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STABILITY OF TWO TIME-INTEGRATORS FOR THE

ALIEV-PANFILOV SYSTEM

MONICA HANSLIEN, ROBERT ARTEBRANT, ASLAK TVEITO, GLENN TERJE LINES,
AND XING CAI

Abstract. We propose a second-order accurate method for computing the

solutions to the Aliev-Panfilov model of cardiac excitation. This two-variable

reaction-diffusion system is due to its simplicity a popular choice for model-

ing important problems in electrocardiology; e.g. cardiac arrhythmias. The

solutions might be very complicated in structure, and hence highly resolved

numerical simulations are called for to capture the fine details. Usually the for-

ward Euler time-integrator is applied in these computations; it is very simple

to implement and can be effective for coarse grids. For fine-scale simulations,

however, the forward Euler method suffers from a severe time-step restriction,

rendering it less efficient for simulations where high resolution and accuracy

are important.

We analyze the stability of the proposed second-order method and the forward

Euler scheme when applied to the Aliev-Panfilov model. Compared to the Eu-

ler method the suggested scheme has a much weaker time-step restriction, and

promises to be more efficient for computations on finer meshes.

Key Words. reaction-diffusion system, implict Runge-Kutta, electrocardiol-

ogy

1. Introduction

Pulse propagation in cardiac tissue can adequately be simulated by the use of
modern ionic models with diffusive coupling between myocytes. Today’s detailed
ionic models, however, consist of dozens of ODEs that represent a great numerical
challenge to solve at every mesh point for large spatial domains. Such large spatial
regions are relevant for the study of for example re-entrant cardiac arrhythmias. If
in addition a high spatial resolution is required, it may not be feasible to solve these
models on present day computers. The Aliev-Panfilov model [1] was constructed
to ameliorate this problem and capture the qualitative behavior of the cardiac
tissue in a mathematically and computationally tractable model. It builds upon
the FitzHugh-Nagumo model [8, 15] and retains its simplicity while more accurately
describing the pulse propagation in collections of heart cells. The Aliev-Panfilov
model has been applied in many computationally demanding problems; e.g. spiral
wave breakup in coupled cells [17, 23], scroll waves in excitable medium [20].

The bidomain and monodomain models [10, 11, 22] are commonly used to de-
scribe the electrical activity in the heart at tissue level. Mathematically, these
models are partial differential equations of reaction-diffusion type. Two electri-
cal potentials, the transmembrane and the extracellular, are accounted for in the
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bidomain model. A simplifying assumption reduces the bidomain description to
the monodomain model, which only models the transmembrane potential. We will
consider the monodomain model description of cardiac tissue with Aliev-Panfilov
cell dynamics: On the space-time domain ΩT := Ω×(0, T ] the Aliev-Panfilov model
reads

∂e

∂t
= δ∇2e− ke(e− a)(e − 1)− er, on ΩT ,(1)

∂r

∂t
= −

[

ε+
µ1r

µ2 + e

]

[r + ke(e− b− 1)], on ΩT ,(2)

and

~n · δ∇e = 0 on ∂Ω, and (e, r)t=0 = (e(0, ·), r(0, ·)),(3)

where ~n is the outer normal vector of the boundary ∂Ω. Here e represents the scaled
transmembrane potential, r is the variable responsible for recovery of the tissue and
Ω is a two-dimensional domain in the present paper. For the stability analysis of the
time-integrators in this paper we will assume that the Aliev-Panfilov parameters
µ1, µ2, k, ε, b, a and δ are positive. Numerical experiments will be performed in
order to investigate the sharpness of the obtained time step restrictions. For these
computations we will fix the parameters to the physiological values µ1 = 0.07,
µ2 = 0.3, k = 8, ε = 0.01, b = 0.1, a = 0.1 and δ = 5× 10−5.

A variety of schemes has been applied in numerical electrophysiology. In [4] a
finite volume scheme, with explicit Euler time-stepping, for the monodomain model
in connection with Aliev-Panfilov or FitzHugh-Nagumo cell kinetics was proven to
be first order convergent. Stability properties of several first and second order
accurate time-integrators, and even a third order scheme, for the bidomain model
with FitzHugh-Nagumo dynamics were studied in [7]. Implicit Euler was used in
e.g. [9], where finite element discretization was employed in space. An adaptive
method for the Aliev-Panfilov model was recently presented in [2].

The forward Euler method has, however, emerged as the standard approach to
solve the Aliev-Panfilov system in time; see e.g [23, 19, 14, 13, 20]. Without doubt
this is due to its big advantage of simplicity. Unfortunately, the method becomes
less efficient as the spatial resolution is increased because of its very severe time
step restriction. Numerical computations on highly resolved meshes are relevant
in many important applications; e.g. in fibrillation where a spiral wave pattern
needs to be resolved and we want to capture the fine details. These considerations
motivate us to consider an alternative scheme for fine-scale computations.

