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Abstract. The aim of this paper is to investigate the application of a semi-

implicit additive operator splitting scheme based binary level set method to

source reconstruction problems. We reformulate the original model to be a

new constrained optimization problem under the binary level set framework and

solve it by the augmented Lagrangian method. Then we propose an efficient

gradient-type algorithm based on the additive operator splitting scheme. The

proposed algorithm can create new holes during the evolution. Topological

changes can be handled automatically and complex geometry can be recovered

under a certain amount of noise in the observation data. Numerical examples

are presented to show the effectiveness and efficiency of our method.
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1. Introduction

Let U ⊂ R
2 be an open bounded domain andKad be a class of admissible compact

subsets of U . Consider the following nonlinear output-least-squares problem

min
Ω∈Kad

F (Ω), F (Ω) =
1

2

∫

M

|u(Ω)− u∗|2dx, (1)

where the observation data u∗ defined on a set M ⊂ U or M ⊂ ∂U typically
contains noise. The relationship between u and Ω is given by the elliptic equation

−∆u = χΩ in U (2)

subject to homogeneous Dirichlet boundary conditions on ∂U , where χΩ is the
characteristic function of Ω, i.e.,

χΩ =

{

1 in Ω,

0 in U \ Ω.

Given the noisy observation u∗ of u, the aim is to find the optimal shape of Ω which
satisfies the state equation (2) and fits the observation data best.

The source reconstruction problem (1) belongs to shape recovery (cf. [3, 4, 5, 6,
7, 13]), which is a very popular and challenging field of inverse problems. Other
examples of shape reconstruction and identification include diffraction screen (cf.
[19, 25]), identification of cavities (cf. [1, 3]), electrical impedance tomography (cf.
[8, 10, 14]), etc. For solving such problems, one needs to find a mechanism to
represent the shape and follow its evolution. Many effective and efficient methods
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have been motivated. Hettlich and Rundell [13] solved an inverse source problem
from measurements of the Neumann boundary values of u on ∂U . But their nu-
merical methods based on boundary variation and shape derivative calculation [27]
could only reconstruct a regular annular obstacle and failed to recover non-simply
connected shapes. In [12], a phase-field method based on the Ginzburg-Landau
regularization was employed for the solution of an inverse conductivity problem.
Multi-connected inclusions can be recovered by the implicit representation of the
shape. However, thousands of iterations were required for solving the gradient
descent flow by the explicit Euler time stepping. The level set method originally
proposed by Osher and Sethian [24] for interface evolution and tracking has been
applied in many fields [22]. The interface is represented implicitly by the zero
level set of a Lipschitz continuous function. Effective difference schemes for the
Hamilton-Jacobi equation can be implemented on fixed grids. Moreover, certain
types of shape and topological changes, such as merging, splitting and developing
sharp corners can be handled automatically. The combination of level set methods
with shape sensitivity analysis [27] has been widely applied to many shape recovery
problems (see, e.g., [3, 5, 8, 9, 10, 14, 25]) and optimal shape design (see, e.g.,
[2, 23]). We refer to see the surveys [4, 7, 28] and the references therein. For such
problems, the interface is often evolved with a given velocity obtained by calculating
the shape gradient of the objective functional.

However, as pointed out in [2, 6], the shape gradient based level set method can
not create new holes, which may cause the algorithm to get stuck at local shapes
with fewer holes than the optimal geometry. The reconstructed results therefore
largely depend on the initial guess. The topology derivative [26] proposed for hole
nucleation has been combined with shape derivative in level set methods to solve
inverse source problems in [6], where numerical examples demonstrated that the
new algorithm can recover certain shapes that the shape gradient based level set
method fails to. But the topology sensitivity analysis is generally quite complicated.
Newton-type level set methods, such as the Gauss-Newton method (cf. [25]) and
the Levenberg-Marquardt approach (cf. [5]), can have a decrease in the number of
iterations compared with gradient-type methods, but they require the inversion of
a large dense sensitivity matrix in each iteration, which is computationally slow.

