di,j)
2 +

∑

Angles

kθ(θ − θ0)
2(4.4)

+
∑

Dihedrals

kφ(1 + cos(nφ− δ)) +
∑

Impropers

kω(ω − ω0)
2

+
∑

Urey−Bradley

ku(u− u0)
2

+
∑

Non−bonded

εi,j





(

Rmin
i,j

ri,j

)12

−

(

Rmin
i,j

ri,j

)6


+
qiqj
εri,j

where the original bond-length energy (the first term) is replaced by a penalty
function for the bond-length constraints. Note that the penalty term for each
bond-length is multiplied by a constant ki,j . The term can then be scaled by using
an appropriate value for ki,j . In our implementation, we simply used the corre-
sponding force constant for each ki,j . Coincidently, the penalized energy function
then becomes exactly the original energy function when µ = 1 and is a continuation
from the original energy function for any µ > 1. Figure 1 shows the flow chart of
the simulation program using the penalty function method. It is the same as an
unconstrained simulation program except that a penalized energy function (4.4)
is used and the penalty parameter µ in the function can be adjusted to control
the effects of the bonds on the simulation. Note that in our implementation, the
penalty parameter was changed gradually from value (0.7) less than 1 to a value
(1.7) beyond 1 during the simulation.

We implemented the penalty function method (PL for short) using the velocity
Verlet in CHARMM and compared the simulation results on BPTI with the original
velocity Verlet (VL for short) and Shake (SH for short). A time step h = 1.0e−3ps
was used. Results with h = 2.0e−3ps and other larger time steps were also collected
for VL runs. For SH and PL, the relative tolerance for constraint satisfaction was
set to 1.0e− 5. Of course, the accuracy of the simulation depended not only on the
constraint tolerance but also the step size.

The initial BPTI coordinate file was downloaded from PDB Data Bank [4],
(http : //www.rcsb.org/pdb/) which contained 454 atoms and 60 water molecules
(without hydrogen atoms). Out of 60 water molecules, 4 inside the protein were
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Figure 1. The flow chart of the simulation program with the
penalty function method. The procedure is the same as in uncon-
strained simulation, but a penalized energy function is used, with
an adjustable penalty parameter to control the effects of the bonds.
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Figure 2. Simulation time for VL, SH and PL. *Heating - bring
the system to normal temperature; Equilibrium - the time for the
system to reach the equilibrium; Production - stable dynamic re-
sults for analysis.

carefully selected and put into the system. The hydrogen atoms were then added
to form the starting structure for simulation.

The steepest descent method was first used to minimize the energy. This was
performed to eliminate the strain present in the starting structure. At the beginning
the energy for the starting structure was 44906.75kcal/mol. Total 2999 energy mini-
mization steps were conducted and the energy was minimized to −1137.49kcal/mol.
The energy minimization process took 11.97 minutes elapsed time and 3.28 minute
CPU time on an Alpha 500 Mhz workstation.

A minimized structure represents the molecule at a temperature close to abso-
lute zero 3.42K. Therefore, the system requires to be brought back to a normal
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Table 1. Computing time for VL, SH and PL

Scheme Computing time*

VL 1.14 hours
SH 1.25 hours
PL 1.14 hours

*Computing time for the 25ps simulation after equilibrium.

temperature. Heating was accomplished by initially assigning random velocities to
the atoms according to a Gaussian distribution appropriate for that low temper-
ature and then running dynamics simulation with VL. The temperature was then
increased gradually by assigning greater random velocities to the atoms at every
0.05ps from 3.42K to 300K. The entire heating process took 5000 simulation steps
with 0.001ps time step, which corresponded to total 5ps simulation time (Figure 2).
When simulation started, the temperature rose rapidly. The conversion of kinetic
energy to potential energy was fast. However, the increase in temperature slowed
down when the system aged.

The total simulation time for VL was 55ps, but only final 25ps were used for
analysis. We observed that BPTI reached the equilibrium in first 30ps (Figure
2). Usually, this period is long for protein, because of the high connectivity of the
covalently bonded system and the long range of electrostatic potentials.
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Figure 3. The variation of temperature (K) of BPTI in the 25ps
production simulations by SH and PL. PL started the same tem-
perature as VL but gradually approached to that for SH as the
penalty parameter was increased.