We will present a second-order method for the system (1)-(3) and compare it
to the standard forward Euler scheme in terms of stability. The second-order ac-
curate time integration we consider is the Singly Diagonally Implicit Runge-Kutta
(SDIRK) method in [3]. To our knowledge the stability of this method when ap-
plied to the Aliev-Panfilov system has not been analyzed previously and no time
step restriction has been given. We analyze both the forward Euler scheme and
the second-order scheme by giving a maximum principle revealing the time step
condition needed to keep the solution within the physiologically relevant bounds.
The second-order method hinges on a decomposition of the Aliev-Panfilov model
into a PDE and two coupled ODEs by an operator-splitting technique in time. The
second-order accurate SDIRK method is applied to integrate the ODE system in
time. Compared to the forward Euler scheme, we will show that the second-order
method has considerably improved stability properties. Although the proposed
scheme is more computationally costly than the forward Euler method for coarse
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grids, the weaker time step restriction makes it competitive for fine-scale compu-
tations. The actual break-even point in terms of computational cost and accuracy
is problem dependent and might be determined by numerical experiments for the
given application.

2. Numerical methods

The system defined by (1)-(3) only involves two variables, and yet it is quite
complicated to treat as a coupled system. A widely used way to handle problems
of this type is therefore to split the equations into a PDE and a set of two ODEs,
to be solved alternately. It is possible to choose an operator splitting technique
which gives second-order accuracy in time, namely the Strang splitting, thoroughly
described in [21, 18]. We shall use this splitting approach together with a Crank-
Nicolson method for the PDE. Moreover we use the two-stage SDIRK method
from [3], resulting in an overall second-order accurate solver in both time and
space. In addition, we shall approximate the equations under consideration by a
standard forward Euler scheme, which admits first-order accuracy in time. Both
these methods will be discussed regarding stability and efficiency. We introduce a
uniform mesh (xi, yj) = (i∆x, j∆y) ∈ Ω at all times tn = n∆t, n = 1, . . . ,M .

The overall second-order numerical scheme is summarized in the following three-
step procedure, where in each step a second-order accurate algorithm should be
used.

Procedure 2.1. (Strang splitting)

Step 1. With en, rn as initial conditions, solve

∂e

∂t
= −ke(e− a)(e − 1)− er,(4)

∂r

∂t
= −

[

ε+
µ1r

µ2 + e

]

[r + ke(e− b− 1)],(5)

from time tn to tn+ 1

2

, to obtain en+1/2 and rn+1/2.

Step 2. Solve the PDE

(6)
∂e∗
∂t

= δ∇2e∗ ,

from tn to tn+1, using e
n+1/2 as initial condition and the no-flow boundary

condition ~n · δ∇e∗ = 0. Here a Crank-Nicolson method is used to obtain
the intermediate solution en+1

∗ . The semi-discrete scheme writes

(7)
en+1
∗ − en∗

∆t
=

1

2
δ∇2(en+1

∗ + en∗ ) ,

with en∗ = en+1/2.
Step 3. Solve the ODE system (4)-(5) from tn+1/2 to tn+1 with en+1

∗ and rn+1/2 as

initial conditions, to get en+1 and rn+1.

In Step 2 above, we use a Crank-Nicolson method to obtain second-order ac-
curacy in time; the spatial discretization of the Laplacian operator ∇2 is typically
done using finite differences or finite elements. For efficiency an order optimal linear
system solver [12] should be applied in this step.

In Step 1 and Step 3 we need to apply an ODE solver which preserves the
second-order of accuracy achievable by the Strang splitting. There are several
choices available, but one option that admits particularly good stability properties
is the second-order SDIRK method. Note that the SDIRK method for the ODEs
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in Procedure 2.1 is applied in half steps, ∆t/2. For convenience we therefore define
∆t = ∆t/2. In what follows we will describe the application of the SDIRK method
on the Aliev-Panfilov system in Step 1 above, that is the step tn → tn+1/2.

Denote by F and G the right hand sides of (4) and (5) respectively,

F (e, r) = −ke(e− a)(e− 1)− er,(8)

G(e, r) = −
[

ε+
µ1r

µ2 + e

]

[r + ke(e− b− 1)].(9)

First we take half a step to calculate

en+1/4 = en +
∆t

2
F (en+1/4, rn),(10)

rn+1/4 = rn +
∆t

2
G(en, rn+1/4).(11)

Next en+1/4 is used to find rn+1/2

r1 =rn + γ∆tG(en+1/4, r1),(12)

rn+1/2 =rn + (1− γ)∆tG(en+1/4, r1) + γ∆tG(en+1/4, rn+1/2),(13)

and finally we obtain en+1/2 by

e1 =en + γ∆tF (e1, r
n+1/4),(14)

en+1/2 =en + (1− γ)∆tF (e1, r
n+1/4) + γ∆tF (en+1/2, rn+1/4).(15)

Here γ = 2−
√
2

2 gives a second-order accurate scheme. Note that we need to employ
a non-linear solver, e.g. Newton’s method, to solve these equations.