Explicit schemes for the level set based gradient flow typically suffer from the
Courant-Friedrichs-Lewy (CFL) stability condition [22], which means that an it-
erative algorithm requires rather many iterations to reach a stationary state. In
order to accelerate convergence by reducing the number of iterations, the semi-
implicit additive operator splitting (AOS) scheme [17, 32] was incorporated into
the traditional level set method [18] and the piecewise constant level set approach
[31] for efficiently solving structural topology optimization. This scheme avoids the
CFL restriction and is unconditionally stable. It treats all the spatial variables in
a symmetrical way. At each iteration, the computational effort for solving the tri-
diagonal linear systems by the fast Thomas algorithm is moderate. It has locally
second order of accuracy and globally first order of accuracy.

The level set approach of binary type was firstly proposed in [16] with application
to image segmentation and later employed to the solution of elliptic coefficient
inverse problems [20] and shape optimization [34]. The binary level set method
(BLSM) is closely related to the phase-field method as pointed out in [16]. Similar
as the multiple level set method [8, 28], the BLSM also requiresN level set functions
to represent up to 2N subregions. In the BLSM, however, interfaces are identified
implicitly by the discontinuities of the binary level set functions (BLSFs) taking
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only two values 1 and −1 at convergence. The BLSM moves the level set functions
towards 1 or −1 at every mesh point rather than evolving the interface during
the iteration. It enjoys a hole nucleation mechanism with no need to analyze the
complex topology sensitivity during the evolution and hence is more independent
of the initial guess than the level set method. Furthermore, it is more efficient since
the re-initialization process is eliminated.

In this paper, we incorporate the AOS scheme into the BLSM to efficiently solve
the shape reconstruction problem (1). The outline of this paper is as follows. In
Section 2, basic formulations of the BLSM are given. Then a new constrained
minimization problem is set up under the BLSM framework for the original model
problem. In Section 3, we employ the augmented Lagrangian method, which is
a robust approach for constrained optimization [21], to solve the new problem
and present the Uzawa algorithm. Furthermore, the AOS scheme is employed to
efficiently solve the level set evolution equation. Numerical results are given in
Section 4. Finally, concluding remarks are made in Section 5.

2. Binary level set method for the model problem

Let us first present the essential formulations of the BLSM [16, 20]. Assume that

a simply connected open bounded domain Ω̂ ⊂ R
2 is divided into two subregions

Ω1 and Ω2 by a closed curve Γ in Ω̂ such that Ω1 ∪ Ω2 ∪ Γ = Ω̂ and Ω1 ∩ Ω2 = ∅.
By the traditional level set method, the subregions are represented implicitly by a
Lipschitz continuous function φ : Ω̂ 7→ R satisfying











φ(x) > 0 ∀ x ∈ Ω1,

φ(x) = 0 ∀ x ∈ Γ,

φ(x) < 0 ∀ x ∈ Ω2.

(3)

Different from the level set method, the BLSM aims to identify subregions using a
discontinuous BLSF φ defined as

φ(x) =











1 ∀ x ∈ Ω1,

κ ∀ x ∈ Γ,

−1 ∀ x ∈ Ω2,

(4)

where κ ∈ (−1, 1). Then a piecewise constant function ρ(x) that equals to c1 in Ω1

and c2 in Ω2 can be expressed as

ρ =
1

2

[

c1(φ+ 1)− c2(φ− 1)
]

. (5)

Following [16], we can use two BLSFs φ1 and φ2 to represent a function having four
constant values as

ρ =
1

4

[

c1(φ1 + 1)(φ2 + 1)− c2(φ1 + 1)(φ2 − 1)

− c3(φ1 − 1)(φ2 + 1) + c4(φ1 − 1)(φ2 − 1)
]

.
(6)

More generally, using N BLSFs {φj}
N
j=1, we can represent up to 2N subregions

{Ωj}2
N

j=1. We introduce the following notations: Φ and c are vectors given by Φ =

{φ1, φ2, ..., φN} and c = {c1, c2, ..., c2N}. For j = 1, 2, ..., 2N , let (bj−1
1 , bj−1

2 , ..., bj−1
N )

be the binary representation of j − 1, i.e., bj−1
i = 0 or 1. Also we define

s(j) =

N
∑

i=1

bj−1
i and ψj =

1

2N
(−1)s(j)

N
∏

i=1

(φi + 1− 2bj−1
i ). (7)
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Any function f having up to 2N piecewise constant values can be written as

f(Φ, c) =

2N
∑

j=1

cjψj(Φ). (8)

Then (5) and (6) are two special cases corresponding to N = 1 and N = 2, respec-
tively.

