
INTERNATIONAL JOURNAL OF c© 2011 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 8, Number 3, Pages 484–495

CONVERGENCE OF GRADIENT METHOD FOR DOUBLE

PARALLEL FEEDFORWARD NEURAL NETWORK

JIAN WANG, WEI WU, ZHENGXUE LI, AND LONG LI

Abstract. The deterministic convergence for a Double Parallel Feedforward

Neural Network (DPFNN) is studied. DPFNN is a parallel connection of a

multi-layer feedforward neural network and a single layer feedforward neural

network. Gradient method is used for training DPFNN with finite training

sample set. The monotonicity of the error function in the training iteration

is proved. Then, some weak and strong convergence results are obtained, in-

dicating that the gradient of the error function tends to zero and the weight

sequence goes to a fixed point, respectively. Numerical examples are provided,

which support our theoretical findings and demonstrate that DPFNN has faster

convergence speed and better generalization capability than the common feed-

forward neural network.

Key Words. Double parallel feedforward neural network, gradient method,

monotonicity, convergence.

1. Introduction

ADouble Parallel Feedforward Neural Network (DPFNN) is a parallel connection
of a multi-layer feedforward neural network and a single layer feedforward neural
network. In a DPFNN, the output nodes not only receive the recodification of
the external information through the hidden nodes, but also receive the external
information itself directly through the input nodes. DPFNN involves a paratactic
relationship between linear and nonlinear mappings [4, 1]. As in the case for the
common feedforward neural networks [18, 13, 19, 20], the most widely used learning
method for DPFNN remains to be the gradient method [17, 10, 15, 2]. It is shown
(cf. [5]) that the training speed and accuracy are greatly improved for DPFNN
compared with corresponding multi-layer feedforward neural networks [8, 12, 11, 3,
9, 7]. A double parallel feedforward process neural network with similar structure
and updating rule as DPFNN is proposed in [22]. In [16], an alternate learning
iterative algorithm for DPFNN is presented. The truncation error caused by word
length on the accuracy of DPFNN is analyzed in [6].

We are concerned in this paper with the convergence of the gradient method
for training DPFNN. In particular, we first prove the monotonicity of the error
function in the gradient learning iteration for DPFNN. Then, some weak and strong
convergence results are obtained, indicating that the gradient of the error function
tends to zero and the weight sequence goes to a fixed point, respectively. Some
supporting numerical examples are also provided, which support our theoretical

Received by the editors May 4, 2009 and, in revised form, March 22, 2011.
2000 Mathematics Subject Classification. 68W40, 92B20, 62M45.
This research was supported by the National Natural Science Foundation of China

(No.10871220).

484

DOUBLE PARALLEL FEEDFORWARD NEURAL NETWORK 485

1
u

2
u

p
u

1
w

2
w

1,1
v

p
x

1
x

2
x

1 2

y

m
w

pm
v

,

m

Figure 1. Topological Structure of DPFNN.

findings and demonstrate that DPFNN has faster convergence speed and better
generalization capability than the common feedforward neural network.

The rest part of this paper is organized as follows. The structure of and the gra-
dient method for DPFNN are introduced in Section 1. In Section 2 the convergence
results are presented. Section 3 provides a few numerical examples to support our
theoretical findings. Some brief conclusions are drawn in Section 4. Finally, an
appendix is given, in which the details of the proof are gathered.

2. Double Parallel Feedforward Neural Networks

Figure 1 shows the DPFNN structure considered in this paper. It is a three-
layer network with p input nodes, m hidden nodes and 1 output node. We de-
note the weight vector connecting the hidden layer and the output layer by w =
(w1, · · · , wm)T ∈ R

m, and the weight matrix connecting the input layer and the
hidden layer by V = (vi,j)m×p, where vi = (vi,1, · · · , vi,p)T ∈ R

p is the weight
vector connecting the input layer and the i-th node of the hidden layer. Similarly,
we denote the weight vector connecting the input layer and the output layer by
u = (u1, · · · , up)T ∈ R

p.
For simplicity, all the weight vectors are incorporated into a total weight vector

W = (uT ,vT
1 , · · · ,vT

m,w
T)T ∈ R

p+mp+m. Let g : R→ R be an activation function
for the hidden and the output layers. For any z = (z1, · · · , zm)T ∈ R

m, we define

(1) G (z) = (g (z1) , g (z2) , · · · , g (zm))T ∈ R
m.

