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A PRIORI ERROR ESTIMATES FOR SEMIDISCRETE FINITE

ELEMENT APPROXIMATIONS TO EQUATIONS OF MOTION

ARISING IN OLDROYD FLUIDS OF ORDER ONE

DEEPJYOTI GOSWAMI AND AMIYA K. PANI

Abstract. In this paper, a semidiscrete finite element Galerkin method for

the equations of motion arising in the 2D Oldroyd model of viscoelastic fluids

of order one with the forcing term independent of time or in L∞ in time, is

analyzed. A step-by-step proof of the estimate in the Dirichlet norm for the

velocity term which is uniform in time is derived for the nonsmooth initial

data. Further, new regularity results are obtained which reflect the behavior

of solutions as t → 0 and t → ∞. Optimal L∞(L2) error estimates for the

velocity which is of order O(t−1/2h2) and for the pressure term which is of order

O(t−1/2h) are proved for the spatial discretization using conforming elements,

when the initial data is divergence free and in H1
0 . Moreover, compared to

the results available in the literature even for the Navier-Stokes equations, the

singular behavior of the pressure estimate as t → 0, is improved by an order

1/2, from t−1 to t−1/2, when conforming elements are used. Finally, under the

uniqueness condition, error estimates are shown to be uniform in time.

Key Words. Viscoelastic fluids, Oldroyd fluid of order one, uniform a priori

bound in Dirichlet norm, uniform in time and optimal error estimates, non-

smooth initial data.

1. Introduction

In this paper, we consider semi-discrete Galerkin approximations to the following
system of equations of motion arising in the Oldroyd fluids (see, J. G. Oldroyd
([23])) of order one:

∂u

∂t
+ u · ∇u− µ∆u−

∫ t

0

β(t− τ)∆u(x, τ) dτ +∇p = f(x, t),(1.1)

with x ∈ Ω, t > 0 and incompressibility condition

∇ · u = 0, x ∈ Ω, t > 0,(1.2)

and initial and boundary conditions

u(x, 0) = u0 in Ω, u = 0, on ∂Ω, t ≥ 0.(1.3)

Here, Ω is a bounded domain in R
2 with boundary ∂Ω, µ = 2κλ−1 > 0 and the

kernel β(t) = γ exp(−δt), where γ = 2λ−1(ν − κλ−1) > 0 and δ = λ−1 > 0. We
note that ν is the kinematic coefficient of viscosity. λ is the relaxation time, and is
characterized by the fact that after instantaneous cessation of motion, the stresses
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in the fluid do not vanish instantaneously, but die out like exp(−λ−1t). Moreover,
the velocities of the flow, after instantaneous removal of the stresses, die out like
exp(−κ−1t), where κ is the retardation time. For further details of the physical
background and its mathematical modeling, we refer to [14], [23] and [24].

There is considerable amount of literature devoted to Oldroyd model by Russian
mathematicians such as A.P.Oskolkov, Kotsiolis, Karzeeva and Sobolevskii etc, see
[24, 1, 8, 15, 18] and references, therein. Based on the analysis of Ladyzhenskaya
[19] for the Navier-Stokes equations, Oskolkov [24] has proved existence of a unique
’almost’ classical solution in finite time interval [0, T ] for the 2D problem (1.1)-(1.3).
In the proof, the constant appeared in a priori bounds depends exponentially on T
and therefore, it is not possible to extend the results for large time. Subsequently,
Agranovich and Sobolevskii [1] have extended the analysis of Oskolkov and have
derived global existence of solutions for all t ≥ 0 when f ∈ L2(L2) with smallness
conditions on data for 3D problem. The solvability on the semi-axis t ≥ 0, for the
problem (1.1)-(1.3), is discussed in [18, 8] when f , ft ∈ L∞(R+;L2(Ω)) in [18] and
f , ft ∈ S2(R+;L2(Ω)) in [8], where S2 is a subspace of L2

loc. We observe that results
in [18, 8] hold true only for finite time (T < ∞), that is, for f , ft ∈ L∞(0, T ;L2(Ω)),
with estimate depending on T , but there seems to have some difficulties in extending
these results for all t ≥ 0, when f , ft ∈ L∞(R+;L2(Ω)). For example, in [18], it is
difficult to derive the estimate (20) from (17) on page 2780 by applying integral
version of the Gronwall’s Lemma and the estimate (12). Unfortunately, this is
further carried over to subsequent articles, see Theorem 2 of [8]. In the context of
dynamical system generated by Oldroyd model when f ∈ L∞(L2), see, [15] and [17],
it is not quite clear that the conclusion of Theorem 1.2 of [15] for s = 1 or Theorem 1
of [17] for ℓ = 1 holds true. In fact a more careful observation in both these articles

demands an estimate of
∫ 1

0
‖φ‖2E1

, which is difficult to establish prior to this result.
In the context of 2D Navier-Stokes equations, a standard tool for deriving uniform
Dirichlet norm for the velocity term is to apply uniform Gronwall’s Lemma. Due to
the presence of the integral term in (1.1), it is difficult to apply uniform Gronwall’s
Lemma (see Remark 3.3(i)). To be more precise, on the right-hand side of (17) on

page 2780 of [18], the estimate of
∫ t

0

∑L
l=1 βl‖∆̃ul‖

2
2,Ωt

dτ is not available from (12)

(for notations, see [18]), which is crucial in applying uniform Gronwall’s Lemma.
This is exactly a similar problem faced in article [15] and [17].