The BLSM requires each level set function to converge to 1 or −1 at every point
in the domain, i.e., φ2i = 1 ∀i, which we refer as the binary constraints in the
following. When these constraints are fulfilled, we have supp (ψj) = Ωj , ψj = 1

in Ωj and zero elsewhere. Thus, the supports of different basis functions {ψj}2
N

j=1

are non-overlapping, i.e., supp ψj ∩ supp ψi = ∅ ∀ i 6= j, and ∪2N

j=1supp ψj = Ω̂,
which prevents vacuum. We can see that ψj is actually the characteristic function
of Ωj . Then we obtain the following formulations for calculating the length of the
boundary of Ωj and the area of Ωj respectively as

|∂Ωj| =

∫

Ω̂

|∇ψj |dx and |Ωj | =

∫

Ω̂

ψjdx, (9)

where
∫

Ω̂
|∇ψj |dx denotes the total variation (TV) semi-norm of ψj . Then the total

length of the interfaces of all subregions is given by

|Γ| =
1

2

2N
∑

j=1

∫

Ω̂

|∇ψj |dx. (10)

However, the TV term is not differentiable w.r.t. φ. In numerical implementation,
we use the smooth approximation

|∇ψj | ≈
√

(∂xψj)2 + (∂yψj)2 + ǫ, (11)

where ǫ > 0 is a small parameter and the partial differential operators ∂x and ∂y
are approximated by finite differences. The parameter ǫ should be chosen to be
small enough so as to sharply preserve discontinuities and large enough so as not
to cause numerical instability.

Now we apply the binary level set formulations to our model problem (1). Then

we have N = 1, Ω̂ = U , Ω1 = Ω and Ω2 = U \ Ω. Associated with the domain Ω,
we introduce a BLSF φ satisfying

φ =

{

1 in Ω,

−1 in U \ Ω.

Therefore, the characteristic function of Ω is given by χΩ = (φ+ 1)/2. Then (2) is
equivalent to

{

−∆u = 1
2 (φ+ 1) in U,

u = 0 on ∂U.
(12)

From (10), the length of interface turns to

|Γ| =
1

2

∫

U

|∇φ|dx. (13)

Due to the ill-posedness of the original problem (1), we use a regularization
approach and incorporate the length term (13) into the minimization functional.
This is commonly known as the TV regularization term, which allows discontinuities
in the recovery and restricts the length of the interface (see e.g. [9, 20, 29]).
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In this paper, we study the mildly ill-posed case whenM = U for simplicity. The
minimization problem (1) can therefore be reformulated as the following regularized
constrained one w.r.t. φ:

min
φ

J (φ) = F (φ) + α

∫

U

|∇φ|dx subject to K(φ) = 0, (14)

where

F (φ) =
1

2

∫

U

|u(φ)− u∗|2dx and K(φ) = φ2 − 1.

The regularization parameter α > 0 measures the trade-off between a good fit and
a regularized solution. The selection of the regularization parameter is a research
topic on its own. Some existing approaches such as the unbiased predictive risk
estimator method, the discrepancy principle and the L-curve method are well-
studied. For additional information on the regularization parameter selection, we
refer to see the books [11, 30] and the references therein.

3. Optimization method

In this section, we will use the augmented Lagrangian method to solve the con-
strained minimization problem (14). This robust technique has shown effective for
solving many kinds of inverse problems (see, e.g., [8, 9, 15, 20]). A gradient-type
algorithm is proposed. We use the semi-implicit AOS scheme rather than explicit
scheme to solve the evolution equation for speeding up convergence.