For any given input vector x ∈ R
p, the actual output y ∈ R of the neural system is

computed by

(2) y = g (w ·G (Vx) + u · x) .

We remark that the bias terms should be involved in the neural system. However,
following a common strategy, we set the last component of, say, the input vector
x to be −1, and so the last component of vi corresponds to the bias term. This
strategy allows us not to write explicitly the bias terms in the description of our
problem.

486 J. WANG, W. WU, Z. LI, AND L. LI

For a given set of training samples
{
xj , Oj

}J
j=1

⊂ R
p ×R supplied to the neural

network, the error function is defined as

(3) E (W) =
1

2

J∑

j=1

(
yj −Oj

)2
=

J∑

j=1

gj
(
w ·G

(
Vxj

)
+ u · xj

)
,

where

(4) gj (t) =
1

2

(
g (t)−Oj

)2
.

The purpose of network learning is to find W∗ such that

(5) E (W∗) = minE (W) .

The gradient descent algorithm is often used to solve this optimization problem.
There are two practical ways for the implementation of the gradient method: batch
learning and online learning. This paper follows the batch learning approach. The
partial derivatives of the error function E (W) with respect to u, vi and w are
given respectively by

(6) Eu (W) =

J∑

j=1

g′j
(
w ·G

(
Vxj

)
+ u · xj

)
xj ,

(7) Evi
(W) =

J∑

j=1

g′j
(
w ·G

(
Vxj

)
+ u · xj

)
wig

′
(
vi · xj

)
xj ,

(8) Ew (W) =

J∑

j=1

g′j
(
w ·G

(
Vxj

)
+ u · xj

)
G
(
Vxj

)
.

Let the initial value W0 be arbitrarily chosen. Then, the weights are refined by the
following iteration process:

(9) Wn+1 = Wn +∆Wn, n = 0, 1, 2, · · · ,

where ∆Wn =
(
(∆un)T , (∆vn

1)
T , · · · , (∆vn

m)T , (∆wn)T
)T

, and

(10) ∆un = −η
J∑

j=1

g′j
(
wn ·G

(
Vnxj

)
+ un · xj

)
xj ,

(11) ∆vn
i = −η

J∑

j=1

g′j
(
wn ·G

(
Vnxj

)
+ un · xj

)
wn

i g
′
(
vn
i · xj

)
xj ,

(12) ∆wn = −η
J∑

j=1

g′j
(
wn ·G

(
Vnxj

)
+ un · xj

)
G
(
Vnxj

)
,

where η > 0 is the learning rate.

DOUBLE PARALLEL FEEDFORWARD NEURAL NETWORK 487

3. Main Results

To analyze the convergence of the algorithm, we need the following assumptions.
(A1) |g (t) |, |g′ (t) | and |g′′ (t) | are uniformly bounded for any t ∈ R.
(A2) The weights {wn} (n = 0, 1, · · ·) keep uniformly bounded in the training

process.
(A3) The set Ω0 = {W ∈ Ω : EW (W) = 0} contains finitely many points, where

Ω is a bounded closed region. Now we are in a position to present the main theorem,
and its detail proof is relegated to the Appendix.

Theorem 3.1. Assume that Conditions (A1) and (A2) are valid and the learning
rate η satisfies the formula (27) below. Then for arbitrary initial values W0, the
sequence {E (Wn)} decreases monotonically:

(13) E
(
Wn+1

)
≤ E (Wn) ;

there exists E∗ ≥ 0 such that

(14) lim
n→∞

E (Wn) = E∗;

and there holds the following weak convergence:

(15) lim
n→∞

‖EW (Wn) ‖ = 0.

If, in addition, the assumption (A3) is also valid, then there holds the following
strong convergence: there exists W∗ ∈ Ω0 such that

(16) lim
n→∞

Wn = W∗.

4. Numerical Simulations

In the following subsections, we investigate the performance of DPFNN with
batch gradient method by three simulation examples.

