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A ROBIN-ROBIN NON-OVERLAPPING DOMAIN
DECOMPOSITION METHOD FOR AN
ELLIPTIC BOUNDARY CONTROL PROBLEM

L.S. HOU AND JANGWOON LEE

Abstract. A Robin-Robin non-overlapping domain decomposition method
for an optimal boundary control problem associated with an elliptic boundary
value problem is presented. The existence of the whole domain and subdomain
optimal solutions is proven. The convergence of the subdomain optimal solu-
tions to the whole domain optimal solution is shown. The optimality system is
derived and a gradient-type method is defined for finding the optimal solution.
A theoretic convergence result for the gradient method is established. The
finite element version of the Robin-Robin non-overlapping domain decomposi-
tion method is analyzed and some numerical results by the method on both

serial and parallel computers (using MPI) are presented.
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1. Introduction

Domain decomposition methods have the subject of extensive study in the last
few decades; see, e.g., www.ddm.org. An important class of non-overlapping do-
main decomposition method is the Robin-Robin type methods based on successive
exchanges of interface Robin data [10, 11, 7]. In this paper we design and ana-
lyze a Robin-Robin non-overlapping domain decomposition method for solving an
optimal boundary control problem constrained by the second order elliptic partial
differential equation (PDE). In addition, we develop both serial and parallel (MPT)
codes to give some numerical results.

The content of this paper is as follows. In Section 2.1, we introduce the whole-
domain and subdomain optimal boundary control problems. In Section 2.2, we
prove the existence of the whole domain optimal solution and the subdomain op-
timal solution. In Section 2.3, we show that the subdomain optimal solution con-
verges weakly to the whole domain optimal solution. In Section 2.4, we use the
method of Lagrange multiplier to derive the optimality system of equations. In
Section 2.5, we define a gradient method for our optimal boundary control problem
on the subdomain and prove the theoretic convergence of the method. In Section 3,
we analyzed the finite element version of the Robin-Robin non-overlapping domain
decomposition method in the same way as we did the continuous version. Finally,
in Section 4, we use both serial and parallel computers to present numerical re-
sults. In the parallel computing, we use MPI, the Message Passing Interface, for
the communication between computer processors.
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2. Optimal boundary control problems

In this chapter, we solve an optimal control problem constrained by the general
second order elliptic PDE under the Neumann boundary condition using the Robin
type non-overlapping domain decomposition method (DDM).

2.1. The model problem. We consider the general second order elliptic PDE
under the Neumann boundary condition:

(2.1) —div[A(x)Vu]+b(x) - Vu+c(x)u=f in Q, [A(x)Vu] - n=p onT,

where € is an open, bounded subset of R? with boundary T, u : Q@ — R is the un-
known, A is a symmetric-matrix-valued L (£2) function that is uniformly positive
definite, b is a vector-valued L*(£2) function, c¢ is a real-valued L®(2) function,
f € L?(Q), n is the outward normal to Q, and p € L?(I') is a flexible boundary
input data called a boundary control.

Here, we optimize the following cost functional subject to (2.1):

(2.2) Tolup) = & / u—UPda+ 2 / P,
2 Jo 2 Jr

where U is a given target solution and f is a positive constant.

In this paper, in order to minimize (2.2) using DDM, we partition the whole
domain 2 into two subdomains €27 and €25. Then we denote a new boundary by I'g,
separate the original boundary into 'y = 9921\ and I'y = 9Q2\Iy. (see Figure
2.1)

FIGURE 2.1. Two subdomains

In Figure 2.1, n; is the unit outward normal to 0€;.
Before we solve this problem, we introduce notation:

[u, v]p :/ uv dD  Vu,v € L*(D) and
D

afu,v] = /Q[A(X)VU Vo + (b(x) - Vu)v + ¢(x)uv] dQ  Yu,v € HY(Q),

where H'(Q) is the standard Sobolev space (see [1]).
Under the notation, we have the weak formulation of (2.1): seek u € H*(£2) such
that

(2.3) alu,v] = [f,v]q + [p,v]r Vv € HY(Q).

We assume here that, throughout the paper, our bilinear forms are coersive; e.g.,
in (2.3), there is a constant C' > 0 such that

(2.4) alu,u] > C||u||%9 Yu € Hl(Q)

to ensure the existence of the solution of our PDE.
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In order to solve the problem using DDM, we define subdomain problems with
the Robin boundary condition on the interface I'y: for a A > 0,

—div [A(x)Vu;] + b(x) - Vu, + e(x)u; = fi  in Q,
(25) [A(X)V’U/Z] ‘n; =p; Oon Fi7 and
u; + A[A(x)Vu;] -n; = g; on Iy,

where g; € L?(T) is another control. Then we have the weak formulation of (2.5):
seek a u; € H'(Q;) such that

(2.6) a;[ui,vi] + A" ui, vilry = [fis vilas + pis vile, + A Hai, vilr, Yvi € HY(Q).

In two subdomains problem, the cost functional J3 becomes

2 2
]‘ 2 ﬁ 2
(2.7) Ks(u1,uz,p1,p2) = 5 ;71 /Q |u; — U[7d2 + 5 ;71 /F p;dl.

Note that we need transmission conditions to have the identical solution from the
whole domain and subdomain problems. In our case, the conditions are u; = us
and [A(x)Vu1] - n; = —[A(x)Vuz] - ng on T'yg. To satisfy this, we should make
u1 — uo = 0 and choose g7 and gs such that g; + go — u1 — us = 0 on I'g. For this,
we consider a new functional as follows:

(2.8) G(ur,uz, 91, 92) = / ur — uzl* + (g1 + g2 — u1 — us|*dT.
To
We, thus, combine two functionals (2.7) and (2.8) with a positive constant o:
1
(29) gﬂo'(ula u25p15p2aglag2) = KB(U17U27p17p2) + %g(ula U2;91792)-

Then we set our functional to be optimized using boundary controls p; and g;
with additional § term to ensure the convergence in Section 2.3:

)
(2.10)  Epso(ur, uz, p1,02,91,92) = Ego(ur, uz, p1,p2. 91, 92) + 5 Z/ g7dl

i=17To

where ¢ is a positive constant.

2.2. The existence of an optimal solution. In this section, we prove the ex-
istence of an optimal solution on the whole domain and then on the subdomains.
Let

(2.11) Uza = {(u,p) € H'(Q) x L*(T) | (2.3) satisfied and Js(u,p) < oo}

be the admissibility set and (4, p) € Uyq be an optimal solution of Jp if there exists
e > 0 such that Jp(a,p) < Js(u,p) for all (u,p) € Uyq satistying ||u — @10 +
lp — Pllo,r < €. Then we have the following theorem for the optimal solution on the
whole domain.

Theorem 2.1. There is a unique optimal solution (G, p) € Ugq.