To achieve the equilibrium state for SH and PL, we first performed 15ps and
20ps simulations with VL and then started SH and PL with initial positions and
velocities taken from the final step of VL respectively (Figure 2). We then also
ran SH and PL for 25ps for analysis (Figure 2). The computing time for each
simulation is presented in Table 1. It showed that VL, SH and PL required 2.44,
3.00 and 2.44 minutes of computing time per picosecond simulation on an Alpha
workstation. We recorded the coordinates of the trajectories every 0.01ps. The
results in the final 25ps of the simulations were used to obtain the dynamical and
statistical properties of the system.
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Figure 3 shows the temperature distribution in the 25ps simulation by SH and
PL. The variation of the temperature showed that there was a difference between
SH and PL at the beginning of the simulation. The temperature for PL started at
300K, the same as VL, but gradually increased and eventually approached to that
for SH. This indicated that the simulation by PL started with a condition similar
to that by VL but then changed to SH later when the penalty parameter is fully
adjusted to an appropriate value.

The average backbone root mean square (RMS) fluctuations are plotted as a
function of residue number in Figure 4. The graphs show a great correlation between
the fluctuations by SH and PL. On the other hand, VL simulation produced large
fluctuations for 10 TYR, 13 PRO, 15 LYS, 27 ALA, 45 PHE and 47 SER residues,
which were disagreed with those by SH and PL.

The root mean square fluctuations of Cα atoms in the simulations are plotted in
Figure 5. Similar to the average backbone root mean square fluctuations, the Cα

fluctuations by PL and SH again had strong correlations. The average root mean
square fluctuations of HN and the non-backbone atoms by SH and PL correlated
as well as shown in Figure 6 and 7 except for some discrepancies around residues
54 to 58.
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Figure 4. The average backbone RMS fluctuations of the residues
in the 25ps production simulations.

Figure 8 shows the normalized velocity auto correlations calculated for 51 CYS
Cα using the trajectories produced by VL, SH, and PL. For the demonstration
purpose, the correlations over a 10ps time period are shown. The first curve is for
VL run with an auto correlation time equal to 0.01ps. The auto correlation time for
the second curve is 0.02ps and is half the resolution of the first one. The third and
fourth curves are for SH and PL runs, respectively, both with the auto correlation
time equal to 0.01ps. The curves for SH and PL showed similar correlations with
that for VL in 0.02ps resolution, suggesting that both SH and PL are roughly faster
than VL by two folds.

5. Results on Argon Clusters

The constrained molecular dynamics simulation can be used not only for reducing
the fast vibrations due to the bonding forces, but also as a general scheme to
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Figure 5. The average Cα RMS fluctuations in the 25ps produc-
tion simulations.
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Figure 6. The average RMS fluctuations of the HN atoms in the
25ps production simulations.

incorporate any types of conformational constraints into the simulation so that the
simulation can be guided towards preferred directions. For example, in simulation of
protein folding, the prior knowledge on the folded structures such as bond lengths
and bond angles, contact distances, or NMR distances can often be included as
constraints in the simulation.

We have also tested the penalty function method on handling more general
distance constraints. As a test case, we have selected a group of argon clusters and
applied the penalty function method to the simulation of the equilibrium of the
clusters. Argon clusters have been well studied in chemistry and material sciences,
and been used as model systems for molecular dynamics simulation and energy
minimization [28]. An argon cluster is formed by a set of argon molecules with van
der Waals interactions among them. The van der Waals forces can be approximated
by using so-called Lennard-Jones functions. More specifically, let xi and xj be the
position vectors for two argon molecules, i and j, then their interacting potential
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Figure 7. The average RMS fluctuations of the non-backbone
atoms in the 25ps production simulations.
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can be defined by the following Lennard-Jones function.

h(ri,j) = 4ε

[

(

σ

ri,j

)12

−

(

σ

ri,j

)6
]

(5.1)

where ri,j = ‖xi − xj‖ is the distance between molecule i and j, ε ≈ 165.4e-23 J
the minimum value of the potential, and σ ≈ 3.405 the distance for the potential
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to achieve the minimum. By using such a potential function, the total potential
energy E(x) for a cluster of n argon molecules with a configuration x = (x1, ..., xn)

