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AN ELASTO-VISCOPLASTIC CONTACT PROBLEM: AN A

POSTERIORI ERROR ANALYSIS AND COMPUTATIONAL

EXPERIMENTS

JOSÉ R. FERNÁNDEZ

Abstract. In this paper, we reconsider a contact problem between an elasto-viscoplastic body
and a deformable obstacle. The contact is modeled by the classical normal compliance contact
condition. Then, fully discrete approximations are obtained by using the finite element method
to approximate the spatial variable and the forward Euler scheme to discretize time derivatives.
An a posteriori error analysis is provided and upper and lower error bounds are obtained. Finally,
some two-dimensional numerical simulations are presented to demonstrate the accurary and the
behavior of the error estimators.
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1. Introduction

During the past twenty years many problems have been studied dealing with
elasto-viscoplastic materials modeled using the constitutive law introduced in [9]
(see the monograph [19] and its references). Then, numerous nonlinear problems
including this kind of materials (as, for instance, contact problems) were considered
(see, e.g., [1, 2, 5, 6, 10, 13, 16, 24, 25, 26], the well-written monograph [17] and the
large number of references cited therein). We note that, as it was justified in [9],
this law is mechanically correct and it can be used for the modeling of some types
of metals or rocks since it allows both creep and relaxation phenomena.

In this work, we revisite the contact problem between an elasto-viscoplastic body
and a deformable obstacle. The contact is modeled using the classical normal
compliance contact law described, for example, in [20, 21]. This problem was
already studied in [14] (see also the paper [11] where internal variables were also
considered). A priori error estimates were proved there (see Section 3 where they are
recalled) and numerical simulations were provided in order to show the accuracy of
the algorithm and the behavior of the solution. However, even if many other papers
were published since then, only a priori error estimates were obtained. Recently,
an a posteriori error analysis was presented in [12] in the case without contact,
extending some arguments already applied in the study of the heat equation (see,
e.g., [22, 23, 28]), some parabolic equations ([3]) or the Stokes equation ([4]). Hence,
this work continues the above referenced work by Fernández and Hild [12], extending
the analysis presented there to the case including the contact with a deformable
obstacle and also the previous paper [14], where the a priori error analysis was
conducted. Moreover, here we also perform several two-dimensional numerical si-
mulations in order to demonstrate the accuracy of the algorithm and the behavior
of the error estimators.

The paper is outlined as follows. In Section 2 the mechanical model and its
variational formulation are briefly described following the notation and assumptions
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introduced in [14]. Then, fully discrete approximations are provided in Section 3,
by using the finite element method to approximate the spatial variable and the
forward Euler scheme to discretize the time derivatives. An a priori error analysis
obtained in [14] is recalled. Then, by using some results obtained in the study of
the heat equation, an a posteriori error analysis is done in Section 4, providing an
upper bound for the error, Theorem 4.1, and a lower bound, Theorem 4.2. Finally,
some two-dimensional numerical simulations are presented in Section 5 in order to
demonstrate the accuracy and the behavior of the error estimators introduced in
the previous section.

2. Mechanical and variational formulations

In this section, we present a brief description of the contact problem between an
elasto-viscoplastic body and a deformable obstacle (further details can be found in
[14, 17]).

Denote by S
d the space of second order symmetric tensors on R

d and by “·” and
| · | the inner product and the Euclidean norms on R

d and S
d.

Let Ω ⊂ R
d, d = 2, 3, denote a domain occupied by an elasto-viscoplastic body

with a smooth boundary Γ = ∂Ω decomposed into three disjoint parts ΓD, ΓF and
ΓC such that meas (ΓD) > 0 and meas (ΓC) > 0. Moreover, let [0, T ], T > 0, be
the time interval of interest and denote by ν the unit outer normal vector to Γ.
The body is being acted upon by a volume force of density f0, it is clamped on
ΓD and surface tractions with density fF are applied on ΓF . Finally, we assume
that the body may come in contact with a deformable obstacle, on the boundary
part ΓC , which is located at a distance g measured along the outward unit normal
vector ν (see FIGURE 1).

Figure 1. Physical setting: an elasto-viscoplastic body in contact
with a deformable obstacle.

Let x ∈ Ω and t ∈ [0, T ] be the spatial and time variables, respectively, and, in
order to simplify the writing, we do not indicate the dependence of the functions
on x and t. Moreover, a dot above a variable represents the derivative with respect
to the time variable.

Let us denote by u = (ui)
d
i=1, σ = (σij)

d
i,j=1 and ε(u) = (εij(u))

d
i,j=1 the

displacement field, the stress tensor and the linearized strain tensor, respectively.
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We recall that

εij(u) =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

.

The body is assumed elasto-viscoplastic and satisfying the following rate-type
constitutive law (see [9, 14]),

(1) σ̇ = Eε(u̇) + G(σ, ε(u)),

where E and G denote the fourth-order elastic tensor and the viscoplastic function,
respectively.

We turn now to describe the boundary conditions.
On the boundary part ΓD we assume that the body is clamped and thus the

displacement field vanishes there (and so u = 0 on ΓD × (0, T )). Moreover, we
assume that a density of traction forces, denoted by fF , is applied on the boundary
part ΓF ; i.e.

σν = fF on ΓF × (0, T ).

Finally, since the contact is assumed with a deformable obstacle, the well-known
normal compliance contact condition is employed (see [20, 21]); that is, the normal
stress σν = σν · ν on ΓC is given by

−σν = p(uν − g) on ΓC × (0, T ),

where uν = u ·ν denotes the normal displacement in such a way that, when uν > g,
the difference uν − g represents the interpenetration of the body’s asperities into
those of the obstacle. The normal compliance function p is prescribed and satisfies
p(r) = 0 for r ≤ 0, since then there is no contact. As an example, we use in Section
5 the following function,

(2) p(r) = µ r+,

where µ > 0 represents a deformability constant (that is, it denotes the stiffness
of the obstacle), and r+ = max {0, r}. Moreover, we also assume that the contact
is frictionless, i.e. the tangential component of the stress field, denoted by στ =
σν − σνν, vanishes on the contact surface.