PROOF: Note that there is a minimizing sequence {(u™, p(™)} in U,q such that

2.12 li (M) pM) = inf .
(2.12) Aim T p™) = inf - Tp(u,p)

From (2.11), we have a sequence {p™} that is uniformly bounded in L?(T).
Note also that there is a constant C' > 0 such that

(2.13) ™10 < CUfllog + 2]

o,r)-
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Thus, {u(™} is uniformly bounded in H'(Q). Consequently, there is a subse-

quence {(u(™) p("i))} such that

(2.14)  u™) — 4 weakly in HY(Q) and p™) — p weakly in L)

for some (@, p) € HY(Q) x L*(T). Thus, we have

(215)  ali,o] = lim_afu™),v] = [f,o]a + lm [p",ole = [f,elo + [p,v)r

n; —»00
Hence, (4, p) € Uyzq.

Since J3 is weakly lower semicontinuous (see [3]), (2.14) implies that

(2.16) Tp(,p) < lim inf Jp(u™) p")) = inf = Js(u,p)
n; —>00 (u,p)EUGq

Therefore, (4, p) is an optimal solution.
On the other hand, uniqueness follows from the strict convexity of the functional,
the convexity of U,q, and the linearity of the constraints. a

We now define the admissibility set for the subdomain optimal control problem

Waa ={(u1,u2, p1,p2, 91, 92) € H' (1) x H'(Qg) x L*(T1) x L*(T2) x [L*(T)]?
(2.17) such that (2.6) satisfied and Egss(u1, u2, p1,D2, g1, g2) < 00}

and another bilinear form b;[u;, v;] := a;[u;, v;] + A7 [u;, vi]r,. Note that there is a
unique solution of (2.6) and that there is a positive constants C; such that

1o, < Ci(|fi

Then the existence of the solution for the optimization problem on the subdmains
follows.

(2.18) s

0,2 + lIpillo.r; + [lgillo,ro)-

Theorem 2.2. There is a unique optimal solution in Wsg.

2.3. Convergence of the subdomain optimal solution to whole domain
optimal solution. In this section, we show that solutions of £gs5, converges weakly
to the optimal solution of Jg as §,0 — 0. Here we introduce notation (u, v)B%7
which means (4”27, v%97) and (u £ v)?%% which means (u%°7 £ v#97) for simplicity.

Theorem 2.3. For cach 6,0 > 0, let (ul,ug,pl,pg,gl,gg)ﬂ‘sa € Weq denote an
optimal solution of Egss. Let (u,p)? be the optimal solution of N/Y ula, = uf,
PP, = piB, and gf = uf + )\[A(X)Vuf] -mn; for i =1,2. Then (uy,uz,p1,p2)?°"

converges to (ul,ug,pl,pg)ﬂ weakly as 6,0 — 0.

PROOF: Suppose that {(u1,uz,p1,p2,91,92)?°7} is a sequence of optimal solu-
tions and that d,0 — 0. Then we have

Esso (U1, Uz, P1, D2, 91, 92)°7 < Eso(ur, us, p1, P2, g1, g2)” for each 8,0 > 0.

Le., we have for any §,0 > 0,
52
Kp(u1, uz, p1,p2)?°7 + 3 Z/ (9550)2df < Egso(ur, uz, p1,p2,91,92)°  and
i=17To

1

% [(ur — u2)?7 2 4+ |(g1 + g2 — w1 — u2)?27 |2dT < Egso (ur,us, p1, P2, g1, 92)°.
o
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Note that
52
5550(“1;“271717272791792)5 = ICB(UI;U%plapQ)ﬁ + 5 Z/ (gf)2d]'—‘
i=1"To
5
= Fy 2)2dr
Totwr)'+3 3 [ (o)
=1 o
Thus, we have for any §,0 > 0,
52
Kotur,uaprpa)?™ + 53 [ (@ Rar
25 o
52
(219) <o)’ + 5> [ (o) and
i=1"To
1
oyl I Cl u2)P7 12 + [(g1 + g2 — w1 — uz)?*7?dl
g To
52
(2.20) < Ts(u,p)’ + 2 Z/ (9/)%dr.
i=1/To

From (2.17), there are sequences {p’°?} and {g”°?} that are uniformly bounded
in L(I;) and L2(Iy) respectively. By (2.18), {u°?} is also uniformly bounded
in H'(;). Hence, there exist subsequences of {u?°7}, {p?°?}, and {¢"°7} that
converge weakly to some (uy,us,p1,p2,g1,92)" € HY Q) x HY(Qs) x L?(T1) x
L?(T3) x [L3(Tg)])%

Then by passing to the limit, we have

ai[uf, vi] + A7 ug, v, = [fi,vila, + [P], v, + A7) vilr,  Voi € H' ().

In (2.20), [p [(u1 - u2)* | + (g1 + g2 — u1 — ua)*[2dl’ — 0 as o — 0; i.e., the
transmission conditions hold. Hence, Kg(u1, u2, p1,p2)* = Ja(u,p)*.

In (2.19), J3(u,p)* < jﬂ(u,p)ﬁ as  — 0. Then by uniqueness of the optimal
solution, we have (u, p)* = (u,p)”.

Let { (1,2, p1, P2, g1,92)°°7} be a subsequence of {(u1,uz,p1,p2,91,92)°°7 }.
And we apply the above argument in the theorem to this subsequence. Then
we have that (u1,us,p1,p2)??7 converges weakly to (uy,us,p1,p2)? in H' () x
HY(Q2) x L3(T'1) x L?(Ty). 0

Corollary 2.4. Under the same hypothesis in above theorem, for a given U, we
assume that Jg(u”,p?) = 0. Then we have the weak convergence of the subdomain
optimal solution to whole domain optimal solution as 6 — 0 and 0 — co.

2.4. The method of Lagrange multiplier. In this section, we use the method
of Lagrange multiplier to derive the optimality system of equations for our op-
timal boundary control problem. Throughout this section, we use £ instead of
Epso (U1, uz, p1, P2, g1, g2) for simplicity if we need. We define the Lagrangian

£(U’17U’27p17p27glag2;€h§2) - gﬂéo’(uhu%plaangl)gQ)

2
- Z (aslus, & + X" Mui, &lre — Ui &Gilos — i, Glry — A gis &)

i=1
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where

2 2
1
Epso(ur, uz, p1,p2, 91, 92) = 52/ ui — U|? d2 + gZ/ p; dr
i=1 /8% i=17Ti

5o ) 1
— cdl + — uy — us)? —uy —us|? dT.
+2;/Fogz +2U/F0|1 2”4+ 191 + g2 1 2]

Note that by taking the first variations of £ with respect to &; and then setting
the result equation to zero, we obtain the weak formulation (2.6).
Similarly, with respect to u;, we have

1
(2.21) [ui=U, vila 4[24 —g1 =92, vilr, = ail€i, vi] + AT € vilr, Yo € HY (),
with respect to p;,

(2.22) B[Z)i,wi]ri = —[&,wi]p% Vwi S LQ(F,L').