Table 1. 4-bit parity problem.

input output input output

1 1 1 1 0 -1 1 -1 -1 1
-1 1 1 1 1 1 1 -1 -1 0
1 1 1 -1 1 1 -1 1 1 1
-1 1 1 -1 0 -1 -1 1 1 0
-1 -1 -1 1 1 1 -1 -1 1 0
1 -1 1 -1 0 -1 -1 1 -1 1
-1 -1 -1 -1 0 1 1 -1 1 1
1 -1 -1 -1 1 -1 1 -1 1 0

4.1. Example 1: Parity problem. Parity problem is a difficult classification
problem. The famous XOR problem is just the 2-bit parity problem. In this
example, we use the 4-bit parity problem to test the performance of DPFNN.
Table 1 shows the inputs and desired outputs of the training samples. The net-
work is of three layers with the structure 5-4-1, and the logistic activation function
g(t) = 1/(1 + e−t) is used for the hidden and output nodes. The initial weights
are chosen stochastically in [−0.2, 0.2] and the learning rate η is 0.2. The perfor-
mance of the batch gradient method is shown in Figure 2. We see that E(W)
decreases monotonically and the norm of EW(W) trends to zero, as depicted by
the convergence theorem.

488 J. WANG, W. WU, Z. LI, AND L. LI

0 100 200 300 400 500 600 700 800
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

k

E
(w

k)

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k

||E
w

(w
k)|

|

Figure 2. The error and the norm of gradient for Example 1.

Figure 3. Target function and training samples for Example 2.

4.2. Example 2: An approximation problem. We consider the following func-
tion defined by Mackay (cf. [14]) to show the function approximation capability of
DPFNN.

(17) F (x) = 1.1
(
1− x+ 2x2

)
exp

(
−x

2

2

)
.

The training samples are generated in the following manner: 100 input points
xi (i = 1, · · · , 100) are stochastically chosen from the interval [−4, 4] with the
corresponding outputs F (xi) + ei, where ei ∈ N(0, 0.1) is the noise and N(0, 0.1)
denotes the normal distribution with expectation and variance being 0 and 0.1,
respectively. The target function and the training samples (marked by “ ∗ ”) are
shown in Figure 3. For this example, we use the network with one input node
(plus a bias node with fixed input −1), ten hidden nodes and one output node,
respectively. The logistic activation function g(t) = 1/(1 + e−t) is used for the
hidden nodes, while the linear identity function f(t) = t is used for the output
node. The parameters in this example take the following values: η = 0.003, target
error ε = 0.5, the maximum number of training epochs is 20,000, and the initial
weights are chosen stochastically in [−0.1, 0.1]. Figure 4(a)-(b) show the good
approximation to the target function.

4.3. Example 3: A real world prediction problem. A standard feedforward
neural network model using back propagation learning (BPNN) for water diversion

DOUBLE PARALLEL FEEDFORWARD NEURAL NETWORK 489

Figure 4. Error and simulations for Example 2.

Table 2. Water diversion demand from Yellow River and corre-
sponding impact parameters.

average irrigation demand demand diversion
year precipitation/ area/ of He Nan/ of Shan Dong/ demand/

mm ×104hm2 (m3 · hm−2) (m3 · hm−2) 108m3

1983 596 101.3 8 355 6 150 67.7
1984 704 138.1 7 785 4 215 66.8
1985 630 134.1 7 410 4 065 58.8
1986 381 145.4 8 490 5 670 89.1
1987 544 150.4 9 780 5 055 81.6
1988 432 156.4 9 165 5 280 89.8
1989 460 174.2 7 050 6 900 120.7
1990 850 166.2 8 355 4 845 85.2
1991 569 195.3 7 830 4 405 85.6
1992 514 202.7 7 080 5 100 100.6
1993 632 221.5 7 185 4 155 93.2
1994 694 199.6 6 045 4 380 79.3
1995 615 192.3 6 150 4 455 79.9

Figure 5. Effect of DPFNN for Example 3.

demand estimate is developed (cf. [2]). To investigate the effectiveness of DPFNN,
we choose the same data (Table 2). The first 10 years data are regarded as the
training set, while the latter 3 years data as the testing set. Firstly, we normalize
each data vector x = (x1, · · · , x13) (i.e., each column of Table 2) by the following

490 J. WANG, W. WU, Z. LI, AND L. LI

Table 3. Comparison of predictions of DPFNN and BPNN.