Therefore, the mechanical formulation of the quasistatic contact problem bet-
ween an elasto-viscoplastic body and a deformable obstacle, within the small dis-
placements theory, is written as follows.

Problem P. Find a displacement field u : Ω × (0, T ) → R
d and a stress field

σ : Ω× (0, T ) → S
d such that,

σ̇ = Eε(u̇) + G(σ, ε(u)) in Ω× (0, T ),(3)

−Divσ = f0 in Ω× (0, T ),(4)

u = 0 on ΓD × (0, T ),(5)

σν = fF on ΓF × (0, T ),(6)

στ = 0, −σν = p(uν − g) on ΓC × (0, T ),(7)

u(0) = u0, σ(0) = σ0 in Ω.(8)

Here, u0 and σ0 represent initial conditions for the displacement field and the
stress tensor, respectively. Moreover, we notice that equilibrium equation (4) does
not include the acceleration term because the problem is assumed quasistatic.

In order to obtain the variational formulation of Problem P, let H = [L2(Ω)]d

and define the following variational spaces:

V = {w ∈ [H1(Ω)]d ; w = 0 on ΓD},
Q = {τ = (τij)

d
i,j=1 ∈ [L2(Ω)]d×d ; τij = τji, i, j = 1, . . . , d}.
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The following assumptions are required on the problem data.
The elastic tensor E(x) = (eijkl(x))

d
i,j,k,l=1 : τ ∈ S

d → E(x)(τ ) ∈ S
d satisfies:

(9)

(a) eijkl = eklij = ejikl for i, j, k, l = 1, . . . , d.
(b) eijkl ∈ L∞(Ω) for i, j, k, l = 1, . . . , d.
(c) There exists mE > 0 such that E(x)τ · τ ≥ mE |τ |2

∀ τ ∈ S
d, a.e. x ∈ Ω.

The viscoplastic function G : Ω× S
d × S

d → G(x)(τ , ε) ∈ S
d satisfies:

(10)

(a) There exists LG > 0 such that
|G (x,σ1, ε1)− G (x,σ2, ε2)| ≤ LG (|ε1 − ε2|+ |σ1 − σ2|)
for all ε1, ε2,σ1,σ2 ∈ S

d, a.e. x ∈ Ω.
(b) The function x→ G (x,σ, ε) is measurable.
(c) The mapping x→ G (x,0,0) belongs to Q.

The normal compliance function p : ΓC × R −→ R
+ satisfies:

(11)

(a) There exists Lν > 0 such that
|p(x, r1)− p(x, r2)| ≤ Lν |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ ΓC .

(b) The mapping x 7→ p(x, r) is Lebesgue measurable on ΓC , ∀r ∈ R.
(c) (p(x, r1)− p(x, r2)) · (r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ ΓC .
(d) The mapping x 7→ p(x, r) = 0 for all r ≤ 0.

The following regularity is assumed on the density of volume forces and tractions:

(12) f0 ∈ C1([0, T ];H), fF ∈ C1([0, T ]; [L2(ΓF )]
d).

Using Riesz’ theorem, from (12) we can define the element f(t) ∈ V given by

(f (t),w)V =

∫

Ω

f0(t) ·w dx+

∫

ΓF

fF (t) ·w dγ(x) ∀w ∈ V,

and then f ∈ C1([0, T ];V ).
Let us define the contact functional j : V × V → R as,

j(u,v) =

∫

ΓC

p(uν − g) vν dγ(x) ∀u,v ∈ V,

where we let vν = v · ν for all v ∈ V .
Finally, we assume that the initial displacement and stress fields satisfy the

following regularity and compatibility conditions,

(13)
u0 ∈ V, σ0 ∈ Q,
(σ0, ε(u0))Q + j(u0,u0) = (f(0),u0)V .

Using the previous boundary conditions and applying Green’s formula, we obtain
the following variational formulation of Problem P.

Problem VP. Find a displacement field u : [0, T ] → V and a stress field σ :
[0, T ] → Q such that u(0) = u0, σ(0) = σ0 and for a.e. t ∈ (0, T ),

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t))),(14)

(σ(t), ε(w))Q + j(u(t),w) = (f (t),w)V ∀w ∈ V.(15)

The existence of a unique weak solution to Problem VP has been considered in
[14]. The following theorem, which establishes the existence of a unique solution to
Problem VP, was proved there by using Banach fixed point theorem and well-known
results on nonlinear variational equations.

Theorem 2.1. Let assumptions (9)-(13) hold. Therefore, there exists a unique
solution to Problem VP such that u ∈ C1([0, T ];V ) and σ ∈ C1([0, T ];Q).
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3. Fully discrete approximations

In this section, we introduce a finite element algorithm to approximate solutions
to Problem VP and we recall an a priori error estimates result proved in [14].

The discretization of Problem VP is done as follows. First, we assume that Ω
is a polyhedral domain and we consider the finite dimensional spaces V h ⊂ V and
Qh ⊂ Q, approximating variational spaces V and Q, respectively, and given by

V h = {wh ∈ [C(Ω)]d ; wh
|T

∈ [P1(T )]
d T ∈ T h, wh = 0 on ΓD},(16)

Qh = {τh ∈ Q ; τh
|T

∈ [P0(T )]
d×d T ∈ T h},(17)

where Pq(T ), q = 0, 1, represents the space of polynomials of global degree less or

equal to q in T and we denote by T h a triangulation of Ω compatible with the
partition of the boundary Γ = ∂Ω into ΓD, ΓF and ΓC ; i.e. the finite element
space V h is composed of continuous and piecewise affine functions and the finite
element space Qh is made of piecewise constant functions. Here, h > 0 is the spatial
discretization parameter. Moreover, we assume that the discrete initial conditions,
denoted by uh

0 and σh
0 , are given by

(18) uh
0 = ΠV hu0, σh

0 = ΠQhσ0,

where ΠV h : [C(Ω)]d → V h and ΠQh : Q → Qh are the standard finite element

L2-projection operators onto V h and Qh, respectively (see, e.g., [7]).
Let us denote by 0 = t0 < t1 < . . . < tN = T a uniform partition of the time

interval [0, T ], and let k be the time step size, k = T/N . For a continuous function
f(t), let fn = f(tn) and for a sequence {wn}Nn=0 we let δwn = (wn − wn−1)/k be
its corresponding divided differences.