and with respect to g;,

1 _

(2.23)  dgi, 2ilr, + ;[91 + g2 —u1 —u2,zilr, = —A" [, 2, Vzi € L (o).
Here equations (2.6) and (2.21)-(2.23) are called the optimality system of equa-
tions. We now define the first derivatives of £ with respect to p; and g; through

their actions:

@20) (5o} =l = Uil + Bl e, + 120~ 91— e
where 1; € H'(€;) is the solution of

(2.25) i, v] + AN, v, = [pi, v, Yo € HY(Q)

and

o€ . . ~
<a_glagl> = [U”i - Ua ui]Qq, + 5[giagi]rt)

1 N 1
(2.26) + ;[2%‘ — g1 — g2, Uilr, +

;[91 + g2 — u1 — u2, Gilr,,

where 1; € H'(€;) is the solution of

(2.27) ai[di, ’U] + )\71[’[21‘, ’U]FO = )\71[9;‘, ’U]F Yv € Hl(Qo).

i

Now let &; be solution of (2.21) and set v; = «; in (2.21), where u; is the solution
of (2.25) and v =&, in (2.25). Then we have

(2.28) [ui — U, ii)a, + %[2%‘ — g1 — 92,0i)r, = @il i) + A&, @,
and
(2.29) ailt, &) + X", &y = [Bi, &l -

Combining (2.28) and (2.29) yields
_ _ 1 -
(2.30) [pu fz‘]ri = [Ui -, Ui]Qi + ;[2%‘ — g1 — 92, Ui]I‘O-

Substituting (2.30) in (2.24) yields

(2.31) <g§ ,ﬁi> = (&, pilr, + Blpi, Pilr, -
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Similarly we have

o€ . . _ - 1 -
(2.32) <ag_agi> = 6[gi, Gilry + A&, Gilro + ;[91 + g2 — u1 — U2, Gilry-

Consequently, from (2.31) and (2.32), we have the following formulas
o€

2. =& i
(2.33) 5 =G+
and
o€ 1
(2.34) 99, =00+ A TG+ ;(91 + g2 — u1 — ua)

for an iterative approximation method in the next section.

2.5. A gradient method. In this section, we define an iterative method using
the gradient from Section 2.4 to solve our boundary control problem and show the
convergence of the method.

The kth step iteration formula for the gradient method is given by

k+1 k+1 k+1 k+1 k k k k
(pHY p D g gty — () (9 g gy
(2.35) —a(Bp{? + e, pps? + €87,

B L, k) k) k) (k) 1k
5o+ L+ o)l - ) 206

B L, k) k) k) (k) 1k
5+ L o -l 12

where « is a positive constant, ugk) is from
aiful™ v + A ul® v,
(2.36) = [fivvilas + [ vile, + 27 (g vile, Vo € HY Q)
and §i(k) is from
aile, vl + A7 R wilr,
(2.37) = [uz(-k) —Uva, + %[2%@ - g§’“> — gék),vi]po Y, € HY(Q).

We state the following theorem to show the convergence of the method.

Theorem 2.5. Let X be a Hilbert space equipped with the inner product (-,-)x and
norm || - || x. Suppose that M is a functional on X such that

1. M has a local minimum at & and is twice differentiable in an open ball B centered
at x;

2. [(M"(u), (,1)| < Mllz|xllylx ~ VueB, z€ X, ye X;

3. (M (u), (x,2))| > m|z|% Vue B, reX,

where M and m are positive constants. Let R denote Riesz map. Choose (9
sufficiently close to & and choose a sequence py such that 0 < p, < pr < p* <
2m/M?. Then the sequence x**+1) defined by

e = 20— RM (2®)  for k=0,1,2,--,

converges to .
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PROOF: see [2].

We calculate the second derivatives of £ to determine positive constants M and
m in Theorem 2.5.

0%E . 5 - 1 -
< (pmpi)> = [us, U)o, + Blpi, Pilr, + ;[2%,%‘]&7

op?’
0%E
a o ); ) = 07
<8p18p2 (1. p2)
0%E
b ); b = 07
<8p28p1 (P2 p1)

P (i) ) = Lga il + Lo+ g
69169 , (91, 92 - o g2, U1|T, o U2 92, 91|,
PE_ Gog0) ) = Llmgu, iy + L + 1,65
092891’ 92,91 =5 g1, U2|ry o Ul + g1, 92|rg;
’E . 1 _
<m, (piagi)> = [, @lo, + ;[2% = 93, Uilr,,
0%E 1
7i>Di) ) = |wq, Uy —[2u, 1; —|—ui, gilr,,
(g i) ) = s, + 2 20 i, + S il
T (i) ) = S ogai]
aplaQQ, DP1,92 - pu g2, U1]Tyg,
r?E 1 N
aPQag a(p2agl) = ;[_glauﬂr[ﬁ
€ 1 N
<ag1ap a(glap2)> = ;[_UQ;gl]F[ﬁ and
rE . 1 N
9920p ,(g2:p1) ) = ;[—m,gﬂrm

bi[tdi, v] = [ps,v]r, Vv € HY (),

bi[ui,v] = [ps,v]r, Yo € H' (),

bili, v] = A" g, v]r, Vv € HY(S;), and
bi[us, v] = A g, vlr, Yo € HY Q).

Note that there exist constants C’s such that

dill1,0, < Cllpil
uill1,0. < Cllpil
il < Cllgil
il < Cllgil

0,I';»

0,I';»

0,0 and

0,I'o>»

respectively.
Also note that in our calculations, V2& is 4 by 4 matrix, z = (p1,p2,91,92)7,
and Yy = (p~1ap~2ag~lag~2)T' ThUS, <V257 (x,y)) is defined by <V25:c,y> or <:L'a V2€y>,
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where (-, -) denotes the scalar product. Hence, we have

2

- - 1 - -
< V25, (l’,y) >:Z([uzauz]ﬂl + ﬂ[pzapz]F1 + ;[QUi;ui]Fo + [U’Laul]fL

i=1

1. . - N 1 R 1 -
+ ;[QW — §i, Ui|ry + [wi, di)a, + ;[2%‘, Uilr, + —[—wi, Gilr

)

. - 1. R 1.
+ [ds, dilo, + 8lgi, Gilry + ;[2%‘ — gi»Uilr, + ;[—Uz‘

- 1 - - -
+ i, Gilr,) + ;([_9271“]1“0 + [—g1, 2], + [—u2, di]r,

+ [~u1, go]r, + [—g2, t1]r, + [—t2 + g2, gilr, + [—91, U2]r,
+ [—u1 + g1, d2]r, ), and, hence,

2
| < V2, (,y) > | <D _AC%Ipsllo.r: [15illo.r, + Ipellor: I Gillo.ro + llgillo.rollgillo.r

where

i=1

- 20?2 - _
+ lgillo,ro 1Zillo,r;) + T(||pi||0,ri||pi||0,rq, + lIpillo,r; llgillo,ro