diversion demand relative error demand relative error
sample year demand/ by BPNN/ of BPNN/ by DPFNN/ of DPFNN/
types 108m3 108m3 % 108m3 %

training 1983 67.7 67.7 0.00 70.13 3.59
1984 66.8 66.8 0.00 61.77 -7.53
1985 58.8 58.8 0.00 59.63 1.41
1986 89.1 89.1 0.00 88.07 -1.15
1987 81.6 81.6 0.00 82.63 1.26
1988 89.8 89.8 0.00 88.83 -1.08
1989 120.7 120.7 0.00 118.04 -2.20
1990 85.2 85.2 0.00 84.37 -0.98
1991 85.6 85.6 0.00 86.27 0.78
1992 100.6 100.6 0.00 102.64 2.02

testing 1993 93.2 86.2 -7.51 90.8 -2.58
1994 79.3 81.3 2.52 81.1 2.27
1995 79.9 79.4 -0.63 80.3 0.55

formula (xmax = max{xp} etc.):

(18) α
xp − xmin

xmax − xmin

+ β =⇒ xp, α ∈ (0, 1), β =
1− α

2
, p = 1, · · · , 13.

In this example, we choose the parameter α as 0.9, then the values of the training
data are transformed into the interval [0.05, 0.95]. The network is of three layers
with the architecture 5-4-1, and the logistic activation function g(t) = 1/(1 + e−t)
is used for both the hidden and output nodes. The learning rate η is 0.3 and
the initial weights are chosen stochastically in [−0.2, 0.2]. The performance of the
batch gradient method is shown in Figure 5(a), where the symbol “o” stands for
the actual sample value, “+” indicates the training result, and “*” indicates the
predicting result. From Figure 5(b), we observe that the error function decreases
monotonically, and that the norm of EW (W) trends to zero. It is clear from Table
3 that DPFNN has much stronger prediction capability than the common BPNN.
In BPNN model, the average relative error and the maximum relative error are,
respectively, 3.55% and 7.51% from 1993 to 1995, while the corresponding relative
errors are 1.80% and 2.58% for DPFNN.

5. Conclusions

The batch gradient learning method for DPFNN with a hidden layer is con-
sidered. The learning rate η is a positive constant, and the initial guess of the
weights are arbitrarily chosen. The monotonicity of the error function in the learn-
ing process is proved. Weak and strong convergence results are presented. Here
the weak convergence means ‖EW (Wn) ‖ → 0 as n→ ∞. The strong convergence
Wn → W∗ as n → ∞ is proved in an additional condition that EW(W) contains
finitely many zero points, where W∗ is a local minimum point of E(W). Three
numerical examples for the learning algorithm are provided to support our theoret-
ical findings, and demonstrate that DPFNN has faster convergence rate and better
generalization capability than common BPNN.

DOUBLE PARALLEL FEEDFORWARD NEURAL NETWORK 491

Appendix

We first present two lemmas, then use them to prove the main results. For sake
of consistency, we write

(19) ∆wn = wn+1 −wn, ∆vn
i = vn+1

i − vn
i , ∆un = un+1 − un,

(20) Gn,j = G
(
Vnxj

)
, ψn,j = Gn+1,j −Gn,j ,

(21) σn
1 = ‖∆wn‖2, σn

2 =

m∑

i=1

‖∆vn
i ‖2, σn

3 = ‖∆un‖2.

Lemma 5.1. Assume that Conditions (A1) and (A2) are valid, then there are
Ci > 0 such that

(22) ‖G (z) ‖ ≤ C1, z ∈ R
m,

(23) ‖ψn,j‖2 ≤ C1

m∑

i=1

‖∆vn
i ‖2, j = 1, · · · , J ; n = 1, 2, · · · ,

(24) |g′j (t) | ≤ C2, |g′′j (t) | ≤ C2, t ∈ R.

Proof. By the definition of norm, we have that

‖G (z) ‖ ≤
√

m

(
sup

1≤i≤m

(|g (zi) |)
)2

≤
√
m sup

t∈R

|g (t) | ≤ C1,

Using the mean value theorem and Assumption (A1), we conclude that

‖ψn,j‖2 =

∥∥∥∥∥∥∥



g
(
vn+1
1 · xj

)
− g

(
vn
1 · xj

)

...
g
(
vn+1
m · xj

)
− g

(
vn
m · xj

)




∥∥∥∥∥∥∥

2

≤
(
sup
t∈R

|g′ (t) | max
1≤j≤J

‖xj‖
)2 m∑

i=1

‖∆vn
i ‖2

≤ C1

m∑

i=1

‖∆vn
i ‖2,

where C1 = max
{√

m supt∈R |g (t) |,
(
supt∈R |g′ (t) |max1≤j≤J ‖xj‖

)2}
, and ti,j,n

(1 ≤ i ≤ m) lies between vn
i · xj and vn+1

i · xj . By (A1), we can easily obtain

(25) |g′j (t) | ≤ C2, |g′′j (t) | ≤ C2, t ∈ R; j = 1, 2, · · · , J,
where C2 = max

{
supt∈R |(g(t)−Oj)g′(t)|, supt∈R[(g

′(t))2 + |(g(t)−Oj)g′′(t)|]
}
.