In order to simplify the writing and the calculations, we assume, without loss
of generality, that G(Qh, Qh) ⊂ Qh. It is straightforward to extend the results
presented in the next section to more general situations by using the operator ΠQh

(see [11]).
Therefore, using the classical forward Euler scheme, we obtain the following fully

discrete approximation of Problem VP.
Problem VPhk. Find a discrete displacement field uhk = {uhk

n }Nn=0 ⊂ V h and
a discrete stress field σhk = {σhk

n }Nn=0 ⊂ Qh such that uhk
0 = uh

0 , σ
hk
0 = σh

0 and
for all n = 1, . . . , N ,

δσhk
n = Eε(δuhk

n ) + G(σhk
n−1, ε(u

hk
n−1)),(19)

(σhk
n , ε(wh))Q + j(uhk

n ,wh) = (fn,w
h)V ∀wh ∈ V h.(20)

Using well-known results on nonlinear variational equations (see [15]), it is easy to
obtain the following theorem which states the existence of a unique discrete solution
uhk ⊂ V h and σhk ⊂ Qh to Problem VPhk.

Theorem 3.1. Let assumptions (9)-(13) hold. Therefore, there exists a unique
solution to Problem VPhk.

We recall now an a priori error estimates for Problem V P hk, which were proved
in [14] for the case of an implicit time scheme. Since the modifications are minor,
proceeding in a similar way we have the following.

Theorem 3.2. Let assumptions (9)-(13) hold. Let us denote by (u,σ) and (uhk,σhk)
the respective solutions to problems V P and V P hk. Therefore, there exists a posi-
tive constant c > 0, independent of the discretization parameters h and k, such that
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for all {wh
n}

N
n=0 ⊂ V h,

(21)
max

0≤n≤N

{

‖un − uhk
n ‖2V + ‖σn − σhk

n ‖2Q
}

≤ c
(

max
0≤n≤N

‖un −wh
n‖

2
V

+ max
0≤n≤N

IGn
+ ‖u0 − u

h
0‖

2
V + ‖σ0 − σ

h
0‖

2
Q

)

,

where the integration error IGn
is given by

IGn
=

∥

∥

∥

∥

∥

∥

∫ tn

0

G(σ(s), ε(u(s))) ds−
n
∑

j=1

kG(σj−1, ε(uj−1))

∥

∥

∥

∥

∥

∥

2

Q

.

These error estimates are the basis for the analysis of the convergence rate of
the algorithm. Hence, under additional regularity assumptions, we obtain the linear
convergence of the algorithm that we state in the following (see again [14]).

Corollary 3.3. Let the assumptions of Theorem 3.2 hold. Under the additional
regularity conditions

u ∈ C([0, T ]; [H2(Ω)]d), σ0 ∈ [H1(Ω)]d×d,

there exists a positive constant c > 0, independent of the discretization parameters
h and k, such that

(22) max
0≤n≤N

{

‖un − uhk
n ‖V + ‖σn − σhk

n ‖Q
}

≤ c(h+ k).

4. An a posteriori error analysis

In this section, we will use the finite element spaces and the notations introduced
in the previous two sections. Moreover, throughout this section, we will assume that
the mesh of the domain Ω may change during the time, and so, for any 0 < h < 1
and for any n = 0, 1, . . . , N , let T hn be a mesh of Ω composed of finite elements
T with diameter less than h. We will also assume that, for each n = 1, . . . , N ,
the mesh {(tn−1, tn) × T ; T ∈ T hn} is regular in the sense of [7] and, to simplify
the calculations, that T hn ⊂ T h(n−1). Thus, for any n = 1, . . . , N and for any
T ∈ T hn, let hn

T (respectively ρnT ) be the diameter of the smallest (resp. largest)
ball containing (resp. contained in) (tn−1, tn)×T . Therefore, there exists a positive
constant β such that

hn
T

ρnT
≤ β ∀T ∈ T hn, n = 1, . . . , N.

In order to simplify the writing and the calculations, in this section we assume
that fF = 0 and so (f ,w)V = (f ,w)H , where f = f0 ∈ C([0, T ];H). It is
straightforward to extend the results presented below to more general situations.

Moreover, for an element T ∈ T hn, we denote by Ehn
T its set of interior edges

or faces, and for the triangulation T hn, let us define as Ehn, Ehn
int and Ehn

C its set
of edges or faces, its set of interior edges or faces and its set of edges or faces that
belong to ΓC (i.e., Ehn

C = {E ∈ Ehn ; E ⊂ ΓC}), respectively.
Finally, the notation a . b means that there exists a positive constant c inde-

pendent of a and b (and of the discretization parameters) such that a ≤ cb. The
notation a ∼ b means that a . b and b . a hold simultaneously.
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Let us define the continuous and piecewise linear approximations in time given
by

uhτ (x, t) =
t− tn−1

k
uhk
n (x) +

tn − t

k
uhk
n−1(x) tn−1 ≤ t ≤ tn, x ∈ Ω,

σhτ (x, t) =
t− tn−1

k
σhk

n (x) +
tn − t

k
σhk

n−1(x) tn−1 ≤ t ≤ tn, x ∈ Ω.

Since u̇hτ = δuhk
n and σ̇hτ = δσhk

n , we can write discrete problem V P hk in the
following more general form, for n = 1, . . . , N ,

σ̇hτ = Eε(u̇hτ ) + G(σhk
n−1, ε(u

hk
n−1)),(23)

(σhτ (t), ε(wh))Q + j(uhτ ,wh) = (f (t),wh)H ∀wh ∈ V h, tn−1 ≤ t ≤ tn.(24)

We have the following theorem which provides an upper bound for the numerical
errors.