- - C -
+lgillo,ro | gillo.ro + llgillo.rollPillo,r,) + ;(HZHHOL gillo,ro

+ llgillo,rollDillo,r: + 2llgillo,rollgillo,ro) + Bllpillo,r,

Pillo,r,

- 1 - -
+ 6llgillo,rolgillore } + ;(||91||0,F0||91||07F0 + llg1llo,ro lg2ll0,rs

- - C -
+ llg2llo.ro Ig1llo.ry + ll92ll0.r l1g2[l0,r0) + ;(||p1||o,rl l92ll0,ro

+ Ip2llo,rs 1191 llo,re + 2[l91ll0,r0 ll92ll0,r + 2llg2llo,ro g1 l0,T,
+ llg1llo.ro |P2]lo,rs + [lg2llo.ro 21 ll0.ry)

202 2C 1 2C
< (02 + T+ =+ B4+~ + —) lzlllyll < M|yl
g ag ag ag

M = Tmax{C?, 2C?/a, 2C/o, B, 6, 1/c},

llell = \/leHarl + 2§, + lgnllg py + lg2llg > and

lyll = \/Ilﬁlllﬁ,n +1P2113 ., + 91115y + 192115 1, -

Similarly, we have

2

1
<VZE, (w,x) >= (i, uilo, + Blpi, pilr, + - [2ui, wilry + [di, uilo,

=1

1. . . 1 . 1
+ ;[2%‘ — G4, Ui|ry + [wi, Wila, + ;[2%‘, Uilre + —[—us, gilr,

)

. . 1
2u; — g4, Ui, +

1
+ [, 4i)a, + 0[gi, 9ilr, + ;[

— —; + 94, 9ilro)
g

1
+ ;([*92&61%0 + [—g1,u2lr, + [—u2, g1]r, + [—u1, 92]r,
+ [—g2,t1]r, + [—t2 + 92, 911y + [—91, U2]r, + [—u1 + 91, 92]r, )-
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Then we have

1
| < V2E, (@, ) > | > ) ([us + s, i + 0]a, + E[uz + 5, ui + U,

i
i
i

1 B .
+ ;[Ui +U; — g1 — g2, Ui + U — g1 — 92]r, + Blpi, pilr,
2
+ 0[g4, gilry) — ;([gl,gl]ro + 192, g2]r,) |
2 1
> i U, U+ Uglo, + —u + U, u o+ U
_|;[u + g, u +U]Q’+a[u + Uy, wi + Uslp,
1 5 y
+ ;[Ui +U; — g1 — g2, Ui + U — g1 — 92]r, + Bpi, pilr,
2
+ (6 — ;)[Qi,gi]ro|
>ml|z|?,

where m = min{3,§ — 2/0}. Hence the sufficient conditions of Theorem 2.5 hold
for our method.

3. The finite element version

The finite element version of what we have done can be analyzed in the same
way as the continuous version. So we will talk about the finite element version here
without proofs. Also we are going to talk about the finite element approximation
of our optimization problem under some assumptions.

We assume that 2 is a two dimensional polygon or a three dimensional poly-
hedron. Consider regular triangulations 7" () of ) such that no element of the
triangulations crosses the interface I'g. Let X" C H'(Q) be a family of finite di-
mensional spaces of functions and we set X" = X"|q, fori =1,2, P" = Pl x P} =
XPlp, x XB|r,, and G" = G? x Gb = X}, x X}|r,. We assume that X" and X!
satisfy standard approximation properties; see [?].

3.1. Minimization of the discrete problems. The finite element version of
(2.1) is

(3.1)

—div [A(x)Vu"] + b(x) - Vu" + ¢(x)u" = f in Q, [Ax)Vu"]-n=p" onT,

where u" € X" and p" € P" and also the finite version of (2.2) is described as
follows: for a given U,

(3.2) To(uh,phy = / Wt —UPda+ 2 / (o),
2 Jq 2 Jr

where (3 is a positive constant.
Let f € L?(). For given p" € P" and g" € G", the discrete Robin type
boundary value problems are defined over subdomains (for a fixed positive \):

—div [A(x)Vul'] + b(x) - Vul' + c(x)ul = fi in Q,
(3.3) [Ax)Vul] - n; =p! onTy, and
ul' + NAX)Vul]-n; =g onTy

for + = 1,2 are well posed in the sense of the following weak formulation: seek a
ul € XI for i = 1,2 such that

(34) ai[uzhav£1]+>‘_1[u;lvv£l]F0 - [ ivvzh]Qi + [pf}ila U’Lh]ri +)‘_1[gzhavzhh’o szh € th
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Now we have the finite element version of (2.7) and (2.10).

(35) Kﬂ(u}f,u27p17p2 Z/ | ? U| dst + BZ/ p1

2
1)
5550(U’1L,U’5,p?,p3,g?,93):/Cﬁ(U’f,ug,p?,pS)JrgZ/ (¢1")%dT
i=1“To

1
(3.6) + By |l — b+ [g} + gh — ul — ub|?dl,
g To

3.2. The existence of the discrete optimal solution. We know that a weak
formulation of (3.1) is as follows: seek u" € X" such that

(3.7) afu ") = [f,vMq + [p", 0" Vo € X"
Define U”, and W", as follows:
(3.8) UM, = {(u",p") € X" x P" such that (3.7) satisfied and J3(u",p") < oo}

Wh ={(ul,ult, pt,ph, gl gh) € X' x XB x Pl x P} x G x GE
(3.9) such that (3.4) satisfied and Egs, (uf, ulk, plt, ph, g7, gh) < oo}

Then we have the following theorems without proofs from the same arguments
in section 2.2.

Theorem 3.1. There is a unique optimal solution in Z/{gd
Theorem 3.2. There is a unique optimal solution in Wf;d.

3.3. Convergence of the discrete optimal solution. We state the finite ver-
sions of the convergence theorem and corollary without proofs. In fact, every step
in proofs is parallel to that of the continuous case.

Theorem 3.3. For each 3,6,0 > 0, let (u?,ul,p},ph, g%, g%)?%" € W, denote
an optimal solution of Egss. Let (ul,p")? be the optimal solution of Js and let
ulblg, = u?ﬂ and p"Plg, = p?B fori = 1,2. Then (ult,ul,ph, ph)sos
weakly to (uf, ul, ph ph)? as 5,0 — 0.

CONverges

Corollary 3.4. Under the same hypothesis in above theorem, for a given U, assume
that jg(uh,ph)ﬁ = 0. Then we have the weak convergence of the subdomain optimal
solution to whole domain optimal solution as § — 0 and o — oco.

