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ELEMENT-BY-ELEMENT POST-PROCESSING OF

DISCONTINUOUS GALERKIN METHODS FOR NAGHDI

ARCHES

FATIH CELIKER, LI FAN, AND ZHIMIN ZHANG

Abstract. In this paper, we consider discontinuous Galerkin approximations to the solution of
Naghdi arches and show how to post-process them in an element-by-element fashion to obtain a

far better approximation. Indeed, we prove that, if polynomials of degree k are used, the post-

processed approximation converges with order 2k+1 in the L2-norm throughout the domain. This
has to be contrasted with the fact that before post-processing, the approximation converges with

order k + 1 only. Moreover, we show that this superconvergence property does not deteriorate as

the thickness of the arch becomes extremely small. Numerical experiments verifying the above-
mentioned theoretical results are displayed.
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1. Introduction

In [5], a family of discontinuous Galerkin (DG) methods for a Naghdi-type arch
model was introduced as a step towards the difficult goal of devising locking-free
DG methods for shells. They have proved that the approximation converges with
order k + 1 when polynomials of degree k are used. In this paper, we construct an
element-by-element post-processing that converges remarkably faster.

This post-processing is based on the fact that a superconvergence phenomenon
takes place at the nodes of the mesh. Indeed, the numerical traces of the DG
method converge to the nodal values of the exact solution with order 2k + 1 when
polynomials of degree k are used to compute the DG approximation, see [5]. The
main goal of this paper is to exploit this phenomenon to post-process the DG
solution element-by-element and obtain a better solution which superconverges to
the exact solution with order 2k+ 1 in the L2-norm throughout the domain rather
than at merely some isolated points of the mesh.

A similar superconvergent post-processing result has been proved for DG meth-
ods for convection-diffusion problems in [3]. Based on the superconvergence result
proved therein, Cockburn and Ichikawa [7] devised a post-processing for the ap-
proximation of linear functionals which is superconvergent of order 4k + 1. In [2]
Celiker and Cockburn designed a post-processing for DG methods for Timoshenko
beams which is superconvergent of order 2k + 1 in the L∞-norm throughout the
computational domain. This result was based on the numerical observation that the
numerical traces of the DG approximation for Timoshenko beams are also supercon-
vergent of order 2k+1 at the nodes of the mesh. Shortly later, the superconvergence
of the numerical traces was put on a firm mathematical ground in [4].

As we will describe below, the Timoshenko beam model can be viewed as a
special case of the Naghdi arch model where the beam is considered as an arch
with zero curvature. The post-processing we display in this paper is thus inspired
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by the one introduced in [2]. Despite this close similarity, the coupling of some of
the unknowns in the Naghdi arch model renders both the post-processing and its
error analysis more involved. This is especially the case for the latter because it
requires the analysis of a linear system of initial value problems whose solution is
approximated by using approximate data. This is the main reason why we prove
an L2-error estimate for the post-processed approximation unlike the L∞-error
estimate for the Timoshenko beam post-processing. Notwithstanding, it is possible
to prove an L∞-error estimate at the expense of requiring high order regularity,
following, for example, [11, 17].

Next, we describe the Naghdi arch model . A dimensionless form of this model
can be written as a system of first order differential equations:

w′ + θ + κu = d2T,(1a)

u′ − κw = d2N,(1b)

θ′ + κ(u′ − κw) = M,(1c)

M ′ = T,(1d)

N ′ + (κM)′ − κT = p,(1e)

T ′ + κ2M + κN = q,(1f)

defined on Ω = (0, 1). For the simplicity of our notation we have assumed that the
model is non-dimensionalized in a way that all the material properties including the
Young’s modulus, shear modulus, moment of inertia, and the length of the arch are
scaled to be equal to one. However, all the results in this paper can be generalized
to the case in which they are non-constant functions. The small parameter d > 0
represents the dimensionless thickness of the arch. The function κ is x-dependent,
and κ(x) is the curvature of the middle curve of the arch at the point of coordinate x.
When κ is constantly valued, the arch is circular. A straight beam could be viewed
as a special arch with κ ≡ 0, in which case (1) decouples to the Timoshenko beam
bending model. The functions p and q are the tangential and transverse resultant
loads, respectively. Similarly, a displacement vector of a point of the middle curve is
decomposed to its tangent component u and normal component w. The remaining
unknowns are the rotation of the normal fibers, θ, the bending moment, M , the
scaled membrane stress, N , and the scaled shear stress, T . In Figure 1 we display
some of the characteristics of a typical arch. The parametrization is indicated by
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Figure 1. Cross section of a two-end clamped arch and arc length parame-

terization of its middle curve
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The parameterization is indicated by the mapping that maps P ∈ [0, 1] to P ′ on the middle

curve. The x coordinate of P is equal to the arc length of the portion of the middle curve

from its left end to P ′. A resultant force vector is decomposed to its tangent component p

and normal component q. Similarly, a displacement vector of a point of the middle curve is

decomposed to its tangent component u and normal component w.

Notes by Sheng Zhang.
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Figure 1. Cross section of an arch clamped at both ends, and arc
length parametrization of its middle curve.
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the mapping that maps P ∈ [0, 1] to P ′ on the middle curve. The x coordinate of
P is equal to the arc length of the portion of the middle curve from its left end to
P ′.

Notwithstanding the fact that (1) constitutes a starting point from which one
could derive DG methods, in [5] we derived the DG methods based on a slightly
simplified model that has, as approximations to the elasticity theory, the same
accuracy as the Naghdi model. It has been shown that the terms κ(u′ − κw) in
(1c), (κM)′ in (1d), and κ2N in (1f) can be neglected without significantly affecting
the accuracy of the model. We will embrace these simplifications and henceforth
work with the following governing equations

w′ + θ + κu = d2T,(2a)

u′ − κw = d2N,(2b)

θ′ = M,(2c)

M ′ = T,(2d)

N ′ − κT = p,(2e)

T ′ + κN = q.(2f)

in Ω := (0, 1). To complete the model and ensure the existence and uniqueness of
its solution we must impose suitable boundary conditions; we take, for example,
the following clamped boundary conditions:

(3)
w(0) = w0, u(0) = u0, θ(0) = θ0,

w(1) = w1, u(1) = u1, θ(1) = θ1.