Theorem 4.1. Let assumptions (9)-(13) hold. Denote by (u,σ) the solution to
Problem VP and by (uhτ ,σhτ ) the continuous piecewise linear approximation of
the solution to Problem VPhk. Then

‖u− uhτ‖C([0,T ];V ) + ‖σ − σhτ‖C([0,T ];Q) . ‖u0 − u
h
0‖V + ‖σ0 − σ

h
0‖Q

+

N
∑

n=1

kηn1 + max
1≤n≤N

max
t∈[tn−1,tn]

ηn2 (t) + max
1≤n≤N

max
t∈[tn−1,tn]

ηn3 (t)

+ max
1≤n≤N

max
t∈[tn−1,tn]

ηn4 (t),

where the error estimators ηn1 , η
n
2 , η

n
3 and ηn4 are given by

ηn1 = ‖σhk
n − σhk

n−1‖Q + ‖uhk
n − uhk

n−1‖V ,(25)

ηn2 (t) =





∑

T∈T hn

|T |2‖f(t)‖2[L2(T )]d





1/2

,(26)

ηn3 (t) =





∑

T∈T hn

∑

E∈Ehn
T

|E|‖[σhτ (t)ν]‖2[L2(E)]d





1/2

(27)

ηn4 (t) =





∑

E∈Ehn
C

|E|‖σhτ
τ (t)‖2[L2(E)]d





1/2

+





∑

E∈Ehn
C

|E|‖p(uhτ
ν (t)) + σhτ

ν (t)‖2L2(E)





1/2

,(28)

and [τν] denotes the jump of τν across the edge or face E. Moreover, |T | and
|E| represent the size of the T and E, respectively. Note that, since the mesh is
assumed regular, we have |T | ∼ |E| ∼ h.

Proof. Proceeding as in [12], let us estimate the error on the stress field. Therefore,
integrate (14) and (23) between tn−1 and t ∈ (tn−1, tn] to obtain

σ(t) = Eε(u(t)) + σn−1 − Eε(un−1) +

∫ t

tn−1

G(σ(s), ε(u(s))) ds,

σhτ (t) = Eε(uhτ (t)) + σhk
n−1 − Eε(uhk

n−1) +

∫ t

tn−1

G(σhk
n−1, ε(u

hk
n−1)) ds,
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and therefore, by induction it follows that

σ(t) = Eε(u(t)) + σ0 − Eε(u0) +

n−1
∑

j=1

∫ tj

tj−1

G(σ(s), ε(u(s))) ds

+

∫ t

tn−1

G(σ(s), ε(u(s))) ds,(29)

σhτ (t) = Eε(uhτ (t)) + σh
0 − Eε(uh

0 ) +
n−1
∑

j=1

∫ tj

tj−1

G(σhk
j−1, ε(u

hk
j−1)) ds

+

∫ t

tn−1

G(σhk
n−1, ε(u

hk
n−1)) ds.(30)

By subtracting now (29) and (30), we find that

‖σ(t)− σhτ (t)‖Q . ‖u(t)− uhτ (t)‖V + ‖σ0 − σ
h
0‖Q + ‖u0 − u

h
0‖V

+

n−1
∑

j=1

∫ tj

tj−1

[‖σ(s)− σhk
j−1‖Q + ‖u(s)− uhk

j−1‖V ] ds

+

∫ t

tn−1

[‖σ(s)− σhk
n−1‖Q + ‖u(s)− uhk

n−1‖V ] ds ∀t ∈ (tn−1, tn],

and we immediately get (see [12] for details),

‖σ(t)− σhτ (t)‖Q . ‖u(t)− uhτ (t)‖V + ‖σ0 − σh
0‖Q + ‖u0 − uh

0‖V

+

∫ t

0

[‖σ(s)− σhτ (s)‖Q + ‖u(s)− uhτ (s)‖V ] ds

+

n
∑

j=1

k[‖σhk
j − σhk

j−1‖Q + ‖uhk
j − uhk

j−1‖V ] ∀t ∈ (tn−1, tn].

Next, we estimate the numerical errors on the displacement field. Then, we subtract
equation (15) for w = wh ∈ V h ⊂ V and equation (24) to obtain

(σ − σhτ , ε(wh))Q + j(u,wh)− j(uhτ ,wh) = 0 ∀wh ∈ V h.

Therefore, since uhτ ∈ V h, we have

(σ − σhτ , ε(u− uhτ ))Q + j(u,u− uhτ )− j(uhτ ,u− uhτ )

= (σ − σhτ , ε(u−wh))Q + j(u,u−wh)− j(uhτ ,u−wh) ∀wh ∈ V h.(31)

We consider the left-hand side of the previous equation. Using again equations (29)
and (30) it leads to the following,

(σ − σhτ , ε(u− uhτ ))Q + j(u,u− uhτ )− j(uhτ ,u− uhτ )
= (Eε(u− uhτ ), ε(u− uhτ ))Q + j(u,u− uhτ )− j(uhτ ,u− uhτ )
+(σ0 − σh

0 − Eε(u0 − uh
0 ), ε(u− uhτ ))Q

+(

∫ t

tn−1

[G(σ(s), ε(u(s)))− G(σhk
n−1, ε(u

hk
n−1))] ds, ε(u − uhτ ))Q

+
n−1
∑

j=1

(

∫ tj

tj−1

[G(σ(s), ε(u(s)))− G(σhk
j−1, ε(u

hk
j−1))] ds, ε(u− uhτ ))Q,
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and taking into account properties (9)–(11) and the previous algebra, we have