�

The following Lemma is an essential tool for proving the strong convergence,
which is basically the same as Theorem 14.1.5 (cf. [21]). Its proof is thus omitted.

Lemma 5.2. Let F : Ω ⊂ R
n → R

m (n,m ≥ 1) be continuous for a bounded
closed region (Ω ⊂ R

n), and Ω0 = {z ∈ Ω : F (z) = 0} be finite. Let
{
zk
}
⊂ Ω be a

sequence satisfying
(1) limk→∞ F (zk) = 0;
(2) limk→∞ ‖zk+1 − zk‖ = 0.

Then, there exists a z∗ ∈ Ω0 such that limk→∞ zk = z∗.

492 J. WANG, W. WU, Z. LI, AND L. LI

Next, we prove successively the conclusions (13)-(16) of the convergence theorem.

Proof to (13). Using Taylor formula, we have

g′j
(
wn ·Gn,j + un · xj

)
wn · ψn,j

= g′j
(
wn ·Gn,j + un · xj

)
(

m∑

i=1

wn
i

(
g
(
vn+1
i · xj

)
− g

(
vn
i · xj

))
)

= g′j
(
wn ·Gn,j + un · xj

)
·

(
m∑

i=1

wn
i g

′
(
vn
i · xj

)
∆vn

i · xj +
1

2

m∑

i=1

wn
i g

′′ (s̃i,j,n)
(
∆vn

i · xj
)2
)
.

where s̃i,j,n lies between vn
i · xj and vn+1

i · xj . Employing (11), we conclude that

J∑

j=1

g′j
(
wn ·Gn,j + un · xj

)
wn · ψn,j

=

m∑

i=1

J∑

j=1

g′j
(
wn ·Gn,j + un · xj

)
wn

i g
′
(
vn
i · xj

)
∆vn

i · xj + δ1

= −1

η

m∑

i=1

‖∆vn
i ‖2 + δ1,

where δ1 = 1
2

∑m

i=1

∑J

j=1 w
n
i g

′
j

(
wn ·Gn,j + un · xj

)
g′′ (s̃i,j,n)

(
∆vn

i · xj
)2
.

By virtue of (10)-(12) and the mean value theorem, we obtain that

E
(
Wn+1

)
− E (Wn)

=

J∑

j=1

(
gj
(
wn+1 ·Gn+1,j + un+1 · xj

)
− gj

(
wn ·Gn,j + un · xj

))

=

J∑

j=1

g′j
(
wn ·Gn,j + un · xj

) (
wn+1 ·Gn+1,j −wn ·Gn,j +

(
un+1 − un

)
· xj
)

+
1

2

J∑

j=1

g′′j (sn,j)
(
wn+1 ·Gn+1,j −wn ·Gn,j + un+1 · xj − un · xj

)2

It is easy to obtain that

wn+1 ·Gn+1,j −wn ·Gn,j +
(
un+1 − un

)
· xj

= ∆wn ·Gn,j +wn · ψn,j +∆wn · ψn,j +∆un · xj

Then, we get

E
(
Wn+1

)
− E (Wn)

= −1

η
‖∆wn‖2 − 1

η

m∑

i=1

‖∆vn
i ‖2 + δ1 + δ2 −

1

η
‖∆un‖2 + δ3

= −1

η

(
‖∆wn‖2 +

m∑

i=1

‖∆vn
i ‖2 + ‖∆un‖2

)
+ δ1 + δ2 + δ3,

DOUBLE PARALLEL FEEDFORWARD NEURAL NETWORK 493

where sn,j lies between wn+1 ·Gn+1,j + un+1 · xj and wn ·Gn,j + un · xj ,

δ2 =

J∑

j=1

g′j
(
wn ·Gn,j + un · xj

)
∆wn · ψn,j,

δ3 =
1

2

J∑

j=1

g′′j (sn,j)
(
wn+1 ·Gn+1,j −wn ·Gn,j + un+1 · xj − un · xj

)2
.