The rest of the paper is organized as follows. In Section 2, we recall the DG
methods for Naghdi arches and sufficient conditions for the existence and uniqueness
of their approximate solution. In Section 3, we describe the post-processing of the
DG solution, and in Section 4 we prove the superconvergence of the post-processed
approximation. Numerical results verifying our theoretical findings are presented
in Section 5. We end in Section 6 with some concluding remarks.

2. The DG methods

To define the DG methods, we begin by partitioning the computational domain
into intervals. Given the set of nodes

Eh := {x0, x1, . . . , xN },

where 0 = x0 < x1 < · · · < xN−1 < xN = 1, we set

Ij := (xj−1, xj), hj := xj − xj−1, and h := max
1≤j≤N

.

We also set

Ωh := ∪Nj=1Ij ,

and we write

(f, g)Ωh
:=

N∑
j=1

∫
Ij

fg and 〈R, [[f ]]〉Eh :=

N∑
j=0

R(xj)[[f ]](xj).
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Here, R is any function defined on the set of nodes Eh and [[f ]] is the jump of the
function f across the nodes which is defined as follows

[[f ]](xj) =


−f(0+) for j = 0,

f(x−j )− f(x+
j ) for 0 < j < N ,

f(1−) for j = N ,

where f(x±j ) := limε↓0 f(xj ± ε).
The approximate solution

ϕh := (Th, Nh,Mh, θh, uh, wh)

given by the DG method is sought in the finite dimensional space [V kh ]6 where

V kh := {v : Ωh 7→ R : v|Ij ∈ P k(Ij), j = 1, . . . ,N},
and P k(K) is the set of all polynomials on K of degree not exceeding k. It is
determined by requiring that

− (wh, v
′
1)Ωh

+ 〈ŵh, [[v1]]〉Eh + (θh, v1)Ωh
+ (κuh, v1)Ωh

= d2(Th, v1)Ωh
(4a)

− (uh, v
′
2)Ωh

+ 〈ûh, [[v2]]〉Eh − (κwh, v2)Ωh
= d2(Nh, v2)Ωh

(4b)

− (θh, v
′
3)Ωh

+ 〈θ̂h, [[v3]]〉Eh = (Mh, v3)Ωh
(4c)

− (Mh, v
′
4)Ωh

+ 〈M̂h, [[v4]]〉Eh = (Th, v4)Ωh
(4d)

− (Nh, v
′
5)Ωh

+ 〈N̂h, [[v5]]〉Eh − (κTh, v5)Ωh
= (p, v5)Ωh

(4e)

− (Th, v
′
6)Ωh

+ 〈T̂h, [[v6]]〉Eh + (κNh, v6)Ωh
= (q, v6)Ωh

(4f)

hold for all vi ∈ V kh for i = 1, . . . , 6.
To complete the definition of the method, we have to define the numerical traces

ϕ̂h := (T̂h, N̂h, M̂h, θ̂h, ûh, ŵh)

at the nodes. We assume that the general form of these traces is as follows. For an
interior node xj ∈ E◦h := {x1, x2, . . . , xN−1}, we take
(5)
ŵh = {{wh }}+ C11[[wh]] + C12[[uh]] + C13[[θh]] + C14[[Mh]] + C15[[Nh]] + C16[[Th]],

ûh = {{ uh }}+ C21[[wh]] + C22[[uh]] + C23[[θh]] + C24[[Mh]] + C25[[Nh]] + C26[[Th]],

θ̂h = {{ θh }}+ C31[[wh]] + C32[[uh]] + C33[[θh]] + C34[[Mh]] + C35[[Nh]] + C36[[Th]],

M̂h = {{Mh}}+ C41[[wh]] + C42[[uh]] + C43[[θh]] + C44[[Mh]] + C45[[Nh]] + C46[[Th]],

N̂h = {{Nh}}+ C51[[wh]] + C52[[uh]] + C53[[θh]] + C54[[Mh]] + C55[[Nh]] + C56[[Th]],

T̂h = {{Th }}+ C61[[wh]] + C62[[uh]] + C63[[θh]] + C64[[Mh]] + C65[[Nh]] + C66[[Th]],

where {{f}}(xj) := 1
2 (f(x−j ) + f(x+

j )). At x = 0, we take

(6)

ŵh = w0,

ûh = u0,

θ̂h = θ0,

M̂h = M+
h +C41(w0 − w+

h ) + C42(u0 − u+
h ) + C43(θ0 − θ+

h ),

N̂h = N+
h +C51(w0 − w+

h ) + C52(u0 − u+
h ) + C53(θ0 − θ+

h ),

T̂h = T+
h +C61(w0 − w+

h ) + C62(u0 − u+
h ) + C63(θ0 − θ+

h ),
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and at x = 1,

(7)

ŵh = w1,

ûh = u1,

θ̂h = θ1,

M̂h = M−h +C41(w−h − w1) + C42(u−h − u1) + C43(θ−h − θ1),

N̂h = N−h +C51(w−h − w1) + C52(u−h − u1) + C53(θ−h − θ1),

T̂h = T−h +C61(w−h − w1) + C62(u−h − u1) + C63(θ−h − θ1).

This completes the definition of the DG methods.
Note how the boundary conditions are incorporated into the method through

the definition of the numerical traces at the border. Note also that the functions
Cij defining the numerical traces are not necessarily constant on Eh, and can have
different values at different nodes. Of course, not every choice of the Cij leads to a
well defined method. Conditions on these functions which ensure the existence and
uniqueness of the DG solution can be found in [5]. We quote it here for the sake of
completeness.

Theorem 2.1. Consider the DG method defined by the weak formulation (4) and
the numerical traces given by (5)–(7). Suppose that at all nodes e ∈ Eh we have

(8)

C66 = −C11, C56 = −C12, C46 = −C13, C36 = −C14, C26 = −C15,

C65 = −C21, C55 = −C22, C45 = −C23, C35 = −C24,

C64 = −C31, C54 = −C32, C44 = −C33,

C63 = −C41, C53 = −C42,

C62 = −C51,

that

(9) −C16, −C25, −C34 ≥ 0,

and that

(10) −C43, −C52, −C61 > 0.

Then the method has a unique solution provided that

(11) hj ≤
1

2‖κ− κj‖L∞(Ij)

on the elements Ij where κ is not identically equal to a constant. Here κj denotes
the average value of κ on Ij.