The forward Euler method, approximating (1)-(2) can be written as

en+1
i,j − eni,j

∆t
= δ

eni+1,j − 2eni,j + eni−1,j

∆x2
+ δ

eni,j+1 − 2eni,j + eni,j−1

∆y2
(16)

− keni,j(e
n
i,j − a)(eni,j − 1)− eni,jr

n
i,j ,

rn+1
i,j − rni,j

∆t
= −

[

ε+
µ1r

n
i,j

µ2 + eni,j

]

[

rni,j + keni,j(e
n
i,j − b − 1)

]

,(17)

and similarly for the boundary nodes.
In [4] the existence of an invariant region for the Aliev-Panfilov model (1)-

(3) is established. Such an invariant region is a closed subset Σ ⊂ R
2. Now,

if the initial data (e, r)t=0 are inside Σ, then the solution (e, r) will remain in
Σ. Therefore, it is reasonable to attempt to bound the numerical solution in an
adequate state space. The discretization parameters will be chosen such that both
methods under consideration produce numerical solutions in the physiologic state
space (eni,j , r

n
i,j) ∈ (0, 1)× (0, r+), where r+ is the upper bound of r given below.

3. Stability analysis

In this section we will prove that, with suitable choices of discretization param-
eters, the numerical solutions computed by the two schemes under consideration
stay within the desired state space throughout the computational domain. The
model parameters are as specified in Section 1. We want

0 ≤ eni,j ≤ 1,(18)

0 ≤ rni,j ≤ r+,(19)
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for all relevant i, j and n, where the upper bound of r is defined by

r+ = k

(

b+ 1

2

)2

, k > 0, b > 0.(20)

For convenience we define a function q,

q(e) = e(e − b− 1),(21)

which has the properties

−r+
k

= −
(

b+ 1

2

)2

≤ q(e) ≤ 0, for e ∈ [0, 1], b > 0.(22)

Our aim is to derive proper conditions on the mesh parameters in order to guarantee
that the numerical solution remains in a fixed physiologically relevant range; i.e.,
satisfying (18)-(19).

3.1. Time step restriction for forward Euler. We will investigate the forward
Euler scheme in terms of numerical stability. Introduce variables eW , eN , eE , eS, e, r
to represent respectively the numerical solution at points (i − 1, j), (i, j + 1), (i +
1, j), (i, j − 1),(i, j) and (i, j) at time step n. Moreover set

λ =
δ∆t

∆x2
,(23)

where a uniform mesh ∆x = ∆y is assumed, and define the functions

E(eW , eN , eE, eS , e, r) = λ(eW + eN + eE + eS) + (1 − 4λ)e−∆tke(e− a)(e − 1)−∆ter,

R(e, r) = r −∆t

[

ε+
µ1r

µ2 + e

]

[r + ke(e− b− 1)] ,

such that the explicit scheme can be written as

en+1
i,j = E(eW , eN , eE , eS, e, r),(24)

rn+1
i,j = R(e, r).(25)

Assume in the following that eW , eN , eE, eS , e, r are within the bounds defined by
(18)-(19).

Bounds on en+1
i,j .

First observe that

(26)
∂E

∂ex
= λ > 0

for x =W,N,E, S. Consequently,

en+1
i,j = E(eW , eN , eE, eS , e, r) ≤ E(1, 1, 1, 1, e, r) ≡ H(e, r)

where we have introduced

H(e, r) = 4λ+ (1− 4λ)e −∆tke(e− a)(e− 1)−∆ter.

Differentiate H with respect to e and get

∂H

∂e
= (1 − 4λ)−∆tk [e(e− 1) + e(e− a) + (e − 1)(e− a)]−∆tr

≡ p(e, r).
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We want to find a condition on ∆t such that H is a nondecreasing function in e
which implies that p(e, r) ≥ 0. Since

∂2p

(∂e)2
= −6∆tk < 0,

the minimum of p is found at the end points. We write

p− = min(p(0, r), p(1, r)),

and calculate

p(0, r) = (1− 4λ)−∆tka−∆tr and p(1, r) = (1− 4λ)−∆tk(1− a)−∆tr.