(Eε(u− uhτ ), ε(u− uhτ ))Q ≥ mE‖u− uhτ‖2V ,

j(u,u− uhτ )− j(uhτ ,u− uhτ ) ≥ 0,

|(σ0 − σh
0 − Eε(u0 − uh

0 ), ε(u − uhτ ))Q|
. (‖σ0 − σ

h
0‖Q + ‖u0 − u

h
0‖V )‖u− uhτ‖V ,

∣

∣

∣

(

∫ t

tn−1

[G(σ(s), ε(u(s)))− G(σhk
n−1, ε(u

hk
n−1))] ds, ε(u− uhτ )

)

Q

∣

∣

∣

+
∣

∣

∣

(

n−1
∑

j=1

∫ tj

tj−1

[G(σ(s), ε(u(s))) − G(σhk
j−1, ε(u

hk
j−1))] ds, ε(u − uhτ )

)

Q

∣

∣

∣

.
(

∫ t

0

[‖u(s)− uhτ (s)‖V + ‖σ(s)− σhτ (s)‖Q] ds

+

n
∑

j=1

k[‖σhk
j − σhk

j−1‖Q + ‖uhk
j − uhk

j−1‖V ]
)

‖u− uhτ‖V ,

and therefore, for all wh ∈ V h,

‖u− uhτ‖V . ‖σ0 − σh
0‖Q +

n
∑

j=1

k[‖σhk
j − σhk

j−1‖Q + ‖uhk
j − uhk

j−1‖V ]

+

∫ t

0

‖u(s)− uhτ (s)‖V + ‖σ(s)− σhτ (s)‖Q ds+ ‖u0 − u
h
0‖V

+(σ − σhτ , ε(u−wh))Q + j(u,u−wh)− j(uhτ ,u−wh).

Let w ∈ V and denote by Πh
C the Clément’s interpolant on the triangulation

T hn (see [8]). We recall that this operator satisfies:

‖w −Πh
Cw‖[L2(T )]d . |T |‖w‖[H1(∆T )]d ,

‖w −Πh
Cw‖[L2(E)]d . |E|1/2‖w‖[H1(∆T )]d ,

where ∆T denotes the set of elements having a common edge or face with T , and
E being an edge or a face of T .

We consider now the right-hand side of equation (31) which equals to

(f ,u−wh)H − (σhτ , ε(u−wh))Q − j(uhτ ,u−wh).

Taking wh = uhτ + Πh
C(u − uhτ ) in the previous expression, applying Green’s

formula on each finite element and using the approximation properties of Πh
C , it
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follows that

(f ,u−wh)H − (σhτ , ε(u−wh))Q − j(uhτ ,u−wh)

=
∑

T∈T hn

∫

T

(f +Div (σhτ )) · (u − uhτ −Πh
C(u− uhτ )) dx

−
∑

T∈T hn

∑

E∈Ehn
T

∫

E

σhτν · (u− uhτ −Πh
C(u − uhτ )) dγ(x)

+
∑

E∈Ehn
C

∫

E

σhτν · (u− uhτ −Πh
C(u− uhτ )) dγ(x)

+
∑

E∈Ehn
C

∫

E

p(uhτ
ν )(u− uhτ −Πh

C(u− uhτ ))ν dγ(x)

.
∑

T∈T hn

‖f +Div (σhτ )‖[L2(T )]d‖u− uhτ −Πh
C(u− uhτ )‖[L2(T )]d

+
∑

T∈T hn

∑

E∈Ehn
T

‖[σhτν]‖[L2(E)]d‖u− uhτ −Πh
C(u− uhτ )‖[L2(E)]d

+
∑

E∈Ehn
C

‖σhτ
τ ‖[L2(E)]d‖u− uhτ −Πh

C(u− uhτ )‖[L2(E)]d

+
∑

E∈Ehn
C

‖p(uhτ
ν ) + σhτ

ν ‖L2(E)‖u− uhτ −Πh
C(u − uhτ )‖[L2(E)]d

.
(

∑

T∈T hn

|T |2‖f‖2[L2(T )]d

)1/2( ∑

T∈T hn

‖u− uhτ‖2[H1(∆T )]d

)1/2

+
(

∑

T∈T hn

∑

E∈Ehn
T

|E|‖[σhτν]‖2[L2(E)]d

)1/2( ∑

T∈T hn

‖u− uhτ‖2[H1(∆T )]d

)1/2

+
(

∑

E∈Ehn
C

|E|‖σhτ
τ ‖2[L2(E)]d

)1/2( ∑

T∈T hn

‖u− uhτ‖2[H1(∆T )]d

)1/2

+
(

∑

E∈Ehn
C

|E|‖p(uhτ
ν ) + σhτ

ν ‖2L2(E)

)1/2( ∑

T∈T hn

‖u− uhτ‖2[H1(∆T )]d

)1/2

. (ηn2 (t) + ηn3 (t) + ηn4 (t))‖u − uhτ‖V ,

where we take into account that Div (σhτ ) = 0 in T , the decomposition

σhτν ·w = σhτ
τ ·wτ + σhτ

ν wν ∀w ∈ V,

and the notations

uhτ
ν = uhτ · ν, σhτ

ν = σhτν · ν, σhτ
τ = σhτν − σhτ

ν ν.

Combining the previous estimates, we conclude that

‖u(t)− uhτ (t)‖V + ‖σ(t)− σhτ (t)‖Q . ‖σ0 − σ
h
0‖Q + ‖u0 − u

h
0‖V

+

∫ t

0

[‖u(s)− uhτ (s)‖V + ‖σ(s)− σhτ (s)‖Q] ds

+
n
∑

j=1

k[‖σhk
j − σhk

j−1‖Q + ‖uhk
j − uhk

j−1‖V ] + ηn2 (t) + ηn3 (t) + ηn4 (t),
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for all t ∈ (tn−1, tn]. Using Gronwall’s inequality we find that

‖u− uhτ‖C([0,T ];V ) + ‖σ − σhτ‖C([0,T ];Q) . ‖u0 − u
h
0‖V + ‖σ0 − σ

h
0‖Q

+
N
∑

n=1

kηn1 + max
1≤n≤N

max
t∈[tn−1,tn]

ηn2 (t) + max
1≤n≤N

max
t∈[tn−1,tn]

ηn3 (t)

+ max
1≤n≤N

max
t∈[tn−1,tn]

ηn4 (t),

which concludes the proof. �

Now, we prove a lower bound for these error estimators that we provide in the
following.