Observe that the condition (8) shows that not all the Cij ’s are independent. More
explicitly, 15 of them can be (in fact, should be) expressed in terms of the remaining
20. The conditions (9) and (10) are positivity conditions which ensure that the
artificial contributions to the energy of the system due to the discontinuous nature
of the approximation are non-negative. The condition (11) is a mild restriction on
the geometry of the arch, namely, it ensures that the arch is either locally not too
curved, or equivalently the mesh is fine enough.
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3. Post-processing

Next, we describe the post-processing

ϕ∗h := (T ∗h , N
∗
h ,M

∗
h , θ
∗
h, u
∗
h, w

∗
h)

of the approximate solution ϕh = (Th, Nh,Mh, θh, uh, wh) provided by the DG
method. It is based on the fact that the numerical traces superconverge at each
of the nodes with order 2k + 1. To state this result we need to introduce some
notation. We define the error of approximation as

eϕ = ϕ− ϕh, êϕ = ϕ− ϕ̂h,
for any ϕ ∈ {T,N,M, θ, u, w}, and set

e = ϕ−ϕh, ê = ϕ− ϕ̂h.
Here

ϕ := (T,N,M, θ, u, w)

denotes the exact solution of the governing equations (2). The error in the numerical
traces of ϕh is defined as

‖êϕ‖∞ := ‖êϕ‖`∞(Eh) := max
xj∈Eh

|êϕ(xj)|,

and the global error in the numerical traces is set to be

‖ê‖∞ := max
ϕ∈{T,N,M,θ,u,w}

‖êϕ‖∞.

We denote by ‖ · ‖s,D and | · |s,D the usual norm and seminorm, respectively, in
the Sobolev space Hs(D) where D is any subset of Ωh. We drop the subindex D
whenever D = Ωh or D = Ω. We set, for u = (u1, u2, u3, u4, u5, u6),

|u|s,D := (|u1|2s,D + |u2|2s,D + |u3|2s,D + |u4|2s,D + |u5|2s,D + |u6|2s,D)1/2.

In [5] the following wide family of DG methods has been analyzed. They are
defined by setting the functions Cij as follows.

(12) C16 = C25 = C34 = C43 = C52 = C61 = −c
for all x in Eh, except

(13) C16 = C25 = C34 = 0 on ∂Ω.

Here, c > 0 is any constant which is independent of the mesh size h. We assume
that

(14) C2
ij ≤ c for all i, j = 1, . . . , 6,

and that

(15) (Cii(x)− 1/2)2 ≤ c for all i = 1, . . . , 6.

Such a choice can be obtained, for example, by setting

C16 = C25 = C34 = C43 = C52 = C61 = −1

for all x in Eh, except

C16 = C25 = C34 = 0 on ∂Ω,

and setting all the remaining Cij ’s to zero.
We are now ready to state the superconvergence result for the numerical traces.



397

Theorem 3.1. ([5]) Let k ≥ 0 be a polynomial degree and suppose that ϕ belongs
to [Hk+1(Ωh)]6. Let ϕh be the DG solution defined by the weak formulation (4),
and the numerical traces (5)–(7) where the functions Cij are defined so as to satisfy
(12)–(15). Then,

(16) ‖ϕ− ϕ̂h‖∞ ≤ C h2k+1|ϕ|k+1

for some constant C independent of h and d.

Our post-processing is defined in an element-by-element fashion as follows. On
the element Ij = (xj−1, xj), 1 ≤ j ≤ N , we define the post-processed solution

ϕ∗h = (T ∗h , N
∗
h ,M

∗
h , θ
∗
h, u
∗
h, w

∗
h)

as the element of the space [P 2k(Ij)]
6 in four simple steps as follows.

Step 1: Compute T ∗h and N∗h by solving

−(T ∗h , v
′
1)Ij + T ∗h (x−j )v1(x−j ) + (κN∗h , v1)Ij = (q, v1)Ij + T̂h(xj−1)v1(x+

j−1),(17a)

−(N∗h , v
′
2)Ij +N∗h(x−j )v2(x−j )− (κT ∗h , v2)Ij = (p, v2)Ij + N̂h(xj−1)v2(x+

j−1),

(17b)

for all v1 and v2 in P 2k(Ij).
Step 2: Compute M∗h by solving

(18) −(M∗h , v
′
3)Ij +M∗h(x−j )v3(x−j ) = (T ∗h , v3)Ij + M̂h(xj−1)v3(x+

j−1),

for all v3 in P 2k(Ij).
Step 3: Compute θ∗h by solving

(19) −(θ∗h, v
′
4)Ij + θ∗h(x−j )v4(x−j ) = (M∗h , v4)Ij + θ̂h(xj−1)v4(x+

j−1),

for all v4 in P 2k(Ij).
Step 4: Compute u∗h and w∗h by solving

(20a)
−(u∗h, v

′
5)Ij + u∗h(x−j )v5(x−j )− (κw∗h, v5)Ij

= d2(N∗h , v5)Ij + ûh(xj−1)v5(x+
j−1),

(20b)
−(w∗h, v

′
6)Ij + w∗h(x−j )v6(x−j ) + (κu∗h, v6)Ij

= d2(T ∗h , v6)Ij − (θ∗h, v6)Ij + ŵh(xj−1)v6(x+
j−1),

for all v5 and v6 in P 2k(Ij).
Next, we state a theorem about the existence and uniqueness of the post-

processed solution.

Theorem 3.2. Consider the post-processing defined by (17)–(20) on an arbitrary
element Ij ∈ Ωh. These equations define a unique solution ϕ∗h = (T ∗h , N

∗
h ,M

∗
h ,

θ∗h, u
∗
h, w

∗
h) provided that the condition (11) is satisfied whenever κ is not identically

equal to a constant on Ij.