3.4. The discrete Lagrange multiplier and optimality system. Define the
Lagrangian of the finite element version

£(U’?7U’gap}fap}215g?agg7§{b7§2) gﬂéo’(ulau2ap17p27gl792)
72 al ;la h +>‘ [ ilafzh] [fza ]Q 7[p17 ] r; — [gzhagzh]Fo)'

Then the ﬁmte element approximations of solutions of the optimality system
(2.21)-(2.23) for i = 1,2 are defined as follows:
(3.10)

1
[u?fUavzh]Qi+E[2u?*g?7ggavzh]f‘o:a’[za z]+>‘ [zvvzh]Fo VUZhGth
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(3'11) B[p?)w’?]ri = _[gzhvwzh]rz vwzh € P'L'h'
1
(312) 5[9?7Z?]F0 + ;[g? + gg - u}ll - U}Qlazih]Fo - 7)‘_1[ z'hazih]Fo vzzh € G?

3.5. The finite element version of the gradient method. The finite ele-
ment version of the gradient method is described as follows: choose initial guess

ao,p?(o) € P! and gf(o) € Gl for k=1,2,--- solve for u?(k) € X! from
(3.13)
N e A A R AT L

solve for fih(k) € X! from
(3.14)

1
aile!™ o+ AW ol = [ = Ul + 207 — g1 — g3 ol

for all v} € X', and update p?(k—H) € P and g?(kﬂ) € G from
(py ) ph D) gD Ry — (ph9) B g8 g9
(3.15) —ar (B + & o+ 6

) h(k 1 h(k h(k h(k h(k —1¢h(k

1() U(gl() g2() ul() u2( )) A 151( )7

) h(k 1 h(k h(k h(k h(k —1¢h(k
2() g(gl() 92() ul() u2( )) )\ 152( ))

3.6. Finite element approximations. In general, we cannot make Jz(u,p) = 0.
However in some situation, we have that Js(u,p) = 0. For instance, if we consider
(4.1) with p = 0, then in fact, for a given target solution U = 1, we have the exact
solution u = 1.

1
Totwp) = [ u-vPde g [ g

(3.16) —Au+u=1 inQ, 9u =p on 0.

on
Le., we can minimize our functional, J3(u,p), perfectly in some example in a con-
tinuous version. Here is our question. Then what if we consider this in a finite
element version under assumption, Jg(u,p) = 0. Later we shall show the finite
element approximations of our optimization problem. Before we see that, let us
introduce some definitions and theorem.

Definition 3.5. T is star-shaped with respect to Bt if for all x € T, the closed
convex hull of {x} U Br is a subset of T

Definition 3.6. Let ) be a given domain and let {T"} be a family of subdivisions
such that

(3.17) max{diam T : T € T"} < h - diam Q.

{T"} is said to be non-degenerate if there is a positive p such that for all T € T"
and for all h € (0,1],

(3.18) diam Bt > p - diam T,

where Br is the largest ball contained in T such that T is star-shaped with respect
to BT.
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Definition 3.7. Let K C R" be a bounded closed set with nonempty interior and
piecewise smooth boundary, P be a finite-dimensional space of functions on K and
N = {N1,Na, -+ Nk} be a basis for P'. Then (K, P,N) is called a finite element.

Let Z" : CY(Q) — L'(Q) be the global interpolation operator defined by
(3.19) Thulp == Thu for T eT" he(0,1],

where I;i is the interpolation operator for the affine-equivalent element (T, Pr, Nr).

1/p
Consider W) as a usual Sobolev’s space and [v|wm (o) = (Za:k HD%’UH;Q) )

where D{;v as a weak derivative of v.

Theorem 3.8. Assume that {T"},0 < h < 1, is non-degenerate in R" and_that
(K, P,N) satisfies that K is star-shaped, Py,—1 CP C W (K) and N C (CY(K))'.
Then there exists a positive constant C' depending on n,m,p and p such that for
0<s<m,
1/p
(3.20) > v fzhvnf;‘/;m < O™ *[olwp) Yo € WH(Q).
TETh

PROOF: see [2].

Now we are ready to think of the finite element approximations of our optimiza-
tion problem.

Theorem 3.9. Consider the same assumption in above theorem. Then for m = 3,
there is a constant C' > 0 such that

(3.21) lu" — ullr.q < Ch2|uls.0.

PROOF: By coercivity of our bilinear form, we have

C’1Hu7uh||ig <afu—u" u—u") = afu —ulu— " 40" —uh

(3.22) =afu —u",u— ")+ afu —u" " —u"] Wl e X
where (] is a coercive constant.

Note that since afu,v] = F(v) Vv € HY(Q) and a[u®,v"] = F(v") Wl €
X" c HY(Q), then afu —uh,v"] =0 Voh € X" Because v" — u* € X", by above
note and by continuity of our bilinear form, we have

(3.23) Cillu —u"|} o < afu—u",u—0"] < Coflu—u"1aflu —v"|L0

for some positive constant Cs.
Thus for any v* € X", we have

(3.24) lu —u"ll0 < C2/Cillu— "]

1,9
In particular, we have

(3.25) |u—u|1.0 < Co/Ctlju — T"ul

1,9
Hence, by previous theorem, there is a constant C' > 0 such that

(3.26) u—u"|1.0 < Ch?|ulz.q. g

Remark 3.10. In above theorem, if we assume that uw = U in (Q, then we have

(3.27) lu" — Ullo.o < Ch?|ulz.q.
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In discrete case, we know that a control p” is updated every step and hence,
even though we start running our code with p" = 0, there is no guarantee to have
p" = 0 at other steps. Le., there is no guarantee to have that ||ju —Ul|o.q = 0 except
the first step. Thus if we could not assume v = U in {2, then we would have

(3.28) |u" — U] 00#0 as h—0.

Also we need to think of quadrature formula errors.

0.0 = [[u—="U]

4. Numerical experiments

In this section, we present numerical results from both a serial code and a MPI
parallel code and compare the results.

Let @ = {(z,y) : 0 < x < 2,0 <y < 1} and then consider subdomains €; =
{(z,y) :0<z<1,0<y <1} and Qs ={(zr,y) : 1 <z <2,0<y<1}. Then
we have I'g = {(z,y) : « = 1,0 < y < 1} as the interface of two subdomains; see
Figure 4.2.

X 1 0 2 X

FIGURE 4.2. A subdivision of the rectangular domain

In this paper, we develop codes for the following example:
1
Js(u,p) = —/ lu — 112dQ + é/deI’,
2 Ja 2 Jr
ou

(4.1) —Au+u=1 inQ, — =p on .
on

Let p§°) =0, p;” = 0.0001, g§0) =1, and géo) = 1 that are initial guesses for our
iterative approximation method.

Recall that there are «, 3,9, 0, and A as parameters. First we fix that A =1 and
B = 1. Since solutions of £35, converges weakly to the optimal solution of J3 as
§,0 — 0 theoretically, we put § = o = 107° at the beginning of our experiment in
solving our example. In fact, for 6 = 0 (no additional § term in Egs,), our iterative
method is also convergent numerically and the result of this case is almost same as
that of § = 107° case. Note that we also have the convergence for a small § and
a large ¢ in Corollary 2.4. Thus we run codes with § = 107® and ¢ = 200001, for
instance. Note that we have « as a step size in our method that must be strictly less
than % and be strictly greater than 0 from Theorem 2.5. So we may guess that
we need to start putting a small « as a step size in our method. In our codes, we

use Z?Zl(Hp(.kH) 7pl(,k) llo.r; + ||g(k+1) — ggk) llo.r,) as a stopping criterion and 1075

K3 3
as a tolerance. Also we use the same mesh size in two subdomains for convenience.