The worst case is obtained for r+, so

p− = p(1, r+) = (1− 4λ)−∆tmax(ka, k(1− a))−∆tr+.(27)

To ensure that p− is non-negative, it must be required that

∆t ≤ 1
4δ
∆x2 +max(ka, k(1− a)) + r+

,(28)

where we have recalled that λ = δ∆t
∆x2 . Hence H is ensured to be a nondecreasing

function in e, so we deduce

en+1
i,j ≤ H(e, r) ≤ H(1, r) = 1−∆tr ≤ 1,

since r is non-negative.
Similarly, we will show that en+1

i,j ≥ 0. It follows from (26) that

en+1
i,j = E(eW , eN , eE , eS, e, r) ≥ E(0, 0, 0, 0, e, r) = J(e, r),

where we have defined

en+1
i,j = J(e, r) = (1− 4λ)e−∆tke(e− a)(e− 1)−∆ter.(29)

Since the derivative of J with respect to e is identical to that of H , so

∂J(e, r)

∂e
≥ 0,

provided that (28) holds. Therefore, from (29), we obtain

en+1
i,j ≥ J(0, r) = 0,

so the lower bound is also satisfied.

Bounds on rn+1.

First, we find that

R(e, r) ≤ r −∆t

[

ε+
µ1r

µ2 + e

]

[

r − k

(

b+ 1

2

)2
]

= r +∆t

[

ε+
µ1r

µ2 + e

]

[r+ − r] ,

where we have used the lower bound −r+/k in (22) of q(e). Now, since e ≥ 0 we
find that

R(e, r) ≤ R(0, r) = r +∆t

[

ε+
µ1

µ2
r

]

[r+ − r] ≡ ψ(r).

We want to find a condition on ∆t such that ψ is a nondecreasing function in r.
Assume that

∆t ≤ 1

ε+ µ1

µ2
r+
.(30)



STABILITY OF TIME-INTEGRATORS FOR ALIEV-PANFILOV SYSTEM 433

Then

ψ′(r) = 1 +∆t

(

µ1

µ2
(r+ − 2r)− ε

)

≥ 1−∆t

(

µ1

µ2
r+ + ε

)

≥ 0,

and consequently,
rn+1
i,j = R(e, r) ≤ ψ(r) ≤ ψ(r+) = r+.

We conclude that the upper bound is satisfied, i.e.

rn+1
i,j = R(eni,j , r

n
i,j) ≤ r+.

It remains to prove that also the lower bound of rn+1
i,j is fulfilled. Note that

rn+1
i,j = R(e, r) ≥ r −∆t

[

ε+
µ1r

µ2 + e

]

r ≥ r

(

1−∆t

[

ε+
µ1

µ2
r+

])

≥ 0,

for any ∆t that satisfies (30). Hence we have proved that the solution set at all
inner points at time tn+1 are within the desired range. Therefore, since the initial
conditions satisfy

0 ≤ e0i,j ≤ 1 and 0 ≤ r0i,j ≤ r+,

it follows by induction on n that
{

eni,j , r
n
i,j

}

stays within the desired bounds for all

relevant (i, j) and n > 0 as long as

∆t ≤ min

{

1
4δ

∆x2 +max(ka, k(1− a)) + r+
,

1

ε+ µ1

µ2
r+

}

holds.

3.2. Time step restriction for the SDIRK scheme. Our purpose is to deter-
mine the time step restriction for the SDIRK scheme applied in Step 1 and Step 3
of Procedure 2.1. These steps are identical except for the initial conditions. In Step
3 the initial condition on the transmembrane potential stems from the solution of
the heat equation (6) in the second step of the procedure. As previously mentioned
this PDE is solved by the Crank-Nicolson scheme in connection with finite differ-
ence discretization in space. For stability of the Crank-Nicolson method applied to
the heat equation see e.g. [6]; stability analysis that applies for this method is also
available in [5]. We will not theoretically consider stability of the Crank-Nicolson
method with finite difference discretization in space here, but assume that it gen-
erates data within physiological bounds when applied with time steps smaller than
required for the SDIRK method. This is verified in our numerical computations:

Step 2 of Procedure 2.1 requires solving the PDE (6) from tn to tn+1 with the
Crank-Nicolson scheme (7) for the temporal discretization. It is well known that
the Crank-Nicolson scheme gives second-order accuracy in time, but we also want
to ensure stability for reasonable sizes of the time step ∆t = tn+1 − tn. That is,
values of en+1

∗ remain inside [0, 1] if en∗ ∈ [0, 1].
To this purpose we choose the unit square as the solution domain of (6), and δ is

chosen as 5× 10−5. Standard central finite differences are used to discretize (7) in
the spatial direction. The resulting linear system is then solved by a preconditioned
conjugate gradient solver. As initial values we have used the following formula:

en∗ (xi, yj) =
1

4
(1− cos(i∆xπ)) (1− cos(j∆yπ)) ,

where ∆x = ∆y = 1
3200 . A series of increasing ∆t values has been tested, and we

have observed that values of en+1
∗ (x, y) only exceed the range of [0, 1] for ∆t > 6000

(ms). With a propagation pulse sequence (including resting state) of duration about
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one second, this means that the practical time step restriction corresponds to six
heart beats. Thus, the numerical experiments show that the Crank-Nicolson scheme
(7) gives stable solutions even for time step sizes that are much larger than relevant
for Procedure 2.1.