By (A1), (A2) and (25), we see that

δ1 ≤ C3

m∑

i=1

‖∆vn
i ‖2,

where C3 = 1
2
JC2 supn∈N ‖wn‖ supt∈R |g′′ (t) |max1≤j≤J ‖xj‖2. Similarly, using

Lemma 5.1 and Cauchy-Schwartz Inequality, we conclude that

δ2 ≤ C2

J∑

j=1

‖∆wn‖‖ψn,j‖ ≤ C2

2

J∑

j=1

(
‖∆wn‖2 + ‖ψn,j‖2

)

≤ C4

(
‖∆wn‖2 +

m∑

i=1

‖∆vn
i ‖2
)
,

where C4 = 1
2
JC2 (1 + C1),

δ3 ≤ C2

2

J∑

j=1

‖wn+1 ·Gn+1,j −wn ·Gn,j + un+1 · xj − un · xj‖2

=
C2

2

J∑

j=1

‖
(
wn+1 −wn

)
·Gn+1,j +wn ·

(
Gn+1,j −Gn,j

)
+
(
un+1 − un

)
· xj‖2

≤ C2

2

(
max{C1, sup

n∈N

‖wn‖, sup
1≤j≤J

‖xj‖}
)2 J∑

j=1

(
‖∆wn‖+ ‖ψn,j‖+ ‖∆un‖

)2

≤ C5

(
‖∆wn‖2 +

m∑

i=1

‖∆vni ‖2 + ‖∆un‖2
)
,

where C5 = JC2

2
(1 + C1)

2
(max{C1, supn∈N ‖wn‖ sup1≤j≤J ‖xj‖})2.

Let C6 = C3 + C4 + C5, β = 1
η
− C6, we have

(26)

E
(
Wn+1

)
− E (Wn) ≤ −

(
1

η
− C6

)(
‖∆wn‖2 +

m∑

i=1

‖∆vni ‖2 + ‖∆un‖2
)

= −
(
1

η
− C6

)
(σn

1 + σn
2 + σn

3) = −β (σn
1 + σn

2 + σn
3) .

We require the learning rate η to satisfy

(27) 0 < η <
1

C6

.

Then we have

E
(
Wn+1

)
≤ E (Wn) .

The monotonicity of the error function is proved. �

Proof to (14). Note that E (Wn) ≥ 0 for any n = 0, 1, 2, · · · . By (13), we see that

494 J. WANG, W. WU, Z. LI, AND L. LI

the sequence {E (Wn)} monotonically decreases. Thus, there exists E∗ ≥ 0 such
that

lim
n→∞

E (Wn) = E∗.

�

Proof to (15). By (26), we have

E
(
Wn+1

)
≤ E (Wn)− β (σn

1 + σn
2 + σn

3)

≤ E
(
Wn−1

)
− β

(
σn−1
1 + σn−1

2 + σn−1
3

)
− β (σn

1 + σn
2 + σn

3)

≤ · · · ≤ E
(
W0

)
− β

n∑

i=0

(
σi
1 + σi

2 + σi
3

)
.

Since E (Wn) ≥ 0 holds for any n ≥ 1, then
n∑

i=0

β
(
σi
1 + σi

2 + σi
3

)
≤ E

(
W0

)
.

Using (6)-(12) and (21), taking n→ ∞, and exchanging indexes, we get

(28) β

∞∑

n=0

(σn
1 + σn

2 + σn
3) = βη2

∞∑

n=0

‖EW (Wn) ‖2 ≤ E
(
W0

)
<∞.

where β and η are constants. Hence, we derive that

lim
n→∞

‖EW (Wn) ‖ = 0.

The weak convergence is then proved. �

Proof to (16). By virtue of (15), we know that limn→∞EW(Wn) = 0. Using
(9)-(12), we conclude that limn→∞ ‖Wn+1 −Wn‖ = 0. Furthermore, by (A3), the
conditions of Lemma 5.2 are all satisfied. Then there exists W∗ ∈ Ω0 such that
limn→∞ Wn = W∗. �

References

[1] O. K. Ersoy and D. Hong, Parallel, Self-Organizing, Hierarchical Neural Networks, IEEE T.
Neural. Networ., 1(1990), no. 2, 167-178.