To solve (14), the Fréchet derivative of J w.r.t. φ denoted by J ′(φ) is required.
The weak formulation of (2) is to find u ∈ H1

0 (U) ≡ {u ∈ L2(U)|∇u ∈ L2(U), u =
0 on ∂U} such that

∫

U

∇u · ∇vdx =
1

2

∫

U

(φ+ 1)vdx ∀v ∈ H1
0 (U). (15)

Let us assume that the state variable u is Fréchet differential at φ. Differentiating
u on both sides of (15) w.r.t. φ in a direction ψ ∈ C∞

0 (U), we obtain
∫

U

∇
(

u′(φ)ψ
)

· ∇vdx =

∫

U

1

2
ψvdx ∀v ∈ H1

0 (U). (16)

Let us introduce the adjoint problem of (12) as
{

−∆z = u− u∗ in U,

z = 0 on ∂U.
(17)

Then the weak formulation of (17) reads: Find z ∈ H1
0 (U) such that

∫

U

∇z · ∇wdx =

∫

U

(u− u∗)wdx, ∀w ∈ H1
0 (U). (18)

On the other hand, we have

F ′(φ)ψ =

∫

U

(u− u∗)u′(φ)ψdx

=

∫

U

∇z · ∇
(

u′(φ)ψ
)

dx =

∫

U

1

2
zψdx,

(19)

where in the last two equalities we have used (18) and (16) by setting w = u′(φ)ψ
and v = z, respectively.

Thus, we obtain from (19)

F ′(φ) =
1

2
z. (20)
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Denote R(φ) :=
∫

U
|∇φ|dx, then the derivative of R(φ) at φ in the direction ψ

reads:

R′(φ)ψ =
d

dt
R(φ+ tψ)

∣

∣

∣

t=0

=

∫

U

∇φ

|∇φ|
· ∇ψdx = −

∫

U

∇ ·

(

∇φ

|∇φ|

)

ψdx,

which gives

R′(φ) = −∇ ·

(

∇φ

|∇φ|

)

. (21)

Then the Fréchet derivative of J (φ) w.r.t. φ is given by combining (20) and (21):

J ′(φ) =
1

2
z − α∇ ·

(

∇φ

|∇φ|

)

. (22)

By the augmented Lagrangian method, the constrained optimization problem
(14) is transformed to an unconstrained one as follows:

min
φ

max
λ

Lµ(φ, λ) = J (φ) +

∫

U

λK(φ)dx +
µ

2

∫

U

K2(φ)dx, (23)

where the Lagrange multiplier λ ∈ L2(U). The penalization parameter µ > 0 can
be fixed as a large number or increased slowly with a small initial value. Maximizing
w.r.t. λ, the constraint must be fulfilled and we get the minimization of the original
problem.

At a saddle point of Lµ, we have

0 =
∂Lµ

∂φ
= J ′(φ) + λK ′(φ) + µK ′(φ)K(φ)

=
1

2
z − α∇ ·

(

∇φ

|∇φ|

)

+ 2λφ+ 2µφ(φ2 − 1),

0 =
∂Lµ

∂λ
= K(φ).

(24)

We use an iterative algorithm to solve the nonlinear system (24). Denote by φk

and λk the kth (k = 0, 1, 2, · · · ) iterations for φ and λ, respectively. Starting from
the initial guesses φ0 and λ0, we get φk+1 and λk+1 from φk and λk successively.

First, we consider the updating of φ for a fixed λk. We introduce an artificial
time variable t > 0 and solve the gradient descent flow







∂φ

∂t
(x, t) = −

∂Lµ

∂φ
(φ, λk) in U × R

+,

φ(x, 0) = φ0(x) in U

(25)

to the steady state. Then we get ∂φ/∂t = 0, which implies that ∂Lµ/∂φ = 0. In
numerical implementation, we can discretize (25) by the explicit Euler scheme as
follows

φk+1 = φk −∆tk
∂Lµ

∂φ
(φk, λk), (26)

where ∆tk > 0 is the time step. We can use a line search method to find the
optimal step size in each iteration. Alternatively, we may choose a small fixed time
step ∆t by the trial and error method considering time consuming of the line search
strategy for PDE constraint optimziation.

If we use an explicit scheme such as (26), the time step must be small enough to
satisfy the CFL condition for stability. Then it requires rather many iterative steps
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to solve (25) to a steady state. In this work, we use a semi-implicit AOS scheme to
solve (25) for reducing the number of iterations required using explicit schemes.