Theorem 4.2. Let assumptions (9)-(13) hold. For all elements T ∈ T hn, the
following local lower error bounds are obtained for n = 1, . . . , N :

ηhn1T . ‖σ − σhτ‖C([tn−1,tn];[L2(T )]d×d) + ‖u− uhτ‖C([tn−1,tn];[H1(T )]d)

+‖un − un−1‖[H1(T )]d + ‖σn − σn−1‖[L2(T )]d×d ,
ηhn2T (t) . ‖σ(t)− σhτ (t)‖[L2(T )]d×d t ∈ (tn−1, tn],
ηhn3T (t) . ‖σ(t)− σhτ (t)‖[L2(∆T )]d×d t ∈ (tn−1, tn],
ηhn4T (t) . ‖σ(t)− σhτ (t)‖[L2(T )]d×d + ‖u(t)− uhτ (t)‖[H1(T )]d

+‖σhτ
ν (t)− σν(t)‖L2(E) t ∈ (tn−1, tn],

where we denote by ηhn1T , η
hn
2T , η

hn
3T and ηhn4T the local errors given by

ηhn1T = ‖σhk
n − σhk

n−1‖[L2(T )]d×d + ‖uhk
n − uhk

n−1‖[H1(T )]d ,

ηhn2T (t) = |T |‖f(t)‖[L2(T )]d ,

ηhn3T (t) =
(

∑

E∈Ehn
T

|E|‖[σhτ (t)ν]‖2[L2(E)]d

)1/2

,

ηhn4T (t) =
(

∑

E∈EC
T

|E|
[

‖[σhτ
τ (t)]‖[L2(E)]d + ‖p(uhτ

ν (t)) + σhτ
ν (t)‖L2(E)

]2
)1/2

.

Here, EC
T represents the set of edges or faces of T that belong to ΓC .

Obviously, we have

ηn1 ∼
(

∑

T∈T hn

(ηhn1T )
2
)1/2

,

ηn2 =
(

∑

T∈T hn

(ηhn2T )
2
)1/2

,

ηn3 =
(

∑

T∈T hn

(ηhn3T )
2
)1/2

,

ηn4 ∼
(

∑

T∈T hn

(ηhn4T )
2
)1/2

.

Proof. First, error estimator ηn1 was bounded in [12]. We proved there that

ηn1 = ‖σhk
n − σhk

n−1‖Q + ‖uhk
n − uhk

n−1‖V
≤ ‖σhτ − σ‖C([tn−1,tn];Q) + ‖uhτ − u‖C([tn−1,tn];V )

+‖un − un−1‖V + ‖σn − σn−1‖Q,

and therefore,

(ηn1 )
2 .

∑

T∈T hn

(

‖σhτ − σ‖2C([tn−1,tn];[L2(T )]d×d) + ‖uhτ − u‖2C([tn−1,tn];[H1(T )]d)

+‖un − un−1‖
2
[H1(T )]d + ‖σn − σn−1‖

2
[L2(T )]d×d

)

.
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Proceeding in a similar way we also obtain that

ηhn1T . ‖σhτ − σ‖2C([tn−1,tn];[L2(T )]d×d) + ‖uhτ − u‖2C([tn−1,tn];[H1(T )]d)

+‖un − un−1‖
2
[H1(T )]d + ‖σn − σn−1‖

2
[L2(T )]d×d .

We estimate now ηn2 (see again [12]). Let wT be the bubble function associated
with the element T and define the function wT = (wi)

d
i=1 ∈ [H1

0 (T )]
d which is

constructed as wi = wT for i = 1, . . . , d.
It is easy to check that function ψT = wT · f satisfies (see [27]),

‖f‖2[L2(T )]d .

∫

T

(σ − σhτ ) · ε(ψT ) dx.

Using the inverse inequality, we find that

‖ε(ψT )‖[L2(T )]d×d . |T |−1‖ψT ‖[L2(T )]d ,

and therefore,

(32) ‖f‖[L2(T )]d . |T |−1‖σ − σhτ‖[L2(T )]d×d .

Estimate ηn3 is bounded now proceeding like in the previous estimate. Thus, let us
consider the bubble function wE associated with the edge or face E. Hence, taking
now wE = [wE ]

d we deduce that (see again [27]),

‖[σhτν]‖2[L2(E)]d . |E|−1‖σ − σhτ‖[L2(∆E)]d×d‖ψE‖[L2(∆E)]d ,

where ψE = wE · [σhτν] and ∆E stands for the set of elements of T hn sharing the
common edge or face E. From the definition of ψE , it follows that ‖ψE‖[L2(∆E)]d .

|E|1/2‖[σhτν]‖[L2(E)]d , and we conclude that

‖[σhτν]‖[L2(E)]d . |E|−1/2‖σ − σhτ‖[L2(∆E)]d×d ,

which implies, for all T ∈ T hn,
(

∑

E∈Ehn
T

|E|‖[σhτν]‖2[L2(E)]d

)1/2

. ‖σ − σhτ‖[L2(∆T )]d×d .

Finally, it only remains to estimate ηhn4T . Assume that wE is constructed in such a
way that (wE)ν = 0 and (wE)τ = wEσ

hτ
τ . Hence,

‖σhτ
τ ‖2[L2(E)]d ∼

∫

E

σhτ
τ · (wE)τ dγ(x)

=

∫

T

σhτ · ε(wE) dx

=

∫

T

(σhτ − σ) · ε(wE) dx+

∫

T

σ · ε(wE) dx

. ‖f‖[L2(T )]d‖wE‖[L2(T )]d + |T |−1‖σ − σhτ‖[L2(T )]d×d‖wE‖[L2(T )]d .