Under the assumption that the Crank-Nicolson method generates data within
the required bounds it is sufficient to analyze the SDIRK method (10)-(15) applied
in Step 1, to obtain results for the complete scheme.

3.2.1. Bounds on the solution. Assume that all parameters and initial con-
ditions are as for the explicit method. For convenience of notation we drop the
subscripts i and j, and keep in mind that (en, rn) live throughout Ω̄T .

For some time step number n > 0, we assume that 0 ≤ en ≤ 1 and 0 ≤ rn ≤ r+,
where r+ is defined in (20). Under these assumptions we will prove that the SDIRK
method (10)-(15) gives

0 ≤en+1/4 ≤ 1,

0 ≤rn+1/4 ≤ r+,

0 ≤r1 ≤ r+,

0 ≤rn+1/2 ≤ r+,

0 ≤e1 ≤ 1,

0 ≤en+1/2 ≤ 1,

possibly with a restriction on the time step. To this end we will define functions Aι,
ι = 1, . . . , 6 directly from (10)-(15), such that Aι(x, ·) = 0. Here, x corresponds to
the relevant argument: A1(e

n+1/4, ·) = 0, A2(r
n+1/4, ·) = 0, and so on. In order to

prove that Aι(x, ·) = 0 has a unique solution satisfying the relevant bound above,
it is sufficient to show that

i) Aι(0, ·) ≥ 0, ii) Aι(x+, ·) ≤ 0, and iii)
∂Aι(x, ·)
∂x

< 0, ι = 1, . . . , 6.

(31)

Recall in what follows the definition ∆t = ∆t/2 on half the time step.

Bounds on en+1/4.

Define a function

A1(e, e
n, rn) = −e+ en +

∆t

2
F (e, rn),

such that en+1/4 solves A1(e
n+1/4, en, rn) = 0. Property i) and ii) are satisfied

since

A1(0, e
n, rn) = en +

∆t

2
F (0, rn) = en ≥ 0

and

A1(1, e
n, rn) = −1 + en +

∆t

2
F (1, rn) = −1 + en − ∆t

2
rn ≤ 0.

The derivative of A1 with respect to e is

∂A1

∂e
= −1 +

∆t

2

∂F

∂e
,
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where F is as defined in (8). In order to find a condition on ∆t such that ∂A1

∂e is a
decreasing function, set

ζ = max
e,r

∂F

∂e
> 0.(32)

If the time step is chosen according to

∆t <
2

ζ
,(33)

then property iii) holds and there is a unique en+1/4 within the unit interval, i.e.,

0 ≤ en+1/4 ≤ 1.(34)

Bounds on rn+1/4.

As above, we define a function

A2(r, e
n, rn) = −r + rn +

∆t

2
G(en, r),(35)

where G is defined by (9), so that rn+1/4 solves the equation A2(r
n+1/4, en, rn) = 0.

We observe that properties i) and ii) hold since

A2(0, e
n, rn) = rn +

∆t

2
G(en, 0) = rn − ∆t

2
(εq(en)) ≥ 0,

and

A2(r+, e
n, rn) = −r+ + rn +

∆t

2
G(en, r+) ≤ −∆t

2

(

ε+
µ1r+
µ2 + en

)

(

r+ + kq(en)
)

≤ 0.

Moreover, we find a restriction on the time step, such that property iii) holds and
define

η = max
e,r

∂G

∂r
.(36)

Since

∂A2

∂r
= −1 +

∆t

2

∂G

∂r
≤ −1 +

∆t

2
η,

we must choose

∆t <
2

η
,(37)

such that the derivative of A2 with respect to r is negative.

Bounds on rn+1/2.

In order to prove bounds on rn+1/2, we first investigate the scheme for r1 which
reads

r1 = rn − γ∆t

(

ε+
µ1r1

µ2 + en+1/4

)

(

r1 + ken+1/4(en+1/4 − b− 1)
)

.