The governing equation of (25) can be written as

∂φ

∂t
= α∇ ·

(

∇φ

|∇φ|

)

+ F (φ), (27)

where

F (φ) = −
1

2
z − 2λφ− 2µφ(φ2 − 1).

We consider the semi-implicit discretization of (27). Assume that a rectangular
domain U is divided by a uniform mesh of spacing h in both spatial directions.
The grid points are arranged as a vector [x1, · · · , xNp

]T, where Np is the number of

grid points. Let ∆t be the temporal step size. Denote by φki the approximation of
φ(x, t) at (xi, tk) with tk = k∆t. The half-point difference and linear interpolation
give the following semi-implicit scheme

φk+1
i − φki

∆t
= α

∑

j∈N (i)

(

1
|∇φ|

)k

j
+
(

1
|∇φ|

)k

i

2

φk+1
j − φk+1

i

h2
+ F (φki ), (28)

where N (i) denotes the four neighbors of the grid point xi. It should be noted that
we have used the homogeneous Neumann boundary condition for (27). The domain
U is extended such that (28) is well defined for the original boundary points. Here,
straightforward finite difference implementations would give rise to problems when
|∇u| vanishes in the 4-neighborhood. These problems can be avoided if we replace
1
2

(

(

1
|∇φ|

)k

j
+
(

1
|∇φ|

)k

i

)

in (28) by its harmonic counterpart:

φk+1
i − φki

∆t
= α

∑

j∈N (i)

2

(|∇φ|)kj + (|∇φ|)ki

φk+1
j − φk+1

i

h2
+ F (φki )

= α
∑

l∈{x,y}

∑

j∈Nl(i)

2

(|∇φ|)kj + (|∇φ|)ki

φk+1
j − φk+1

i

h2
+ F (φki ),

(29)

where Nl(i) denotes the two neighbors of xi in the direction l. Denote by Ax and
Ay the one dimensional operators in the direction x and y, respectively. Then
the discrete semi-implicit scheme (29) can be rewritten compactly in matrix-vector
notation as

φk+1 − φk

∆t
=

∑

l∈{x,y}

Al(φ
k)φk+1 + F (φk), (30)

where the matrix Al(φ
k) = (aijl(φ

k)) with

aijl(φ
k) =































2α

h2
[

(|∇φ|)nj + (|∇φ|)ni
] j ∈ Nl(i),

−
∑

j∈Nl(i)

2α

h2
[

(|∇φ|)nj + (|∇φ|)ni
] j = i,

0 else.

The AOS scheme then solves the following equations in parallel

φk+1
l − φk

∆t
= 2Al(φ

k)φk+1
l + F (φk), l ∈ {x, y}, (31)
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which leads to two linear systems
[

I − 2∆tAl(φ
k)
]

φk+1
l = φk +∆tF (φk), l ∈ {x, y}. (32)

Either tridiagonal coefficient matrix of the two systems in (32) is strictly diagonally
dominant. Therefore, we can solve (32) efficiently by the Thomas algorithm and
obtain the solutions

φk+1
l =

[

I − 2∆tAl(φ
k)
]−1[

φk +∆tF (φk)
]

, l ∈ {x, y}. (33)

Then the AOS scheme determines the final solution φk+1 by

φk+1 =
1

2

(

φk+1
x + φk+1

y

)

. (34)

Secondly, the updating scheme for the Lagrange multiplier λ follows the Uzawa
algorithm [16]:

λk+1 = λk + µkK(φk). (35)

The penalty parameter µ can be set as a large constant during the iterations. To
improve the convergence, a continuation in µ is adopted. We choose to update µ
by

µk+1 = ηµk (36)

with a small initial µ0 > 0, where the constant η is slightly larger than 1. To
ensure stability, the penalty parameter should be limited by a prescribed upper
bound µmax.

Unifying all the above schemes, we present the following algorithm.

Algorithm 1 Semi-implicit AOS scheme based Uzawa algorithm

Set k = 0. Initialization: φ0, λ0, µ0.
• Compute the state uk by solving (12).
• Compute the adjoint zk by solving (17).
• Compute ∂Lµ/∂φ by (24).
• Update φk by solving (25) using the AOS scheme.
• Update λ by (35).
• If µk 6 µmax, update µ by (36); else µk = µmax.
• Iterate again if necessary; k = k + 1.