A NON-OVERLAPPTING DDM FOR A CONTROL PROBLEM 457

4.1. Numerical results in a serial code. As you see in tables for a serial code,
calculations are performed with various values for . The number of iterations are
presented and also L? distances between ", a numerical solution, and U, a target
solution, are presented in each table. Also L? norms for transmission conditions
are presented. Note that these norms are ¢ terms in €gs,. Throughout this and
next sections, o term in each table means ||u1 — uz|lo,r, + ||g1 + g2 — w1 — uzllo,r,-
The first table was computed for a mesh size h = 1/4, the second is for h = 1/8
and the last is for h = 1/16. For three mesh sizes, we can see what good choices of
a’s are.

Even though we do not put implementation results without § term (this term
was added into our functional in (2.10) for the convergence result in Theorem 2.3,
we calculated it for each mesh size and got almost same results as in experiments

with a § term.

« time (second) Tter. lu® = Ullo.0 o term
91077 || 2.466893196105E-002 | 13 | 1.997418312946E-004 | 6.873888100872E-005
1-107% || 2.277278900146E-002 | 12 | 1.970068380445E-004 | 6.514413959851E-005
3-107° || 1.336503028869E-002 7 1.475700922115E-004 | 1.177203692602E-005
5-1075 || 9.537935256958E-003 5 1.296742127975E-004 | 6.155711830622E-006
7-107° || 9.530067443847E-003 5 1.210168405531E-004 | 5.278757929596E-006
9-107° || 2.660298347473E-002 | 14 | 1.114873040307E-004 | 5.676295535439E-006
1-1075 || 0.100439071655E-000 | 53 | 1.165247077840E-004 | 4.420551398658E-006
3.107° diverges NA NA NA

TABLE 4.1. Implementation results in a serial code with different
a’s for h=1/4and § = o =105

a time (second) Iter. lu" — Ullo,0 o term
9-1077 || 0.155728101730E-000 | 13 | 1.997123469270E-004 | 6.873901052020E-005
1-107° || 0.144021034240E-000 | 12 | 1.969762156995E-004 | 6.514123245076E-005
3-107° || 8.402109146118E-002 | 7 | 1.475029653610E-004 | 1.147974522672E-005
5-107° || 5.961108207702E-002 | 5 | 1.295854457792E-004 | 5.780054152812E-006
7-107° || 6.064605712890E-002 | 5 | 1.209086213115E-004 | 4.886699478088E-006
9-107° || 0.166739940643E-000 | 14 | 1.112109560517E-004 | 5.170742061253E-006
1-1075 || 0.634408950805E-000 | 53 | 1.157274136336E-004 | 4.293188302406E-006
3-107° diverges NA NA NA

TABLE 4.2. Implementation results in a serial code with different
a’s for h=1/8 and § = 0 = 107°
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a time (second) Iter. lu" — Ullo,0 o term
9.1077 || 8.111814022064E-000 | 13 | 1.997083970627E-004 | 6.873996279215E-005
1-107% || 7.453678846359E-000 | 12 | 1.969721354970E-004 | 6.514199781864E-005
3-107° || 4.346349954605E-000 7 1.474953627227E-004 | 1.146496919158E-005
5-107° || 3.121901035308E-000 5 1.295758087626E-004 | 5.754274120000E-006
7-107% || 3.086591958999E-000 5 1.208967704205E-004 | 4.857833634353E-006
9-1075 || 8.573842048645E-000 | 14 | 1.111709164906E-004 | 5.107731508622E-006
1-107° || 32.46032500267E-000 | 53 | 1.155629962598E-004 | 4.242764921427E-006
3-107° diverges NA NA NA

TABLE 4.3. Implementation results in a serial code with different
a’s for h=1/16 and 6 = o = 1075

a time (second) Iter. lu® — Ullo,0 o term
9-1077 || 616.8868517875E-000 | 13 | 1.997079825138E-004 | 6.874012942710E-005
1-107° || 570.0024251937E-000 | 12 | 1.969717083257E-004 | 6.514215634468E-005
3-1075 || 332.0776438713E-000 7 1.474946319267E-004 | 1.146490442299E-005
5-107° || 237.3855371475E-000 5 1.295749074365E-004 | 5.753232889565E-006
7-107% || 237.6106598377E-000 5 1.208956524997E-004 | 4.856562041823E-006
9-107° || 665.3056440353E-000 | 14 | 1.111669543600E-004 | 5.103249238829E-006
1-1075 || 3108.938740015E-000 | 53 | 1.155446509444E-004 | 4.235361636009E-006
3.107° diverges NA NA NA

TABLE 4.4. Implementation results in a serial code with different
a’s for h=1/32 and § =0 = 107°

a time (second) Tter. lu" — U o term
71072 || 2.467918395996E-002 | 13 | 4.283766643331E-005 | 8.765582549459E-005
9-1072 || 2.279996871948E-002 | 12 | 2.340487392811E-005 | 7.279437100208E-005
1-1071 || 2.093696594238E-002 | 11 | 2.159322893891E-005 | 7.269508001866E-005
3-107" || 1.143503189086E-002 6 2.693443356321E-005 | 8.619221783624E-005
5-107" || 2.280807495117E-002 | 12 | 4.551292995465E-005 | 1.265001510155E-004
71071 || 2.472615242004E-002 13 | 5.456908051142E-005 | 1.475156284943E-004
9107 || 0.214687108993E-000 | 113 | 7.874654504747E-005 | 2.077719440108E-004

1 diverges NA NA NA

TABLE 4.5. Implementation results in a serial code with different
a’s for h=1/4, § = 107", and o = 200001
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a time (second) Iter. lu" — Ullo,0 o term
7-1072 || 0.155239105224E-000 | 13 | 4.279631393326E-005 | 8.761766246796E-005
9-1072 || 0.143465995788E-000 | 12 | 2.333948142878E-005 | 7.262218012300E-005
9-1072 || 0.132026910781E-000 | 11 | 2.152352850818E-005 | 7.255782254128E-005
1-107" || 7.171988487243E-002 | 6 | 2.690300713257E-005 | 8.621443899831E-005
3-107" || 0.143271207809E-000 | 12 | 4.549396319482E-005 | 1.265517100226E-004
51071 || 0.155797004699E-000 | 13 | 5.454707929014E-005 | 1.475832128376E-004
7-1071 || 1.332403898239E-000 | 112 | 8.658460891622E-005 | 1.990408592694E-004