T

can be calculated by the formula,

E(x) =

n
∑

i=1

n
∑

j=i+1

h(ri,j) =

m
∑

i=1

n
∑

j=i+1

4ε

[

(

σ

ri,j

)12

−

(

σ

ri,j

)6
]

(5.2)

and the force fi(x) on molecule i by

fi(x) =

n
∑

j=1,j 6=i

∂h(ri,j)

∂xi
(5.3)

=
n
∑

j=1,j 6=i

48εσ−2

[

(

σ

ri,j

)14

− 0.5

(

σ

ri,j

)8
]

(xi − xj)

By choosing appropriate units for the physical quantities (σ for length, 4ε for energy,
48εσ−2m for mass, where m is the mass for argon molecule), the above formulas
can be simplified to,

E(x) =

n
∑

i=1

n
∑

j=i+1

h(ri,j) =

m
∑

i=1

n
∑

j=i+1

[

(

1

ri,j

)12

−

(

1

ri,j

)6
]

(5.4)

and the force fi(x) on molecule i by

fi(x) =

n
∑

j=1,j 6=i

∂h(ri,j)

∂xi
(5.5)

=

n
∑

j=1,j 6=i

m

[

(

1

ri,j

)14

− 0.5

(

1

ri,j

)8
]

(xi − xj)

and the equation of motion for the cluster can be written in the following form.

d2xi

dt2
=

n
∑

j=1,j 6=i

[

(

1

ri,j

)14

− 0.5

(

1

ri,j

)8
]

(xi − xj), i = 1, ..., n(5.6)

where the time unit is 0.299ps. The equations in (5.6) can be integrated using the
Verlet algorithm with a step size equal to 0.032 as shown in [26].

We considered a group of argon clusters with up to 147 molecules and performed
the dynamics simulation for the systems. For each cluster, we started with a struc-
ture nearby the global energy minimum of the cluster. We first applied the position
Verlet (VL) to the cluster. We then generated a set of distance constraints from
the global energy minimum configuration of the cluster and applied the penalty
position Verlet (PL) to the cluster with the generated constraints. Both trajecto-
ries produced by VL and PL were recorded and compared, and their equilibrium
states were analyzed. Note that it is well-known that the global energy minimum
for an argon cluster is very difficulty to find. So far, the global energy minimum
was found only for a small group of clusters (of less than 147 molecules [19], [29]).
The starting structures and the distance constraints were then generated from these
configurations.

In general, any number of distance constraints can be applied to the system, but
in our implementation, we used a randomly selected fraction of total number of
distances in the global energy minimum configuration as the constraints. Different
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Figure 9. The flow chart of the penalty function algorithm for
cluster simulation.

from the implementation of the penalty function method in CHARMM, here we
used the following constraint function for each of the distances.

r2i,j − d2i,j = 0, with ri,j = ‖xi − xj‖,(5.7)

where di,j is the distance between atoms i and j in the global energy minimum
configuration of the cluster. The penalized energy and force functions can then be
formulated as,

E(x) = µ
∑

(i,j)∈S

(

r2i,j − d2i,j
)2

+

m
∑

i=1

n
∑

j=i+1

[

(

1
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)12
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(

1

ri,j

)6
]

(5.8)

and

fi(x) = µ
∑

(i,j)/(j,i)∈S

4m
(
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(xi − xj)(5.9)
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(xi − xj), i = 1, ....., n
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and the equation of motion becomes,

d2xi

dt2
= µ

∑

(i,j)/(j,i)∈S

4
(

r2i,j − d2i,j
)

(xi − xj)(5.10)

+

n
∑

j=1,j 6=i

[

(

1

ri,j

)14

− 0.5

(

1

ri,j

)8
]

(xi − xj), i = 1, ....., n

where S is the set of selected pairs of molecules with distance constraints. We
integrated the equations in (5.10) by using the position Verlet. A flow chart for
the penalty function algorithm as applied to argon cluster simulation is shown in
Figure 9. Note that in this implementation of the penalty function algorithm, a
step size of 0.032 was used, and the penalty parameter was increased by 1 in every
500 time steps during the whole simulation.
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Figure 10. Changes in potential energy of argon cluster 24. Solid
and dotted lines show the potential energy of the trajectory pro-
duced by the Verlet (VL) and penalty function (PL) methods,
respectively. Here, randomly selected 50% of all distances were
constrained to their distances in the global energy minimum con-
figuration (-97.349).