The binary constraint K(φ) = 0 can also be treated with the simple penalty
method. But it is hard to satisfy the constraint approximately unless the penalty
parameter is set sufficiently large. Too large values of it will severely restrict the
time step and may cause the algorithm unstable. By the augmented Lagrangian
method, however, there is no need to set the penalty parameter very large to guar-
antee the convergence of the algorithm and the constraint can be satisfied very well.
We choose a small µ0 and increase it in a continuation way. The value of µ is small
at the first stage of the evolution before the optimal topology of Ω is determined.
With increasing µ, the weight for the constraint becomes larger and φ is forced to
be 1 and −1 at every grid point in the domain.

4. Numerical results

We will present three numerical examples to illustrate the performance of the
proposed algorithm with MATLAB. We choose the computational domain U =
(−1, 1)×(−1, 1) and divide it into a uniform rectangular mesh with 64×64 elements.
At each iteration, both of the state equation and adjoint problem are solved by the
linear finite element approximation. We set ǫ = 10−3 by trial and error.
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To test the effectiveness of our algorithm, we add noise to the exact finite element
grid function u and obtain the observed data u∗ as in [29], i.e.,

u∗ = u+ σ
‖u‖L2(U)

‖r∗‖L2(U)
r∗,

where σ is the noise level and r∗ is a grid function with nodal values being the
uniform random distribution in [−1, 1] with zero mean value. Without any a-priori
knowledge about the topology and shape to be reconstructed, the grid function
associated with φ0 is always chosen to be −1, i.e., the initial guess for Ω is an
empty set. All two-dimensional illustrations of obstacle shapes in the following are
shown with zero contour (i.e., κ = 0) as the interface. When the level set function
converges to 1 and −1, there are four possible cases for the cells where the interface
cuts through as shown in Fig. 1. This minor defect on the sub-cell resolution of
the interface is a common problem in level set approaches of piecewise constant
type while the traditional level set method does not have [33, 34]. Our algorithm
leads to a zigzag interface compared to a relatively smooth interface obtained by
the continuous level set method.

φ = −1φ = 1

φ = 1

φ = −1
φ = 1

φ = 1φ = 1

φ = −1

φ = −1

Figure 1. Four possible cases for cells straddling the interface by
the MATLAB subrutine “contourf”.

Example 1: We start with a simply connected example. The shape we want
to reconstruct is a circle of radius 0.5 centered at the origin. The true shape is
shown by the red dashed line in each reconstruction figure for comparison. We
set α = 10−6, ∆t = 3, µ0 = 10−4, µmax = 10−1 and η = 1.1. In Fig. 2, we
plot the true finite element solution u and its two random noisy observations. We
show the converged level set function and the recovered shape for σ = 0 in Fig. 3,
from which we see that the reconstructed shape matches the exact one very well.
Then we present two reconstructed shapes in Fig. 4 with noise levels 20% and
40% to show the algorithm is not sensitive to noise for this simple example. The
quantitative illustration is given in Fig. 5, which gives the curves of the residual,
the L1-error (i.e., L1 distance between the indicator function of the computed shape
and that of the exact shape) and the L2 norm of K(φ).

Furthermore, we compare our algorithm with an explicit scheme (26) based al-
gorithm for this example. To satisfy the CFL stability condition, we choose the
time step as in [33]

∆tk = ch

/
∥

∥

∥

∥

∂Lµ

∂φ
(φk, λk, µk)

∥

∥

∥

∥

L∞

, (37)

where c > 0 is a constant chosen by trial and error. Here we set c = 0.6. The
comparison curves on the residual and L1-error are plotted in Fig. 6 to illustrate
the superiority of the semi-implicit iterative scheme. To achieve almost the same
recovered results for σ = 0 and 40%, the explicit scheme requires more iterations
and hence converges slower than our semi-implicit scheme as expected.