Define a function

A3(r, e
n+1/4, rn) = −r + rn − γ∆t

(

ε+
µ1r

µ2 + en+1/4

)

(

r + ken+1/4(en+1/4 − b− 1)
)

,
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such that r1 is the solution of A3(r1, e
n+1/4, rn) = 0. First check property i) and

calculate

A3(0, e
n+1/4, rn) = rn − γ∆tε(ken+1/4(en+1/4 − b − 1)) ≥ γ∆tε(ken+1/4(1 + b− en+1/4)) ≥ 0,

since en+1/4 is in the unit interval and b > 0. Moreover,

A3(r+, e
n+1/4, rn) ≤ −γ∆t

(

qε+
µ1r+

µ2 + en+1/4

)

(

r+ + kq(en+1/4)
)

,

where we have used q in (21) and replaced rn by its upper bound. Now due to (22),
r+ + q(en+1/4) ≥ 0 so A3(r+, e

n+1/4, rn) ≤ 0 and hence property ii) holds. The
derivative of A3 with respect to r is given by

∂A3

∂r
= −1 + γ∆t

∂G

∂r
,

where G is as defined in (9). In order to find a condition on ∆t such that property
iii) holds, calculate

∂A3

∂r
≤ −1 + γ∆tη.

Here we must choose

∆t <
1

γη
,(38)

such that the derivative of A3 with respect to r is negative. Hence there is a unique
r1 ∈ [0, r+] for any e

n+1/4, rn within the desired interval.
Now, examine the update scheme for rn+1/2 and define a function A4 from (13)

by placing all terms on one hand side and use (12) to eliminate rn, i.e.

A4(r, r1, e
n+1/4) = −r + r1 + (1 − 2γ)∆tG(en+1/4, r1) + γ∆tG(en+1/4, r)(39)

so that rn+1/2 solves A4(r
n+1/2, r1, e

n+1/4) = 0. First, note that ∂A4

∂r is identical to
∂A3

∂r , and hence property iii) holds as long as (38) is satisfied. We turn to property
i); compute

A4(0, r1, e
n+1/4) = r1 + (1 − 2γ)∆tG(en+1/4, r1) + γ∆tG(en+1/4, 0).(40)

For convenience we design a function

Φ(e, r) = r + (1− 2γ)∆tG(e, r),(41)

so that

A4(r, r1, e
n+1/4) = −r +Φ(en+1/4, r1) + γ∆tG(en+1/4, r).

We want Φ(e, r) to be a nondecreasing function in r for all values of e ∈ [0, 1]. So,
differentiate with respect to r and obtain

∂Φ

∂r
= 1 + (1 − 2γ)∆t

∂G

∂r
≥ 1− (1− 2γ)∆tϑ.

where we have set

ϑ = −min
e,r

∂G

∂r
,

such that ϑ is a positive number. If we require

∆t ≤ 1

(1− 2γ)ϑ
,(42)
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we are guaranteed that the derivative of Φ with respect to r is always non-negative.
Now, inserting for the lower bound of Φ gives

A4(0, 0, e
n+1/4) ≥ (1 − 2γ)∆tG(en+1/4, 0) + γ∆tG(en+1/4, 0) ≥ 0,

which is always greater or equal to zero since

G(en+1/4, 0) = −εkq(en+1/4) ≥ 0, for all en+1/4 ∈ [0, 1].

Then property i) holds. It remains to check property ii). Calculate

A4(r+, r1, e
n+1/4) = −r+ + r1 + (1− 2γ)∆tG(en+1/4, r1) + γ∆tG(en+1/4, r+).

(43)

We recognize the two mid terms as Φ(en+1/4, r1), so insert for the upper bound of
this function to obtain

A4(r+, r1, e
n+1/4) ≤ A4(r+, r+, e

n+1/4) = (1− 2γ)∆tG(en+1/4, r+) + γ∆tG(en+1/4, r+) ≤ 0,

which is always non-positive for γ = (2 −
√
2)/2 and any en+1/4 within the unit

interval. Thus all the properties in (31) are fulfilled and we conclude that there is
a unique rn+1/2 within the desired interval, i.e.

0 ≤ rn+1/2 ≤ r+.(44)

Bounds on en+1/2.

Consider first the update scheme for e1 and define a function

A5(e, e
n, rn+1/4) = −e+ en + γ∆tF (e, rn+1/4),

so that A5(e1, e
n, rn+1/4) = 0 solves the scheme

e1 = en + γ∆t
(

− ke1(e1 − a)(e1 − 1)− e1r
n+1/4

)

,

obtained from (14). Properties i) and ii) hold since

A5(0, e
n, rn+1/4) = −0 + en + γ∆tF (0, rn+1/4) = en ≥ 0,

and

A5(1, e
n, rn+1/4) = −1 + en + γ∆tF (1, rn+1/4) = −1 + en − γ∆trn+1/4 ≤ 0.

As for property iii) we need

∂A5

∂e
= −1 + γ∆t

∂F

∂e
(e, rn+1/4) < 0.(45)

Suppose that ∆t is chosen according to

∆t <
1

γζ
,(46)

where ζ is as defined in (32). Then (45) is satisfied for any rn+1/4 within the desired
bounds, and there is hence a unique root e1 ∈ [0, 1]. This time step restriction is

fulfilled for γ = (2 −
√
2)/2, if condition (33) holds.