1 diverges NA NA NA

TABLE 4.6. Implementation results in a serial code with different
a’s for h=1/8, 6 = 107°, and o = 200001

a time (second) Iter. lu" — Ullo,0 o term
7-1072 || 8.079663991928E-000 | 13 | 4.279336352971E-005 | 8.761188238319E-005
9-1072 || 7.491341114044E-000 | 12 | 2.333486130043E-005 | 7.259820684824E-005
1-107" || 6.872836112976E-000 | 11 | 2.151860644615E-005 | 7.253871250498E-005
31071 || 3.702414989471E-000 | 6 | 2.690085175715E-005 | 8.621562436734E-005
51071 || 7.402709960937E-000 | 12 | 4.549278661156E-005 | 1.265551911652E-004
7-107" || 8.076992034912E-000 | 13 | 5.454569025552E-005 | 1.475878239405E-004
9-107" || 68.33642888069E-000 | 112 | 8.658059650897E-005 | 1.990429763932E-004

1 diverges NA NA NA

TABLE 4.7. Implementation results in a serial code with different
a’s for h=1/16, § = 1075, and o = 200001

a time (second) Iter. lu" — Ullo,0 o term
7-1072 || 618.3429238796E-000 | 13 | 4.279316795496E-005 | 8.761122623580E-005
9-1072 || 569.8975131511E-000 | 12 | 2.333455691543E-005 | 7.259566184451E-005
1-107" || 522.8556110858E-000 | 11 | 2.151828231612E-005 | 7.253667650150E-005
3-107" || 288.0468401908E-000 | 6 | 2.690071225905E-005 | 8.621567463279E-005
51071 || 576.2458240985E-000 | 12 | 4.549271468689E-005 | 1.265554146979E-004
7-107" || 616.5302550792E-000 | 13 | 5.454560472599E-005 | 1.475881208438E-004
9-107" || 6558.536365032E-000 | 112 | 8.658033906986E-005 | 1.990436566988E-004

1 diverges NA NA NA

TABLE 4.8. Implementation results in a serial code with different
a’s for h=1/32, § = 1075, and o = 200001
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4.2. Numerical results in a parallel code. The tables in this section show the
results in a MPI parallel code. In this experiment, we partition the whole domain
into two subdomains as we did theoretically; i.e., we use only two processors in
computation. We calculate u; and &; using one processor and us and &; using the
other processor at each iteration step in a MPI program. That is, we solve the first
subdomain problem in one processor and the second in the other processor. We
here may expect that if it could take 2 hours for solving our optimization problem
by using our serial code, then it would take ideally only one hour for solving the
same problem in our MPI program. In fact, we obtain almost ideal times on the
MPI program as you see in the tables in this section. In the MPI program, to
measure the time elapsed, we use MPI-BARRIER and MPI-WTIME and for the
communication, we use MPI-SEND and MPI-RECV; see [12].

« time (second) Tter. lu" — Ullo.o o term
9-1077 || 1.272201538085E-002 | 13 | 1.997418312946E-004 | 6.873888100872E-005
1-107° || 1.174283027648E-002 | 12 | 1.970068380445E-004 | 6.514413959851E-005
3-107° || 6.839036941528E-003 7 1.475700922115E-004 | 1.177203692602E-005
5-107° || 4.961967468261E-003 5 1.296742127975E-004 | 6.155711830622E-006
7-107% || 4.964113235473E-003 5 1.210168405531E-004 | 5.278757929596 E-006
9-107° || 1.365613937377E-002 | 14 | 1.114873040307E-004 | 5.676295535439E-006
1-107° || 5.149793624877E-002 | 53 | 1.165247077840E-004 | 4.420551398658E-006
3-107° diverges NA NA NA

TABLE 4.9. Implementation results in a parallel code with differ-
ent a’s for h=1/4 and § =0 = 107°

a time (second) Iter. lu" — Ullo,0 o term
9-1077 || 7.812285423278E-002 | 13 | 1.997123469270E-004 | 6.873901052020E-005
1-1079 || 7.233309745788E-002 | 12 | 1.969762156995E-004 | 6.514123245076E-005
3-107° || 4.236793518066E-002 7 1.475029653610E-004 | 1.147974522672E-005
5-107° || 3.028607368469E-002 5 1.295854457792E-004 | 5.780054152812E-006
7-107° || 3.030300140380E-002 5 1.209086213115E-004 | 4.886699478088E-006
9-107° || 8.396100997924E-002 | 14 | 1.112109560517E-004 | 5.170742061253E-006
1-107° || 0.318790912628E-000 | 53 | 1.157274136336E-004 | 4.293188302406E-006
3-107° diverges NA NA NA

TABLE 4.10. Implementation results in a parallel code with dif-
ferent o’s for h=1/8 and § = 0 = 107°
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a time (second) Iter. lu" — Ullo,0 o term
9-1077 || 4.075603008270E-000 | 13 | 1.997083970627E-004 | 6.873996279215E-005
1-107% || 3.746003866195E-000 | 12 | 1.969721354970E-004 | 6.514199781864E-005
3-107° || 2.184069156646E-000 7 1.474953627227E-004 | 1.146496919158E-005
5-107° || 1.563800096511E-000 5 1.295758087626E-004 | 5.754274120000E-006
7-107% || 1.552680015563E-000 5 1.208967704205E-004 | 4.857833634353E-006
9-1075 || 4.397615194320E-000 | 14 | 1.111709164906E-004 | 5.107731508622E-006
1-107° || 16.46376609802E-000 | 53 | 1.155629962598E-004 | 4.242764921427E-006
3-107° diverges NA NA NA

TABLE 4.11. Implementation results in a parallel code with dif-
ferent a’s for h=1/16 and § = o = 1075

a time (second) Iter. lu® — Ullo,0 o term
9-1077 || 308.8284487724E-000 | 13 | 1.997079825138E-004 | 6.874012942710E-005
1-107° || 285.1444430351E-000 | 12 | 1.969717083257E-004 | 6.514215634468E-005
3-1075 || 166.3281209468E-000 7 1.474946319267E-004 | 1.146490442299E-005
5-107° || 118.9667358398E-000 5 1.295749074365E-004 | 5.753232889565E-006
7-107% || 118.7424390316E-000 5 1.208956524997E-004 | 4.856562041823E-006
9-107° || 332.2033951282E-000 | 14 | 1.111669543600E-004 | 5.103249238829E-006
1-1075 || 1553.100791931E-000 | 53 | 1.155446509444E-004 | 4.235361636009E-006
3.107° diverges NA NA NA