Example 2: This example is more difficult than Example 1 in shape recovery
due to the multi-connectivity of the true domain U \Ω. The exact shape is a circle
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Figure 2. Example 1: The true u and observation u∗ with σ =
20% and 40%.
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Figure 3. Example 1: The computed level set function and its
discontinuity for σ = 0 after 150 iterations.
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Figure 4. Example 1: The reconstructed shapes with σ = 20%
and 40% after 150 iterations.

of radius 0.5 including a hole of radius 0.3, both centered at the origin. The exact
finite element solution and two noisy observations are plotted in Fig. 7.

As shown in [6], the level set algorithm based on shape gradient can only recover
the outer contour of the exact shape. For this example, here we show that our
algorithm can lead to similar reconstruction quality as the shape-topology gradient
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Figure 5. Example 1: Convergence of residual, L1-Error and
‖K(φ)‖L2(U) for σ = 0, 20% and 40%.

based level set method [6]. We choose α = 10−6, ∆t = 5, µ0 = 10−7, µmax = 10−2

and η = 1.1. First, we present four intermediate iterations for σ = 0 in Fig. 8
to illustrate the topological changes during the evolution process. Then we plot in
Fig. 9 the final computed level set function and its discontinuity. The reconstructed
shapes with different noise levels are also shown in Fig. 10. We can see that our
method can recover the inner contour of the exact shape. Compared with the
reconstruction results in Example 1, we find that it can tolerate less noise than
that in Example 1 as the geometry becomes more complex, which is to be expected.
See Fig. 11 for the corresponding convergence history of the residual and L1-error.
Choose c = 0.5. Fig. 12 shows that the AOS scheme converges faster than the
explicit scheme.

Example 3: Then we consider an example with Ω consists of two components:
a circle and an ellipse. We set α = 10−6, ∆t = 5, µ0 = 10−6, µmax = 10−2 and
η = 1.05. We first illustrate the evolution process with 5% noise in Fig. 13. See
Fig. 14 and Fig. 15 for final reconstructions and curves of residual and L1-error
with different amounts of noise.

Finally, we investigate the influence of the regularization parameter. The same
parameters have been used except for α. We set σ = 15%. In Fig. 16, we plot the
final reconstruction results for different choices of α. We can observe that a too
small value of α (=10−10) gives an oscillating curve and a larger value can lead to a
smoother shape. However, a too high value (α = 10−4) will prevent shape splitting
and the multi-connected obstacles are failed to recovered.
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Figure 6. Example 1: Comparison of the AOS scheme and an
explicit scheme on the convergence history of the residual and L1-
error.
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(c) Observing u∗ with σ = 15%

Figure 7. Example 2: The true u and observation u∗ with σ = 5%
and 15%.

5. Conclusions

In this work, we have applied the BLSM to the source reconstruction problem.
By embedding one level set function into the original problem, we reformulated it to
be a new constrained optimization problem w.r.t. the level set function. Then we
employed the augmented Lagrangian method to solve it. In numerical implementa-
tion, the semi-implicit AOS scheme was applied to relax the time step restriction,
which improved the efficiency of the proposed gradient-type algorithm. As demon-
strated in numerical experiments, our algorithm can handle complex topological
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Figure 8. Example 2: The evolution process with σ = 0.
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Figure 9. The computed level set function and its discontinuity
with σ = 0 after 500 iterations.

changes automatically and largely avoid getting stuck at local minimizers during
the evolution. We can achieve good reconstruction quality for the shape that the
traditional level set method fails to. Moreover, reconstructions from observations
with different noise levels were compared to show the robustness of our algorithm
for the mildly ill-posed model problem. We will try to use the AOS and other
efficient semi-implicit schemes to solve the gradient descent flows for more ill-posed
nonlinear shape recovery problems from boundary measurements.
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Figure 10. Example 2: The reconstructed shapes for σ = 5% and 15%.
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Figure 11. Example 2: Convergence of residual and L1-Error for
σ = 0, 5% and 15%.
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Figure 14. Example 3: The reconstructed optimal shapes for σ =
10% and 15%.
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Figure 15. Example 3: Convergence of residual and L1-Error for
σ = 5%, 10% and 15%.
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Figure 16. Example 3: The effect of regularization parameter on
the reconstruction with σ = 15%.