Figure 10 shows the changes in potential energy for cluster 24 in 9000 time
steps simulated by Verlet (VL) and the penalty function method (PL). Within
this period of time, the potential energy of the trajectory produced by the penalty
function method decreased gradually towards the global energy minimum of the
cluster while the trajectory produced by Verlet remained oscillating at a high energy
level. Similar results were observed on other clusters. Some of them showed even
faster convergence of the trajectory to the global energy minimum of the clusters,
as shown in Figure 11 for cluster 13, where the trajectory approached the global
energy minimum in 3000 time steps.

6. Concluding Remarks

In this paper, we have proposed a so-called penalty function method for con-
strained molecular dynamics. In this method, a special function is defined so that
the function is minimized if the constraints are satisfied. By adding such a func-
tion in the potential energy function, the constraints can then be removed from
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Figure 11. Changes in potential energy of the trajectory for ar-
gon cluster 13 produced by the penalty function method. Here,
randomly selected 60% of all distances were constrained to their
distances in the global energy minimum configuration. The tra-
jectory already approached to the global energy minimum (-44.3)
of the cluster in 3000 time steps while the trajectory generated by
the Verlet remained in high energy.

the system, and the simulation can be carried out in a conventional, unconstrained
manner. The advantage of using a penalty function method is that it is easy to
implement, and does not require solving a nonlinear system of equations in every
time step. The disadvantage of the method is that the penalty parameter, i.e.,
the parameter used to scale the penalty function, is hard to control and in princi-
ple, needs to be large enough for the penalty function to be truly effective, which
on the other hand, may cause numerical instabilities when used in simulation. It
may also arguably be a disadvantage that the penalty function method only forces
the constraints to be satisfied approximately but not completely. In any case, the
method may possibly be used as an alternatively and computationally more effi-
cient approach for constrained molecular dynamics simulation than the Lagrange
multiplier types of methods.

We have first implemented a penalty function method in CHARMM and tested
it on protein Bovine Pancreatic Trypsin Inhibitor (BPTI) by following a similar
experiment done by Gunsteren and Karplus for the Shake algorithm. In this im-
plementation, we removed the bond length potentials from the potential energy
function and introduced the corresponding bond length constraints. For each of
the bond length constraints, we constructed a quadratic penalty function and in-
serted it into the potential energy function. For each different type of bond, we also
scaled the corresponding penalty function with the force constant of the bond so
that the resulting function had the same form as the original bond length potential
if without multiplied by the penalty parameter. In this way, the resulting force
field becomes simply a continuation of the original force field as the penalty param-
eter changes continuously from 1 to a value > 1. We conducted a simulation on
BPTI with the penalty function method, and compared the results with Verlet and
Shake, and found that the penalty function method had a high correlation with the
Shake and outperformed the Verlet. In particular, the root-mean-square-deviations
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(RMSD) of the backbone and non-backbone atoms and the velocity auto correla-
tions of the Cα atoms of the protein calculated by the penalty function method
agreed well with those by Shake. Note again that the penalty function method
requires no more than just applying a conventional, unconstrained simulation algo-
rithm such as the Verlet algorithm to the potential energy function expanded with
additional penalty terms for the bond length constraints.

We have also tested the penalty function method on a group of argon clusters
with the equilibrium distances for a selected set of molecular pairs as the constraints.
Here by the equilibrium distances we mean the distances for the pairs of argon
molecules when the clusters are in their global energy minimal states. We generated
these distances by using the global energy minimal configuration of the clusters
published in previous studies. A penalty function was constructed for each of the
constraints and incorporated into the potential energy function of the cluster. The
simulation was then conducted by using a conventional, unconstrained simulation
method, i.e., the Verlet algorithm [26], with the extended potential energy function.
Here, there were no substantial algorithmic changes or computational overheads
required due to the addition of the constraints. The simulation results showed that
the penalty function method was able to impose the constraints effectively and the
clusters tended to converge to their lowest energy equilibrium states more rapidly
than not confined by the constraints.
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