Remark 3.3. If κ is identically constant, i.e. the arch is locally circular or flat,
on an element Ij then the condition (11) is not necessary, and the post-processing
automatically defines a unique solution.
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It is not difficult to see that the equations (17)–(20) are the discretization by the
classical DG method [14, 13] of the following system of initial value problems

(T ∗)′ + κN∗ = q in Ij , T ∗(xj−1) = T̂h(xj−1),(21a)

(N∗)′ − κT ∗ = p in Ij , N∗(xj−1) = N̂h(xj−1),(21b)

(M∗)′ = T ∗ in Ij , M∗(xj−1) = M̂h(xj−1),(21c)

(θ∗)′ = M∗ in Ij , θ∗(xj−1) = θ̂h(xj−1),(21d)

(u∗)′ − κw∗ = d2N∗ in Ij , u∗(xj−1) = ûh(xj−1),(21e)

(w∗)′ + κu∗ = d2T ∗ − θ∗ in Ij , w∗(xj−1) = ŵh(xj−1).(21f)

Its step-by-step nature reveals that when defining the post-processing (17)–(20) we
made use of the fact that the system of equations (21) is partially decoupled in the
following sense. It is possible to solve for T ∗ and N∗ using only the equations (21a)
and (21b). Then we can insert T ∗ into (21c) and solve for M∗, and then insert M∗

into (21d) to solve for θ∗. Finally, we may insert N∗ into (21e), and T ∗ and θ∗ into
(21f), and solve for u∗ and w∗.

Based on the above observation, we can rewrite (21) in a single framework as
follows:

(22) (ϕ∗` )
′ −A`ϕ∗` = f∗` in Ij , ϕ∗` (xj−1) = ϕ̂`(xj−1)

for ` = 1, 2, 3, 4. Here,

ϕ∗1 :=

[
T ∗

N∗

]
, ϕ∗2 := [M∗], ϕ∗3 := [ θ∗], ϕ∗4 :=

[
u∗

w∗

]
,

and similarly for ϕ̂∗` ,

A1 :=

[
0 −κ
κ 0

]
, A2 = [0], A3 = [0], A4 =

[
0 κ
−κ 0

]
,

f∗1 =

[
q
p

]
, f∗2 := [T ∗], f∗3 := [M∗], f∗4 :=

[
d2N∗

d2T ∗ − θ∗
]
.

Consequently, we can reformulate the post-processing defined by the equations
(17)–(20) in the following unified framework. Find (ϕ∗1,h,ϕ

∗
2,h,ϕ

∗
3,h,ϕ

∗
4,h, ) ∈ [P 2k(Ij)]

2×
P 2k(Ij)× P 2k(Ij)× [P 2k(Ij)]

2 such that

(23)
−(ϕ∗`,h,v

′
`)Ij +ϕ∗`,h(x−j ) · v`(x−j )− (A`ϕ

∗
`,h,v`)Ij

= (f∗` ,v`)Ij + ϕ̂`,h(xj−1) · v`(x+
j−1)

for all (v1,v2,v3,v4) ∈ [P 2k(Ij)]
2 × P 2k(Ij)× P 2k(Ij)× [P 2k(Ij)]

2. Here we have
used the obvious definitions of ϕ∗`,h and ϕ̂`,h, and A` and f∗` are the same as above.
We have also employed the following notation. For two vector-valued functions ϕ
and v in [L2(Ij)]

m

(ϕ,v)Ij :=

∫
Ij

ϕ · v =

m∑
i=1

∫
Ij

ϕivi,

and “ · ” denotes the usual dot product of two vectors in Rm.
Next, we state our main result.

Theorem 3.4. Under the hypotheses of Theorem 3.1, the error of the post-processed
approximation is such that

(24) ‖ϕ−ϕ∗h‖0,Ωh
≤ C h2k+1
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for some constant C independent of h and d.

Remark 3.5. This theorem extends earlier results by Celiker and Cockburn for
DG methods for convection-diffusion problems in [3], and for Timoshenko beams
in [2]. The main difficulty here arises from considering an arbitrary geometry for
the arch which results in the appearance of the additional variables u and N in the
governing equations. Moreover, the transverse displacement u is coupled with the
tangential displacement w, and the shear stress T is coupled with the membrane
stress N , as can be seen from (2a)–(2b) and (2e)–(2f), respectively. Consequently,
for the post-processing we have to solve a system of equations, rather than a set
of scalar equations, as is evident from (22). This renders the analysis of the post-
processing of DG methods for arches considerably more involved than that of the
DG methods for beams. Let us note that extending a result for beams to one for
arches is analogous to extending a result for plates to one for shells and hence poses
several challenges.

Remark 3.6. Since the constant C appearing in the estimate (24) is independent
of the thickness parameter d, the post-processed solution is free from shear and
membrane locking.

Remark 3.7. The estimate (24) shows that the post-processed approximation
converges with order 2k+ 1 throughout the computational domain. This should be
contrasted with the fact that before post-processing the approximation converges
with the optimal order or k + 1. Hence, for k ≥ 1, the order of convergence is
almost doubled by the local post-processing.

Remark 3.8. The value of the increase in the convergence order mentioned in the
above remark becomes more evident if we calculate the computational cost of this
post-processing. Since it is performed in an element-by-element fashion the total
cost is N times the cost on one element. Therefore it is extremely inexpensive.
More explicitly, Steps 1 and 4 require solving linear systems of order 2(2k+ 1), and
Steps 2 and 3 can be performed by inverting a single linear system of order 2k+ 1.
It is thus easy to see that the computational cost of the post-processing is negligible
when compared to that of computing the original DG solution which, in general,
requires solving a linear system of order 6N (k + 1).

4. Proofs

In this section we give detailed proofs of our results in Section 3. We begin with
the proof of Theorem 3.2. It is based on the following lemma which was proved in
[5]. We also provide a proof here for the sake of completeness.

Lemma 4.1. Let r be a non-negative integer. Let f, g ∈ P r([a, b]) be such that

(25) f(a) = g(a) = 0.

Suppose that

(26) Pr(g
′ + αf) = 0 and Pr(f

′ − αg) = 0,

where α is a function in L∞([a, b]) and Pr denotes the L2-orthogonal projection
into P r([a, b]). Then f = g = 0 in [a, b] if

[(a)]α is identically equal to a constant, or α is not identically equal
to a constant and

(27) b− a ≤ 1

2‖α− α‖L∞([a,b])

where α denotes the average value of α over the interval [a, b].
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(1)(2) Proof. By (26), we have that

g′ + Pr(αf) = 0,(28a)

f ′ − Pr(αg) = 0,(28b)

pointwise on [a, b]. Multiplying (28a) by g and (28b) with f we get

1

2
(g2)′ + gPr(αf) = 0,

1

2
(f2)′ − fPr(αg) = 0,

and hence

(29)
1

2
(g2 + f2)′ = fPr(αg)− gPr(αf) = fPr((α− α)g)− gPr((α− α)f)

since −fPr(αg) + gPr(αf) = 0 because α is a constant and f, g ∈ P r([a, b]). In-
tegrating both sides of (29) from a to an arbitrary x in [a, b], and using (25), we
obtain

1

2
(g2 + f2)(x) = T1(x) + T2(x)

where

T1(x) =

∫ x

a

f(s)Pr((α− α)g)(s) ds, T2(x) = −
∫ x

a

g(s)Pr((α− α)f)(s) ds.