Finally, we investigate the update scheme for en+1/2 in the same manner. Use
(14) to eliminate en from (15) and define a function A6 by

A6(e, e1, r
n+1/4) = −e+ e1 + (1 − 2γ)∆tF (e1, r

n+1/4) + γ∆tF (e, rn+1/4),
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such that en+1/2 is the solution of A6(e
n+1/2, e1, r

n+1/4) = 0. Note that

∂A6

∂e
= −1 + γ∆t

∂F (e, rn+1/4)

∂e

which is the exact same expression as that for ∂A5

∂e . Thus, ∂A6

∂e is negative as long as
(46) is satisfied, and then property iii) holds. Next, check property i) and calculate

A6(0, e1, r
n+1/4) = 0 + e1 + (1− 2γ)F (e1, r

n+1/4) + γ∆tF (0, rn+1/4)

= e1 + (1− 2γ)∆tF (e1, r
n+1/4).

In order for this to be a non-negative number for any relevant e1, r
n+1/4, we must

have

e1 + (1− 2γ)∆tF (e1, r
n+1/4) ≥ 0.

Since F takes on both positive and negative numbers, we need to ensure that the
inequality is satisfied for the worst case, i.e. when F reaches minimum. Define
minF (e1, r

n+1/4) = −κ, where κ is a positive number. Then

(1− 2γ)∆tκ ≤ e1 ≤ 1,

so the time step is restricted to

∆t ≤ 1

(1− 2γ)κ
,(47)

in order to guarantee that property i) is satisfied. It remains to check property ii).
Calculate

A6(1, e1, r
n+1/4) = −1 + e1 + (1− 2γ)∆tF (e1, r

n+1/4)− γ∆trn+1/4.

First, note that

∂A6(1, e1, r
n+1/4)

∂rn+1/4
= −γ∆t− (1 − 2γ)∆te1 < 0 ,

so the maximum is attained at rn+1/4 = 0 for some e1. Now, observe that
A6(1, 0, 0) = −1, and A6(1, 1, 0) = 0. This means that if we can enforce A6(1, e1, 0)
to be a nondecreasing function in e1, we have assured that A6(1, e1, r) ≤ A6(1, e1, 0) ≤
0 and thus property ii) will be fulfilled. We therefore want to find a condition on
∆t such that this is the case. Note that

∂A6(1, e1, 0)

∂e1
= 1 + (1− 2γ)∆t

∂F (e1, 0)

∂e1
≥ 1 + (1− 2γ)∆tmin

e1

∂F (e1, 0)

∂e1
.(48)

Define s(e1) = ∂F (e1,0)
∂e1

and find ∂2s(e1)
∂e2

1

= −6k < 0. Thus, the minimum of s

is attained at the end points e1 = 0 or e1 = 1, where we have s(0) = −ka and
s(1) = −k(1− a). Therefore, with

ν = −min
e1

∂F

∂e1
= max(ka, k(1− a)),(49)

we may choose

∆t ≤ 1

(1− 2γ)ν
,(50)

so that (48) is always non-negative, and property ii) holds.
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In summary, if (18)-(19) hold, then

0 ≤ en+1/4 ≤ 1,

0 ≤ en+1/2 ≤ 1,

0 ≤ rn+1/4 ≤ r+,

0 ≤ rn+1/2 ≤ r+,

under the time step restriction found by taking the smallest ∆t from (33), (37),
(38), (42), (47) and (50); this will be quantified in the next subsection. Under
the assumption that the data from Step 2 of Procedure 2.1 also is within the
physiological range, the SDIRK method applied in the third step of the procedure
will, under identical condition on the time step, generate physiological data as well.

3.3. Discussion of the time step restrictions. Above it was proven that both
our numerical schemes produce solutions within the physiologically relevant range
under certain conditions on the time step. We complete this section by comparing
these restrictions, to uncover how strict the conditions are in order to ensure nu-
merical stability. In order to find actual values for the stability conditions, we need
to calculate the maximum and minimum values of the derivatives of F in (8) and
G in (9). With the model parameters as described in Section 1, we find

ζ = max
e,r

∂F

∂e
= 2.43, and ν = −min

e

∂F

∂e
= 7.2.(51)

Moreover

η = max
e,r

∂G

∂r
= 0.22, and ϑ = −min

e,r

∂G

∂r
= 1.14.

In addition we find the minimum of F to be

κ = −min
e,r

F (e, r) = 2.42.