[2] G. Huang and R. He, Analyzing Water Diversion Demand for Irrigation Areas at Lower Reach
of Yellow River with BP Neural Network Techniques, J. Irriga. Drain., 19(2000), no. 3, 20-23.

[3] K. Hornik, Approximation Capabilities of Multilayer Feedforward Networks, Neural. Networ.,
4(1991), no. 2, 251-257.

[4] M. He, Theory, Application and Related Problems of Double Parallel Feedforward Neural
Networks, Xi’an: Xidian University, 1993.

[5] M. He, Double Parallel Feedforward Neural Networks with Application to Simulation Study
of Flight Fault Inspection, Acta. Aerona. ET. Astrona. Sinica., 15(1994), no. 7, 877-881.

[6] M. He, Error Analysis of Double Parallel Feedforward Neural Networks, J. Northwest. Poly.
Univer., 15(1997), no. 1, 125-130.

[7] S. Haykin, Neural Networks, A Comprehensive Foundation. 2nd edition, Prentice Hall, En-
glewood Cliffs, N.J, 1999.

[8] C. G. Looney, Pattern Recognition Using Neural Networks, Oxford University Press, New
York, 1997.

[9] M. Leshno, V. Y. Lin and A. Pinkus et al, Multilayer Feedforward Networks with a Nonpoly-

nomial Activation Function Can Approximate Any Function, Neural. Networ., 6(1993), no.
6, 861-867.

[10] S. Luan, G. Ding and S. Zhong, Aeroengine Lubricating Oil Metal Elements Concentration
Prediction Based on Double Parallel Process Neural Networks, Lubrica. Engineer., 37(2006),
no. 5, 32-34.

[11] Y. C. Liang, D. P. Feng and H. P. Lee et al, Successive Approximation Training Algorithm
for Feedforward Neural Networks, Neurocomputing, 42(2002)311-322.

DOUBLE PARALLEL FEEDFORWARD NEURAL NETWORK 495

[12] Y. C. Liang, H. P. Lee and S. P. Lim et al, Proper Orthogonal Decomposition and Its
Application - Part II: Model Reduction for MEMS Dynamical Analysis, J. Sound. Vibration.,
252(2002), no. 3, 527-544.

[13] Z. Li, W. Wu and Y. Tian, Convergence of An Online Gradient Method for Feedforward
Neural Networks with Stochastic Inputs, J. Comput. Appl. Math., 163(2004), no. 1, 165-176.

[14] D. J. C. Mackay, Bayesian Interpolation, Neural Comput., 4(1992), no. 3, 415-447.
[15] X. Meng, G. Ding and L. Tang, Calculation for the Exhaust Enthalpy of a Steam Turbine

Based on Parallel Connection Feed-forward Network, Turbine Technology, 68(2006), no. 1,
14-15.

[16] D. Wei, H. Xi and L. Zhao, Alternate Iterative Algorithm of Double Parallel Artificial Neural
Network and Its Application, Mini-Micro Systems, 17(1996), no. 11, 65-68.

[17] D. Wei, L. Zhao and L. Tang, Study on Application of Parallel Connection Artificial Neural
Networks to Hydraulic Turbine Test, Water. Res. Hydro. Eng., 6(2005)79-84.

[18] W. Wu, G. Feng and X. Li, Training Multilayer Perceptrons via Minimization of Sum of
Ridge Functions, Adv. Comput. Math., 17(2002)331-347.

[19] W. Wu, G. Feng and Z. Li et al, Deterministic Convergence of An Online Gradient Method
for BP Neural Networks, IEEE T. Neural. Networ., 16(2005), no. 3, 533-540.

[20] W. Wu, N. Zhang and Z. Li et al, Convergence of gradient method with momentum for
back-propagation neural networks, J. Comput. Math., 26(2008), no. 4, 613-623.

[21] Y. Yuan and W. Sun, Optimization Theory and Methods. Science Press, Beijing, 2001.
[22] S. Zhong and G. Ding, Research on Double Parallel Feedforward Process Neural Networks

and Its Application, Contr. Decis., 20(2005), no. 7, 764-768.

School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, P. R. China
E-mail : wuweiw@dlut.edu.cn

School of Mathematics and Computational Sciences, Petroleum University of China, Dongying,
257061, P. R. China

E-mail : wangjiannl@mail.dlut.edu.cn