By Cauchy-Schwarz inequality

|T1(x)| ≤ ‖f‖L2([a,b])‖(α− α)g‖L2([a,b])

≤ ‖α− α‖L∞([a,b])‖f‖L2([a,b])‖g‖L2([a,b]).

Similarly,

|T2(x)| ≤ ‖α− α‖L∞([a,b])‖f‖L2([a,b])‖g‖L2([a,b]),

and hence
1

2
(g2 + f2)(x) ≤ 2‖α− α‖L∞([a,b])‖f‖L2([a,b])‖g‖L2([a,b]).

Integrating both sides over x ∈ [a, b] implies

1

2
(‖f‖2L2([a,b]) + ‖g‖2L2([a,b])) ≤ 2(b− a)‖α− α‖L∞([a,b])‖f‖L2([a,b])‖g‖L2([a,b])

≤ (b− a)‖α− α‖L∞([a,b])(‖f‖2L2([a,b]) + ‖g‖2L2([a,b]))

by Young’s inequality. Thus,

(30)

[
1

2
− (b− a)‖α− α‖L∞([a,b])

]
(‖f‖2L2([a,b]) + ‖g‖2L2([a,b])) ≤ 0.

Now, if α is identically constant on [a, b] then α = α and the result follows since
in such a case (30) implies ‖f‖2L2([a,b]) + ‖g‖2L2([a,b]) = 0. If α is not identically

constant on [a, b] then we reach the same conclusion by (27).
This completes the proof. �

We are now ready to prove Theorem 3.2.

Proof. (Theorem 3.2) We only prove the existence and uniqueness of Step 1 of the
post-processing. Steps 2 and 3 are well defined since they are nothing but the
classical DG method applied to first order problems on a single element. Step 4 is
almost identical to Step 1.

Due to the linearity of the problem it suffices to show that the only solution to
(17) with

p = q = 0 in Ij ,
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and

T̂h(xj−1) = N̂h(xj−1) = 0,

is

T ∗h = N∗h = 0 in Ij .

In this case, the equations (17) simplify to

−(T ∗h , v
′
1)Ij + T ∗h (x−j )v1(x−j ) + (κN∗h , v1)Ij = 0,(31a)

−(N∗h , v
′
2)Ij +N∗h(x−j )v2(x−j )− (κT ∗h , v2)Ij = 0,(31b)

Taking v1 = T ∗h in (31a) and v2 = N∗h in (31b), and adding the resulting equations
we get

−(T ∗h , (T
∗
h )′)Ij + (T ∗h (x−j ))2 − (N∗h , (N

∗
h)′)Ij + (N∗h(x−j ))2 = 0.

This implies,

1

2

[
(T ∗h )2(x+

j−1) + (T ∗h )2(x−j )
]

+
1

2

[
(N∗h)2(x+

j−1) + (N∗h)2(x−j )
]

= 0.

Hence,

(32) T ∗h (x+
j−1) = T ∗h (x−j ) = N∗h(x+

j−1) = N∗h(x−j ) = 0.

This further simplifies (31) to

−(T ∗h , v
′
1)Ij + (κN∗h , v1)Ij = 0,

−(N∗h , v
′
2)Ij − (κT ∗h , v2)Ij = 0,

Upon a simple integration by parts and invoking (32) we get that

((T ∗h )′ + κN∗h , v1)Ij = 0, and ((N∗h)′ − κT ∗h , v2)Ij = 0.

for all v1 and v2 in P r([a, b]). In other words,

Pr((T
∗
h )′ + κN∗h , v1) = 0, and Pr((N

∗
h)′ − κT ∗h , v2) = 0.

The result now follows from Lemma 4.1. �

Next, we prove Theorem 3.4. Recall that we were able to put our post-processing
into a single framework given by (23) as an approximation to the first-order system
of ODEs (22). This motivates the study of the following more general initial value
problem

(33)
u′(x)−A(x)u(x) = f(x) for x ∈ K = (a, b),

u(a) = ua

where u : [a, b] → Rm, for some integer m ≥ 1, is the unknown function, and
f : [a, b] → Rm is a given function. We assume that A is a given m ×m matrix
such that there exists a unique solution to (33). Observe that such a condition is
satisfied for the cases we are interested in this paper.

Let r ≥ 0 be a polynomial degree and suppose that we approximate u by the
function uh ∈ [P r(K)]m defined by requiring that the equation

(34) −(uh,v
′)K + uh(b−) · v(b−)− (Auh,v)K = (f∗,v)K + u∗a · v(a+)

holds for all v ∈ [P r(K)]m. Here, f∗ is an approximation to f such that

(35) ‖f − f∗‖0,K ≤ C hr+1
K ,

and u∗a is an approximation to ua such that

(36) |ua − u∗a| ≤ C hr+1
K
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where hK = b − a. The magnitude of the vector v ∈ Rm is denoted by |v|, and
we have extended the definitions of Sobolev norms and seminorms to vector-valued
functions in an obvious fashion. We assume that the matrix A is such that the
method (34) defines a unique solution. We also suppose that all the components of
the matrix A, and of the vector-valued functions f and f∗ are in Hr+1(K).

It is not difficult to see that the proof of Theorem 3.4 follows from a successive
application of the following theorem which provides an optimal error estimate for
the method defined by (34).

Theorem 4.2. Suppose that we approximate the solution of the initial value prob-
lem (33) by the method (34). Then, for sufficiently small hK , we have the error
estimate

(37) ‖u− uh‖0,K ≤ Chr+1
K

where C is a constant independent of hK .