TABLE 4.12. Implementation results in a parallel code with dif-
ferent o’s for h=1/32 and § = 0 = 1075

a time (second) Tter. lu® = Ullo.0 o term
71072 || 1.269698143005E-002 | 13 | 4.283766643331E-005 | 8.765582549459E-005
91072 || 1.172995567321E-002 | 12 | 2.340487392811E-005 | 7.279437100208E-005
1-1071 || 1.075410842895E-002 | 11 | 2.159322893891E-005 | 7.269508001866E-005
3-107" || 5.949974060058E-003 6 2.693443356321E-005 | 8.619221783624E-005
5-107" || 1.172280311584E-002 | 12 | 4.551292995465E-005 | 1.265001510155E-004
7-1071 || 1.269412040710E-002 | 13 | 5.456908051142E-005 | 1.475156284943E-004
9107 || 0.109573125839E-000 | 113 | 7.874654504747E-005 | 2.077719440108E-004

1 diverges NA NA NA

TABLE 4.13. Implementation results in a parallel code with dif-
ferent o’s for h=1/4, § = 107°, and o = 200001
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a time (second) Iter. lu" — Ullo,0 o term

21072 || 7.789492607116E-002 | 13 | 4.279631393326E-005 | 8.761766246796E-005

21072 || 7.297086715698E-002 | 12 | 2.333948142878E-005 | 7.262218012300E-005

21072 || 6.613898277282E-002 | 11 | 2.152352850818E-005 | 7.255782254128E-005

-1071 || 3.648304939270E-002 6 2.690300713257E-005 | 8.621443899831E-005

-1071 || 7.209014892578E-002 | 12 | 4.549396319482E-005 | 1.265517100226E-004

-1071 || 7.831001281738E-002 | 13 | 5.454707929014E-005 | 1.475832128376E-004

N || w | =l |o |3

-107! || 0.673575878143E-000 | 112 | 8.658460891622E-005 | 1.990408592694E-004

1 diverges NA NA NA

TABLE 4.14. Implementation results in a parallel code with dif-
ferent a’s for h=1/8, § = 107>, and o = 200001

a time (second) Iter. lu" — Ullo,0 o term

-1072 || 4.067804098129E-000 | 13 | 4.279336352971E-005 | 8.761188238319E-005

1072 || 3.742178201675E-000 | 12 | 2.333486130043E-005 | 7.259820684824E-005

<1071 || 3.435353994369E-000 | 11 | 2.151860644615E-005 | 7.253871250498E-005

<1071 || 1.877459049224E-000 6 2.690085175715E-005 | 8.621562436734E-005

-1071 || 3.749070167541E-000 | 12 | 4.549278661156E-005 | 1.265551911652E-004

-1071 || 4.042662143707E-000 | 13 | 5.454569025552E-005 | 1.475878239405E-004

O [N || W |~ ||

-1071 || 35.26904892921E-000 | 112 | 8.658059650897E-005 | 1.990429763932E-004

1 diverges NA NA NA

TABLE 4.15. Implementation results in a parallel code with dif-
ferent a’s for h=1/16, § = 1075, and ¢ = 200001

a time (second) Iter. lu" — Ullo,0 o term

-1072 || 308.4915351867E-000 | 13 | 4.279316795496E-005 | 8.761122623580E-005

-1072 || 285.0998339653E-000 | 12 | 2.333455691543E-005 | 7.259566184451E-005

-1071 || 260.8818871974E-000 | 11 | 2.151828231612E-005 | 7.253667650150E-005

-1071 || 142.6557381153E-000 6 2.690071225905E-005 | 8.621567463279E-005

-1071 || 285.0065190792E-000 | 12 | 4.549271468689E-005 | 1.265554146979E-004

-1071 || 308.5888981819E-000 | 13 | 5.454560472599E-005 | 1.475881208438E-004

© (N | |WwW |~ ]| |3

-1071 || 3292.318363904E-000 | 112 | 8.658033906986E-005 | 1.990436566988E-004

1 diverges NA NA NA

TABLE 4.16. Implementation results in a parallel code with dif-
ferent a’s for h=1/32, § = 107>, and ¢ = 200001
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4.3. A comparison of the serial and parallel codes. In general, when we talk
about a serial code and a parallel code, it it natural to consider speedup which is
the ratio of runtime of a serial code and the runtime of a parallel code. We put the
results about speedup in the following tables. In our cases, speedup is denoted by

runtime using one processor

Speedup = - - .
runtime using two processors

We, from tables in this section, see that we have ideal times using parallel com-
puters to solve the boundary control problem by the Robin type DDM.

«@ speedup «@ speedup

9-1077 | 1.93907421289355 || 1-107° | 1.93929303798753

3-107° | 1.95422694788217 || 5-107° | 1.92220834134153

7-1075 | 1.91979251717016 || 9-107° | 1.94806033730228

1-107° | 1.95035139214251 || 3-107° NA

TABLE 4.17. Speedup with different o’s for h=1/4 and § = 0 = 1075

«@ speedup «@ speedup

9-1077 | 1.99337445181295 || 1-107° | 1.99108069890932

3-107° | 1.98312924863818 || 5-107° | 1.96826708861756

7-107% | 2.00132179386310 || 9-107° | 1.98592109223701

1-107° | 1.99004716155637 || 3-107° NA

TABLE 4.18. Speedup with different o’s for h=1/8 and § = 0 = 1077

« speedup «@ speedup

9-1077 | 1.99033468313857 || 1-107° | 1.98976806020464

3-107°% | 1.99002396118179 || 5-107° | 1.99635557145216

7-107° | 1.98791246622603 || 9-107° | 1.94965718231048

1-107° | 1.97162209481154 || 3-107° NA

TABLE 4.19. Speedup with different a’s for h=1/16 and § = o = 107°
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«@ speedup «@ speedup

9-1077 | 1.99750655821912 || 1-107° | 1.99899538327517

3-1075 | 1.99652134576422 || 5-107° | 1.99539422067607

7-107° | 2.00105928238924 || 9-107° | 2.00270573327070

1-107% | 2.00176238153180 || 3-107° NA

TABLE 4.20. Speedup with different o’s for h=1/32 and § = o = 1075

«@ speedup «@ speedup

7-1072 | 1.94370481644916 || 9-1072 | 1.94373869387589

1-107" | 1.94688068106239 || 3-107" | 1.92186247796121

5-107" | 1.94561614025097 || 7-10~" | 1.94784290892700

9-107% | 1.95930441291345 1 NA

TABLE 4.21. Speedup with different o’s for h=1/4, § = 107°, and
o = 200001

«@ speedup «@ speedup

7-1072 | 1.99292961755658 || 9-1072 | 1.96607223373042

1-107" | 1.99620413327709 || 3-107" | 1.96584128975761

5-107" | 1.98738953857551 || 7-107" | 1.98949022091239

9-107" | 1.97810512738649 1 NA

TABLE 4.22. Speedup with different o’s for h=1/8, § = 107°, and
o = 200001

« speedup «@ speedup

7-1072 | 1.98624707508502 || 91072 | 2.00186648265179

1-107" | 2.00061947742228 || 3-107" | 1.97203501775448

5-1071 | 1.97454558867110 || 7-107" | 1.99793891940354
9-107" | 1.93757503974218 1 NA

TABLE 4.23. Speedup with different a’s for h=1/16, § = 107>,
and o = 200001
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