We only need to estimate now the second term of ηhn4T . Taking into account that

p(uν(t)) + σν(t) = 0,

we find that

‖p(uhτ
ν (t)) + σhτ

ν (t)‖L2(E) ≤ ‖p(uhτ
ν (t))− p(uν(t))‖L2(E) + ‖σhτ

ν (t)− σν(t)‖L2(E)

. ‖u(t)− uhτ (t)‖[H1(T )]d + ‖σhτ
ν (t)− σν(t)‖L2(E).

Combining all these results and taking into account the definitions (25), (26), (27)
and (28), we obtain the desired lower error bounds. �

From Theorem 4.2, we can prove a similar convergence order than in the a priori
error analysis that we state in the following.
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Corollary 4.3. Let assumptions (9)-(13) hold. If the continuous solution has the
following additional regularity:

u ∈ C([0, T ]; [H2(Ω)]d), σ ∈ C([0, T ]; [H1(Ω)]d×d),

there exists a positive constant c > 0, depending on the given data and the conti-
nuous solution, such that

N
∑

n=1

kηn1 + ‖σ0 − σ
h
0‖Q + ‖u0 − u

h
0‖V + max

1≤n≤N
max

t∈[tn−1,tn]
ηn2

+ max
1≤n≤N

max
t∈[tn−1,tn]

ηn3 + max
1≤n≤N

max
t∈[tn−1,tn]

ηn4 ≤ c(h+ k).

Proof. Using estimates (22), under the required regularity we conclude that

(33) ‖u− uhτ‖C([0,T ];V ) + ‖σ − σhτ‖C([0,T ];Q) ≤ c(h+ k),

which implies that

max
1≤n≤N

max
t∈[tn−1,tn]

ηn2 + max
1≤n≤N

max
t∈[tn−1,tn]

ηn3 ≤ c(h+ k).

From the regularity u ∈ C1([0, T ];V ) and σ ∈ C1([0, T ];Q) (see Theorem 2.1), we
easily find that

N
∑

n=1

k [‖un − un−1‖V + ‖σn − σn−1‖Q] ≤ ck,

and using again (33), it follows that

N
∑

n=1

kηn1 ≤ c(h+ k).

Next, we estimate the numerical error on the approximation of the initial conditions.
From the definition of the finite element projection operators ΠV h and ΠQh (see
[7]), we have

‖u0 − u
h
0‖V ≤ ch‖u0‖[H2(Ω)]d , ‖σ0 − σ

h
0‖Q ≤ ch‖σ0‖[H1(Ω)]d×d .

Finally, we only have to bound the second part of estimator ηn4 . Without loss of
generality, assume that d = 2 (i.e. the two-dimensional setting), and that ΓC is
a straight line segment parallel to the x-axis. Taking into account the following
inequality for all E ∈ EC

T ,

‖v‖L2(E) ≤ |E|−1/2‖v‖L2(∆E) + |E|1/2‖∇v‖[L2(∆E)]2 ∀v ∈ H1(∆E),

we find that

|E|1/2‖σhτ
ν (t)− σν(t)‖L2(E) = |E|1/2‖σhτ

yy (t)− σyy(t)‖L2(E)

. ‖σhτ
yy (t)− σyy(t)‖L2(∆E) + |E|‖∇(σhτ

yy (t)− σyy(t))‖[L2(∆E)]2

. ‖σhτ − σ‖C([0,T ];Q)) + |E|‖σ‖C([0,T ];[H1(Ω)]2×2).

Keeping in mind that |E| ∼ h, this concludes the proof. �
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5. Numerical results

5.1. Numerical scheme. First, we recall that the variational spaces V and Q are
approximated by using the finite element spaces V h and Qh defined by (16) and
(17), respectively.

Let uhk
n−1 ∈ V h and σhk

n−1 ∈ Qh be known. For n = 1, . . . , N , the fully discrete

problem V P hk can be written in the following form,

(Eε(uhk
n ), ε(wh))Q + j(uhk

n ,wh) = (fn,w
h)V

−(σhk
n−1 − Eε(uhk

n−1) + kG(σhk
n−1, ε(u

hk
n−1)), ε(w

h))Q ∀wh ∈ V h.

This leads to a nonlinear variational equation which was solved by using a penalty-
duality algorithm (see, for instance, [29]), already applied in other contact problems.
Then, the discrete stress field is updated from the equation:

σhk
n = σhk

n−1 + Eε(uhk
n )− Eε(uhk

n−1) + kG(σhk
n−1, ε(u

hk
n−1)).

The numerical scheme was implemented on a Intel Core2 Duo 2.4GHz PC using
MATLAB, and a typical 2D run (h = k = 0.05) took about 5 seconds of CPU time.

5.2. A first 2D-example: error estimators with respect to the exact er-

ror. As a first two-dimensional example, the following problem is considered.
Problem T2D. Find a displacement field u : [0, 1]× [0, 1]× [0, 1] → R

2 and a
stress field σ : [0, 1]× [0, 1]× [0, 1] → S

2 such that,

σ̇ = 2Iε(u̇) + Iε(u) in [0, 1]× [0, 1]× (0, 1),

−Divσ = 0 in [0, 1]× [0, 1]× (0, 1),

u = 0 on {0} × [0, 1]× (0, 1),

σν = fF on ([0, 1]× {1} ∪ {1} × [0, 1])× (0, 1),

στ = 0, −σν = (uν)+ on [0, 1]× {0} × (0, 1),

u(0) = 0.1× (x(0.1
y2

2
+ 0.1y),−

x2

2
(0.1y + 0.1)) in [0, 1]× [0, 1],

σ(0) = Iε(u(0)) in [0, 1]× [0, 1],

where traction forces fF are given by

fF (x, y, t) =











0.1× (0,−
x2

2
e−t0.1) if x ∈ [0, 1], y = 1,

0.1× ((0.1
y2

2
+ 0.1y)e−t, 0) if y ∈ [0, 1], x = 1.