Remark 4.3. More general DG methods were introduced and analyzed for the
initial value problem (33) by Delfour et al. in [9]. They have proved optimal error
estimates as in (37). The same problem has also been studied by Erikkson et al. in
[11], and by Thomée in [17]. They have proved optimal L∞ error estimates under
more restrictive regularity requirements. Moreover, their analysis is restricted to
symmetric and positive definite A.

Remark 4.4. Observe that the method (34) differs from those studied in [9, 11, 17]
in the sense that we have to use approximate data f∗ and u∗a since this is precisely
what we need for our purposes. Moreover, the analysis we provide in this paper
is significantly different from the ones that have appeared in the literature. More
explicitly, we employ projection operators tailored to the special structure of the
method.

Next we describe these projection operators. For any ψ ∈ H1(K), the function
π±ψ ∈ P r(K) is defined on the interval K = [a, b] by

(ψ − π±ψ, v)K = 0 ∀v ∈ P r−1(K), if r > 0,(38a)

(π−ψ)(b−) = ψ(b−), (π+ψ)(a+) = ψ(a+).(38b)

The projection operators π± acting on vector-valued functions ψ : K → Rm are
defined by (38) applied to each component function. Notwithstanding the fact that
these projection operators have been widely used for the analysis of DG methods
applied to various problems, [1, 2, 3, 6, 8, 10, 12, 15, 18] in our analysis we uncover
a new superconvergence property of the projection of the error which, to the best of
our knowledge, has not appeared in the literature for the analysis of DG methods
for the initial value problem (33).

The approximation properties of π±, namely, that there exists a constant C
independent of ψ such that

(39) ‖ψ − π±ψ‖0,K ≤ Chs+1
k |ψ|s+1,K

for any s ∈ [0, r], can be found in the references cited above. Theorem 4.2 follows
from the above approximation property, the triangle inequality

‖u− uh‖0,K ≤ ‖u− π−u‖0,K + ‖π−u− uh‖0,K ,
and the following superconvergence result for π−eu.
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Theorem 4.5. Suppose that hK is sufficiently small. Then, we have that

(40) ‖π−eu‖0,K ≤ C hr+3/2
K

where C is a constant which is independent of hK . Moreover, if

(41) |ua − u∗a| ≤ Chr+3/2
K , or ua = u∗a,

then

(42) ‖π−eu‖0,K ≤ C hr+2
K .

The proof of this theorem will be based on a duality argument. We thus begin
with introducing the dual problem for any given η : K = [a, b]→ Rm in L2(K):

ψ′ +ATψ = η in K,(43a)

ψ(b) = 0.(43b)

We have the following regularity for the solution of this problem.

Lemma 4.6. Let ψ be the solution of (43). Then

(44) |ψ|1,K +
1

hK
‖ψ‖0,K ≤ C‖η‖0,K ,

where the constant C is independent of the datum η.

Proof. By the basic theory of first order linear systems of differential equations we
have, for any σ ∈ [a, b], that

ψ(x) = Ψ(x)Ψ−1(σ)ψ(σ) + Ψ(x)

∫ x

σ

Ψ−1(s)η(s) ds

where Ψ(·) is the fundamental matrix associated with −AT . Thus, due to the zero
boundary condition at x = b, (43b),

ψ(x) = Ψ(x)

∫ x

b

Ψ−1(s)η(s) ds.

The boundedness of Ψ and Ψ′ imply

|ψ|1,K ≤ C|g|1,K and ‖ψ‖0,K ≤ C‖g‖0,K
where g :=

∫ x
b
η(s) ds. The first part of the regularity estimate (44) then follows

from the fact that |g|1,K = ‖g′‖0,K = ‖η‖0,K . To prove the second part, we get,
by a simple application of Cauchy-Schwarz inequality that

‖ψ‖20,K ≤ C‖g‖20,K = C

∫ b

a

[∫ x

b

η(s)ds

]2

dx

≤ C
∫ b

a

∣∣∣ ∫ x

b

ds
∣∣∣∣∣∣ ∫ x

b

|η(s)|2ds
∣∣∣ dx

≤ C hK‖η‖20,K
∫ b

a

dx

= C h2
K‖η‖20,K .

Hence, ‖ψ‖0,K ≤ C hK‖η‖0,K . This finishes the proof. �

As expected, one of the main ingredients of our error analysis is an error equation.
Inserting the exact solution u of (33) into the DG formulation (34) we get

(45) −(eu,v
′)K + eu(b−) · v(b−)− (Aeu,v)K = (f − f∗,v)K + (ua −u∗a) · v(a+)
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for all v ∈ [P r(K)]m. Note that the quantity on the right-hand side can be viewed
as a consistency error due to the fact that we are approximating the solution u of
(33) by using approximate data f∗ and u∗a. If the data are exact, namely, f = f∗

and u∗a = ua then we recover a classical Galerkin orthogonality property.
The orthogonality property (38a) of the projection operator π−, and some simple

algebraic manipulations yield an alternative form of (45) which is more amenable
to our analysis

(46)
−(π−eu,v

′)K + (π−eu)(b−) · v(b−)− (A ξ−u ,v)K − (Aπ−eu,v)K

= (f − f∗,v)K + (ua − u∗a) · v(a+)

where we have introduced the notation

(47) ξ±u := u− π±u.
Next, we state a technical lemma.

Lemma 4.7. Consider the dual problem (43) and the method (34) approximating
the solution of (33). Then we have the following representation formula

(48)
(π−eu, η)K =− (A ξ−u , ψ)K + (A ξ−u , ξ

+
ψ)K + (Aπ−eu, ξ

+
ψ)K

− (f − f∗, π+ψ)K − (ua − u∗a) · (π+ψ)(a+).

We delay the proof of this lemma to the end of this section.
We are now ready to prove Theorem 4.5.

Proof. (Theorem 4.5) Setting η = π−eu in (48) gives

(49) ‖π−eu‖20,K =

5∑
i=1

Ti

where

T1 = −(Aξ−u , ψ)K ,

T2 = (A ξ−u , ξ
+
ψ)K ,

T3 = (Aπ−eu, ξ
+
ψ)K ,

T4 = −(f − f∗, π+ψ)K ,

T5 = −(ua − u∗a) · (π+ψ)(a+).