We summarize the time step restrictions found in the previous subsection. For
en+1/4 to be bounded within the unit interval we required

∆t <
2

ζ
= 0.82,(52)

whereas rn+1/4 is within the desired interval as long as

∆t <
2

η
= 9.1.(53)

As for the bounds on rn+1/2, we found two restrictions which become

∆t <
1

γη
= 15.80, and ∆t ≤ 1

(1 − 2γ)ϑ
= 2.12.(54)

The time step restrictions to ensure en+1/2 within [0, 1] were found to be

∆t ≤ 1

(1 − 2γ)κ
= 1.00, and ∆t ≤ 1

(1− 2γ)ν
= 0.335.(55)

We observe that the sharpest restriction on ∆t is that required to ensure the desired
bounds on en+1/2, and conclude that the time step condition ∆ts = 2∆t for the
second-order method is

∆ts = 2∆t ≤ 2
1

(1− 2γ)ν
= 0.671.(56)
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Note that, under our assumptions, the above restrictions are sufficient but not
necessary for numerical stability and might be too strict in practice.

We turn to the forward Euler scheme. The time step condition was found to be

∆te ≤ min

{

1
4δ

∆x2 +max(ka, k(1− a)) + r+
,

1

ε+ µ1

µ2

r+

}

= min

{

1
2×10−4

∆x2 + 9.62
, 1.74

}

=
1

2×10−4

∆x2 + 9.62
,

where we have inserted for the parameter values given in Section 1. In contrast to
the ∆ts = O(1) condition on the second-order method, the Euler time step restric-
tion ∆te = O(∆x2) limits the efficiency of the scheme for fine-scale computations.

3.3.1. Numerical experiments on the time step restriction for the for-

ward Euler and SDIRK schemes. We have chosen the following parameter
values for the Panfilov model: µ1 = 0.07, µ2 = 0.3, k = 8, b = 0.1, a = 0.1, and
δ = 5 × 10−5. These parameters result in that the theoretical restriction on ∆te
has the following specific formula:

∆te ≤
1

2×10−4

∆x2 + 9.62
.

To check the sharpness of the theoretical restriction, the forward Euler scheme
is used on a series of refined 2D uniform meshes, for which we have tried ∆x =
1

400 ,
1

800 ,
1

1600 ,
1

3200 ,
1

6400 . All the simulations are carried out for 0 < t ≤ 100, using
the same initial conditions as follows:

e(x, y, 0) =
1

2
(1− cos(πx)) ,

r(x, y, 0) =
r+
2

(1− cos(πy)) .

For each spatial mesh resolution, a series of time step sizes is tried as ∆t =
1.00∆te, 1.01∆te, 1.02∆te, . . ., and so on. The numerical solutions eni,j and r

n
i,j from

each time step are examined with respect to the requirements:

0 ≤ eni,j ≤ 1 and 0 ≤ rni,j ≤ r+.

If any numerical value of a simulation fails the above requirements, the particular
choice of ∆t is considered to be too large. The numerical experiments are summa-
rized in Table 1. It can be seen from the table that the theoretical restriction on
∆te is sharp for small values of ∆x.

∆x Theoretical ∆te Largest working ∆t
1

400 2.40269× 10−2 1.19∆te
1

800 7.26639× 10−3 1.05∆te
1

1600 1.91710× 10−3 1.01∆te
1

3200 4.85998× 10−4 1.00∆te
1

6400 1.21927× 10−4 1.00∆te
Table 1. The largest working time step in relation to the theo-
retical restriction on ∆te.

Regarding the SDIRK scheme, which is used as Step 1 and Step 3 in Procedure
2.1, we have done numerical experiments for a large number of different initial e
and r values. The purpose is to check sharpness of the theoretical restriction on
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∆ts given in (56). More specifically, we have tested the following combinations of
initial (ei, rj) values:

ei =
i

1000
0 ≤ i ≤ 1000,

rj =
j

1000
r+ 0 ≤ j ≤ 1000.

For each combination of initial e and r initial values, the SDIRK scheme is tested
with different time step sizes: 0.98∆ts, 0.99∆ts, 1.00∆ts,. . ., and so on. The nu-
merical experiments show that the largest time step size working for all the (ei, rj)
initial values is 1.06∆ts. In other words, the theoretical restriction (56) seems to
be slightly too conservative.

4. Concluding remarks

We have proposed a second-order scheme for the Aliev-Panfilov model and com-
pared it to the forward Euler method with respect to stability. The forward Euler
method has the huge advantage of simplicity, but the calculated time step restriction
shows that it might be less efficient for very resolved spatial meshes. In contrast,
the suggested second-order method is more complicated but admits a much larger
time step for fine-scale computations. This suggests that the proposed scheme is a
good choice when high resolution and accuracy are important.

In a forthcoming paper we will perform extensive numerical computations to
compare the schemes of the present paper in terms of computational cost, accuracy
and efficiency. We will also study the extremely complex solutions to the Aliev-
Panfilov model on very refined grids; e.g. spiral wave creation and spiral wave
breakup in the myocardium. For these kinds of problems where great spatial res-
olution is needed our second-order scheme is a promising candidate. To make this
study feasible we will develop parallel codes running on rather large computational
clusters.
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