Problem T 2D corresponds to Problem P with the following data:

T = 1, Ω = [0, 1]× [0, 1], ΓD = {0} × [0, 1], ΓC = [0, 1]× {0}, g = 0,
ΓF = [0, 1]× {1} ∪ {1} × [0, 1], E = 2I, G(σ, ε(u)) = Iε(u), f0 = 0,

p(r) = r+, u0 = 0.1× (x(0.1
y2

2
+ 0.1y),−

x2

2
(0.1y + 0.1)), σ0 = ε(u0).

The exact solution to Problem T 2D can be easily obtained after some algebra and
it has the following form:

u(x, y, t) = (x(0.1
y2

2
+ 0.1y)e−t,−

x2

2
(0.1y + 0.1)e−t)× 0.1,

σ11(x, y, t) = 0.1(0.1
y2

2
+ 0.1y)e−t, σ22 = −0.01

x2

2
e−t, σ12 = σ21 = 0.
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In Table 1 the numerical results obtained for several discretization parameters h
and k are shown where

η1 =
N
∑

n=1

kηn1 ,

η2 = max
1≤n≤N

max
t∈(tn−1,tn]

ηn2 (t) + max
1≤n≤N

max
t∈(tn−1,tn]

ηn3 (t) + max
1≤n≤N

max
t∈(tn−1,tn]

ηn4 (t),

and η =
√

η21 + η22 . The exact (or true) error e is defined as

e = max
0≤n≤N

‖un − uhk
n ‖V + max

0≤n≤N
‖σn − σhk

n ‖Q,

and e.i. denotes the so-called effectivity index and it equals to η/e.

h k η1 η2 η e e.i.
0.2 0.1 0.0331661 0.1686995 0.1719341 0.1108826 1.55
0.1 0.1 0.0349942 0.1310162 0.13560091 0.0997694 1.35
0.05 0.1 0.0358721 0.0895523 0.0964698 0.0969012 0.99
0.025 0.1 0.0362967 0.0574728 0.0679748 0.0730912 0.93
0.0125 0.1 0.0365051 0.0356754 0.0510426 0.0560903 0.91

0.2 0.05 0.0161195 0.1784489 0.1791744 0.1113638 1.61
0.1 0.05 0.0169719 0.1378073 0.1388614 0.0999072 1.38
0.05 0.05 0.0173855 0.0939912 0.0955855 0.0965511 0.99
0.025 0.05 0.0175858 0.0602631 0.0627765 0.0660805 0.95
0.0125 0.05 0.0176841 0.0383793 0.0431017 0.0463459 0.93

0.2 0.025 0.0079436 0.1834036 0.1835785 0.1119439 1.63
0.1 0.025 0.0083609 0.1412451 0.1414923 0.1005961 1.41
0.05 0.025 0.0085617 0.0962355 0.0966156 0.0973039 0.99
0.025 0.025 0.0086591 0.0616732 0.0622781 0.0648731 0.96
0.0125 0.025 0.0087067 0.0382554 0.0392337 0.0412986 0.95

0.2 0.0125 0.0039443 0.1858967 0.1859385 0.1123063 1.65
0.1 0.0125 0.0041499 0.1429723 0.14303254 0.1010041 1.42
0.05 0.0125 0.0042489 0.0973627 0.0974554 0.0976869 1
0.025 0.0125 0.0042968 0.0623815 0.0625928 0.0638702 0.98
0.0125 0.0125 0.0043204 0.0386904 0.0389309 0.0405531 0.96
Table 1. Example T2D: Numerical errors (x100) for some h and k.

As can be seen, the convergence of the discrete solution is clearly observed when
the discretization parameters converge to zero. As it was also noticed in [23], the
estimator due to the time discretization η1 is not greater than the error due to
the space discretization η2 but they oscillate. Moreover, the estimator error η is
not always greater than the exact error but it seems that, when the discretization
parameters decrease, both errors become closer. Finally, the effectivity index seems
to increase as parameters h and k tend to zero but it is greater than 0.9.

5.3. A second 2D-example: an elasto-viscoplastic body in contact with

a deformable obstacle. As a second two-dimensional example, we consider a
numerical example already simulated in other works. Hence, the elasto-viscoplastic
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body is assumed to occupy the domain Ω = (0, 6) × (0, 1.2), no volume forces
are supposed to act in the body and vertical constant tractions are applied on
the boundary part [0, 6] × {1.2}. Due to the symmetry conditions, the middle
line {3} × [0, 1.2] has restricted its horizontal displacements. Finally, the body is
supposed to be in contact with a deformable obstacle on the contact boundary
ΓC = [2, 4]× {0} (see FIGURE 2).

Figure 2. Example 2D-2: Physical setting.

The following data have been employed in the simulations:

T = 1, Ω = [0, 6]× [0, 1.2], ΓD = ∅, ΓF = [0, 6]× {1.2},
ΓC = [2, 4]× {0}, E = 2I, G(σ, ε(u)) = ε(u), f0 = 0, fF = (0,−0.01),
g = 0, p(r) = 1000r+, u0 = 0, σ0 = 0.

Taking k = 0.01 as the time discretization parameter, the displacement field at
final time and the reference configuration are plotted in FIGURE 3. We observe

Figure 3. Example 2D-2: Reference configuration and displace-
ment field at final time.

that no penetration into the obstacle has been produced because of the size of the
deformability coefficient µ. Moreover, in FIGURE 4 the von Mises stress norm at
final time is plotted over the deformed mesh. As expected, the highest stressed
areas are located near the contact corners and also where body bends.

Finally, the error estimators η1, η2 and η have the following values:

η1 = 8.74594358× 10−4, η2 = 0.04147338, η = 0.0414826.

We notice that, even if the exact solution is unknown (and, in fact, it can not
be calculated using an analytical procedure), this estimate gives us an idea of the
error approximation and this constitutes no doubt one of the main aspects of this
a posteriori error analysis.
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Figure 4. Example 2D-2: von Mises stress norm at final time
over the deformed mesh.
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