An estimate of ‖π−eu‖0,K now follows by estimating Ti for i = 1, . . . , 5. By Cauchy-
Schwarz inequality we have

|T1| ≤ ‖Aξ−u‖0,K‖ψ‖0,K ≤ C‖ξ−u‖0,K‖ψ‖0,K
where we have used the regularity assumption on the matrix A, namely, that all
component of A are in Hr+1(K), and hence in L2(K). By the approximation
properties, (39), of π−, and the regularity of the dual problem, (44), we have that

(50)
|T1| ≤ C hr+1

K |u|r+1,K · ChK‖η‖0,K
≤ C hr+2

K ‖π−eu‖0,K
where we have absorbed |u|r+1,K in the constant C. Similarly,

(51)

|T2| ≤ ‖Aξ−u‖0,K‖ξ+
ψ‖0,K

≤ C hr+1
K |u|r+1,K · C hK |ψ|1,K

≤ C hr+2
K |u|r+1,K |ψ|1,K

≤ C hr+2
K ‖π−eu‖0,K ,
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and

(52)

|T3| ≤ ‖Aπ−eu‖0,K‖ξ+
ψ‖0,K

≤ C‖π−eu‖0,K · C hK |ψ|1,K
≤ C hK‖π−eu‖0,K |ψ|1,K
≤ C hK‖π−eu‖20,K .

Note that by the continuity of the projection operator π+ and the regularity,
(44), of the dual problem we have

(53) ‖π+ψ‖0,K ≤ C‖ψ‖0,K ≤ ChK‖η‖0,K = ChK‖π−eu‖0,K .

An estimate on T4 now follows simply by the assumption (35). Indeed,

(54)

|T4| ≤ ‖f − f∗‖0,K‖π+ψ‖0,K
≤ C hr+1

K · ChK‖π−eu‖0,K
≤ C hr+2

K ‖π−eu‖0,K .
To estimate T5 we will use the inverse estimate

|(π+ψ)(a+)| ≤ ‖π+ψ‖L∞(K) ≤ Ch
−1/2
K ‖π+ψ‖0,K

which can be found, for example, in (p. 149 of) [16]. Now, using (53), we get

(55) |(π+ψ)(a+)| ≤ Ch1/2
K ‖π−eu‖0,K .

The estimate

(56) |T5| ≤ C hr+3/2
K ‖π−eu‖0,K .

then follows from (55) and the assumption (36).
Inserting the estimates (50)–(52), (54), and (56) into (49) we obtain

‖π−eu‖20,K ≤ Chr+2
K ‖π−eu‖0,K + ChK‖π−eu‖20,K + Ch

r+3/2
K ‖π−eu‖0,K

≤ Chr+3/2
K ‖π−eu‖0,K + ChK‖π−eu‖20,K .

If we assume that hK is small enough so that ChK < 1 then

‖π−eu‖20,K ≤ Chr+3/2
K ‖π−eu‖0,K

and the estimate (40) follows.
Observe that the loss of half a power of hK is caused only by the estimate of

the term T5. In particular, if (41) is satisfied then we recover the one-full-order-
superconvergent estimate (42). This finishes the proof. �

It remains to prove Lemma 4.7.

Proof. (Lemma 4.7) By the definition, (43a), of ψ

(57)
(π−eu, η)K = (π−eu, ψ

′)K + (π−eu, A
Tψ)K

= (π−eu, ψ
′)K + (Aπ−eu, ψ)K

Let us work on the first term on the right-hand side. By (47) we have

(π−eu, ψ
′)K = (π−eu, (ξ+

ψ)′)K + (π−eu, (π+ψ)′)K .
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Integrating by parts on the first term on the right-hand side and using the definition,
(38), of π+ we get

(58)

(π−eu, ψ
′)K = (π−eu)(b−) · ξ+

ψ(b−) − (π−eu)(a+) · ξ+
ψ(a+)

− ((π−eu)′, ξ+
ψ)K + (π−eu, (π+ψ)′)K

= (π−eu)(b−) · ξ+
ψ(b−) + (π−eu, (π+ψ)′)K .

Taking v = π+ψ in (46) we get

(π−eu, (π+ψ)′)K = (π−eu)(b−) · (π+ψ)(b−)

− (Aξ−u , π
+ψ)K − (Aπ−eu, π

+ψ)K

− (f − f∗, π+ψ)K − (ua − u∗a) · (π+ψ)(a+).

Inserting this into (58) we get

(π−eu, ψ
′)K =− (Aξ−u , π

+ψ)K − (Aπ−eu, π
+ψ)K

− (f − f∗, π+ψ)K − (ua − u∗a) · (π+ψ)(a+)

where we have used the fact that

(π−eu)(b−) · ξ+
ψ(b−) + (π−eu)(b−) · (π+ψ)(b−)

= (π−eu)(b−) ·ψ(b−) by (47)

= 0 by (43b).

Inserting the last identity into (57) we obtain

(π−eu, η)K =− (Aξ−u , π
+ψ)K − (Aπ−eu, π

+ψ)K + (Aπ−eu, ψ)K

− (f − f∗, π+ψ)K − (ua − u∗a) · (π+ψ)(a+)

=− (Aξ−u , π
+ψ)K + (Aπ−eu, ξ

+
ψ)K

− (f − f∗, π+ψ)K − (ua − u∗a) · (π+ψ)(a+).

The identity (48) now follows since

(Aξ−u , π
+ψ)K = (Aξ−u , ψ)K − (Aξ−u , ξ

+
ψ)K

by (47). �

5. Numerical Results

In this section, we display numerical results verifying our theoretical finding.
We verify numerically that the post-processing technique introduced in Section 3
results in a better approximation which converges to the exact solution with order
2k + 1 in the L2-norm inside the elements, rather than merely at the nodes of the
mesh. Finally, we show that this post-processing does not deteriorate even when
the parameter d is extremely small. The fact that the original DG approximation
converges with the optimal order k + 1 in the L2-norm and with order 2k + 1 at
the nodes of the mesh have been proved and numerically verified in [5]. Thus we
display only the history of convergence of the post-processed approximation.

In our experiments we consider two problems. In either problem we approximate
the solution of (2)-(3) subject to homogeneous boundary conditions, namely, we
take

w0 = w1 = u0 = u1 = θ0 = θ1 = 0.

In both examples we take κ ≡ 1 which corresponds to a circular arch. Although
the theory has been carried out for arches with arbitrary geometry and κ can be
any L∞(Ωh) function which satisfies the mild restriction (11), we have to consider
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a circular arch since we need to compute the exact solution to the problem so that
we can carry out a history of convergence study. We first employ the DG method
defined by (4) with the numerical traces given by (5)-(7) which are obtained by
setting

C16 = C25 = C34 = C43 = C52 = C61 = −1

for all x in Eh, except C16 = C25 = C34 = 0 on ∂Ω, and setting all the other
coefficients to zero. Observe that these coefficients satisfy the conditions provided
by (12)-(15), and hence the numerical traces of the DG solution are superconvergent
of order 2k+1 by Theorem 3.1. The post-processing is then computed in an element-
by-element fashion as described in Steps 1–4 of Section 3. The only difference
between the two problems arise from the loading of the arch. In the first example
we take

p ≡ q ≡ 1 in Ω

which corresponds to an arch which is loaded uniformly in both the transverse and
tangential directions. In the second example, we take

p ≡ 0, q ≡ d−2 in Ω

which corresponds to a so-called membrane arch. It has no tangential loads and
is loaded very strongly in the transverse direction. The transverse load is taken
inversely proportional to the square of the thickness of the arch due to the fact that
the membrane arch is well-known to become extremely stiff as d converges to zero,
and it becomes impossible to observe meaningful displacements unless such large
transverse loads are applied. We have observed this phenomenon in our numerical
experiments as well.

We display our numerical results in Tables 1 and 2. Therein k indicates the
polynomial degree we used to define the DG method, and “mesh = i” means we
employed a uniform mesh with 2i elements. This also means that the post-processed
approximation is a piecewise polynomial of degree at most 2k on each element. We
display the numerical orders of convergence which are computed as follows. Let
‖e∗(i)‖0 denote the L2(Ωh)-norm of the error where a uniform mesh with 2i ele-
ments has been employed to obtain the DG approximation and its post-processing.
For brevity, rather than displaying the error for each individual unknown, we dis-
play the total error defined as

‖e∗‖0 :=
(
‖e∗w‖20 + ‖e∗u‖20 + ‖e∗θ‖20 + ‖e∗M‖20 + ‖e∗N‖20 + ‖e∗T ‖20

)1/2
.

The order of convergence, ri, at the level i is then defined as

ri =
log
(
‖e∗(i−1)‖0
‖e∗(i)‖0

)
log 2

.

In light of Theorem 3.4, we expect this quantity to approach 2k+1 in the asymptotic
regime. Furthermore, in order to verify that the quality of the post-processed
approximation does not deteriorate as d becomes very small, we take d = 10−1 and
then decrease it down to d = 10−8.

In Tables 1 and 2 we display our numerical results for the first and the second
examples, respectively. In both cases we clearly see that the post-processed approx-
imation converges with order 2k+ 1 to the exact solution as predicted by Theorem
3.4. Moreover, these results do not deteriorate as the parameter d becomes ex-
tremely small and the convergence of the post-processed solution is robust with
respect to d. This verifies the theoretically expected fact that the DG methods
as well as their post-processing is free from shear and membrane locking. This is
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Table 1. History of convergence of the post-processed DG ap-
proximation for the first problem.

d = 10−1 d = 10−4 d = 10−8

k mesh ‖e∗‖0 order ‖e∗‖0 order ‖e∗‖0 order

5 3.01E-05 3.04 3.27E-06 3.06 3.27E-06 3.06
1 6 3.71E-06 3.02 4.00E-07 3.03 4.00E-07 3.03

7 4.60E-07 3.01 4.95E-08 3.02 4.95E-08 3.02
8 5.73E-08 3.01 6.15E-09 3.01 6.15E-09 3.01

5 1.72E-10 4.92 1.96E-10 4.92 1.96E-10 4.92
2 6 5.57E-12 4.95 6.30E-12 4.96 6.30E-12 4.96

7 1.78E-13 4.97 2.00E-13 4.98 2.00E-13 4.98
8 5.62E-15 4.98 6.28E-15 4.99 6.28E-15 4.99

4 8.88E-14 7.19 2.43E-15 7.86 2.43E-15 7.86
3 5 6.41E-16 7.12 1.08E-17 7.81 1.08E-17 7.81

6 4.79E-18 7.06 5.20E-20 7.70 5.20E-20 7.70
7 3.66E-20 7.03 2.84E-22 7.52 2.84E-22 7.52

Table 2. History of convergence of the post-processed DG ap-
proximation for the second problem.

d = 10−1 d = 10−4 d = 10−8

k mesh ‖e∗‖0 order ‖e∗‖0 order ‖e∗‖0 order

5 3.00E-03 3.04 2.14E-01 3.04 2.14E-01 3.04
1 6 3.69E-04 3.02 2.64E-02 3.02 2.64E-02 3.02

7 4.58E-05 3.01 3.28E-03 3.01 3.28E-03 3.01
8 5.70E-06 3.01 4.08E-04 3.01 4.08E-04 3.01

5 1.14E-09 5.50 1.12E-07 4.51 1.12E-07 4.51
2 6 8.34E-11 3.78 6.84E-09 4.04 6.84E-09 4.04

7 3.39E-12 4.62 2.68E-10 4.67 2.68E-10 4.67
8 1.18E-13 4.84 9.25E-12 4.86 9.25E-12 4.86

5 6.41E-14 7.11 4.99E-12 7.11 4.99E-12 7.11
3 6 4.79E-16 7.06 3.74E-14 7.06 3.74E-14 7.06

7 3.66E-18 7.03 2.86E-16 7.03 2.86E-16 7.03
8 2.83E-20 7.02 2.21E-18 7.02 2.21E-18 7.02

remarkable especially for the membrane arch since the behavior of its solution is
extremely sensitive to the value of the thickness of the arch, especially for small
values of the parameter d.

6. Conclusion

We introduced and numerically tested a remarkably efficient and inexpensive
post-processing method for the DG solutions for the Naghdi arch problem. Al-
though the DG approximation converges with order k + 1 when polynomials of
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degree k are used, the post-processed approximation superconverges with order
2k + 1. The post-processing exploits the fact that the numerical traces of the DG
method converge with order 2k+1. This result holds independently of the thickness
parameter d, which shows that the post-processing as well as the DG methods are
free from shear and membrane locking.
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