In [30], Sobolevskii has examined the behavior of the solution as t → ∞ under
some stabilization conditions like positivity of the first eigenvalue of a selfadjoint
spectral problem introduced therein and Hölder continuity of the function Φ =
eδ0t(f(x, t)− f∞(x)), where f∞ = limt→∞ f and δ0 > 0, using energy arguments and
positivity of the integral operator, see also Kotsiolis and Oskolkov [16]. Recently,
He et al. [10] have proved similar results under milder conditions on f and weaker
regularity assumptions on the initial data u0. In fact, in their analysis, they have
shown both the power and exponential convergence of the solutions to a steady
state solution, when Φ ∈ L∞(L2) only.

For the numerical approximations to the problem (1.1)-(1.3), we refer to Akhma-
tov and Oskolkov [2], Cannon et al. [5], He et al. [11] and Pani et al. [28]. In [2],
stable finite difference schemes are discussed without any discussion on conver-
gence. Cannon et al. [5] have proposed a modified nonlinear Galerkin scheme for
(1.1)-(1.3) with periodic boundary condition using a spectral Galerkin method and
have discussed convergence analysis while keeping time variable continuous. In [11],
local optimal error estimates for the velocity in L∞(H1)-norm and the pressure in
L∞(L2)-norm are established. Moreover, these estimates are shown to be uniform
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provided the given data satisfy the uniqueness condition. In [28], optimal error
bounds in L∞(L2) as well as in the L∞(H1)-norms for the velocity and for the
pressure in the L∞(L2)-norm are derived which are valid uniformly in time t > 0
under the condition that f ≡ 0. In fact, Pani et al. [28] have obtained new regularity
results, which are valid for all time t > 0, without nonlocal compatibility conditions.
Based on Stokes-Volterra projection and duality arguments, they have proved op-
timal error estimates, when the initial data u0 ∈ H2 ∩ J1. Subsequently in [29], a
backward Euler method is used to discretize in temporal direction and semi-group
theoretic approach is then employed to establish a priori error estimates.

Our present investigation is a continuation of [28]. In this paper, we obtain
regularity results which are uniform in time under realistically assumed regularity
on the exact solution, when f 6≡ 0 with f , ft ∈ L∞(L2). As is pointed out in [12] and
[28], some of the regularity results depend on the non-local compatibility conditions
on the data at t = 0, which are either very hard to verify or difficult to meet in
practice. We have, in this article, obtained new regularity results under realistically
assumed conditions on initial data so that we can avoid non-local compatibility
conditions. At this point, we would like to stress that for 2D Oldroyd fluids of
order one, a step-by-step proof of the Dirichlet norm estimate which is uniform
in time is missing in the literature. Following the analysis of 2D Navier-Stokes
equations, it is hard to apply the uniform Gronwall’s Lemma [32] or the proof
techniques of Ladyzhenskaya [19] for deriving uniform estimate in the Dirichlet
norm for the velocity term. Hence, we hope that, our present analysis will also fill
this missing link.

Under the uniqueness condition (see, Section 5), we have shown uniform (in
time) optimal error estimates for both velocity and pressure terms. This is an
improvement over the results obtained in [11], where the uniform error estimate for
velocity is not optimal in L∞(L2). We have also improved the error estimation of
the pressure term, in the sense that, the estimate now reads O(t−1/2h) instead of
O(t−1h), which is again an improvement over the results observed in [11] for the
nonsmooth data, i.e., u0 ∈ J1 and [28], when u0 ∈ J1 ∩H2. In [12], Heywood and
Rannacher have noted that this singular behavior of the pressure estimate for the
Navier-Stokes problem is due to a difficulty which appears technical, but which may
be inherent to the problem. Therefore, our present analysis will improve the result
of Heywood and Rannacher [12] for the Navier-Stokes equations using conforming
elements.

The main contributions of the present article are as follows :

(i) step-by-step proof of uniform H1-bound for the velocity.
(ii) proof of regularity results for the solution which reflect the behavior as

t → 0 and as t → ∞ when f , ft ∈ L∞(L2) and u0 ∈ J1 (see, for definition,
Section 2).

(iii) proof of optimal error L∞(L2) estimates for semidiscrete Galerkin approx-
imations to the velocity and pressure for the nonsmooth initial data u0,
that is, u0 ∈ J1.

(iv) proof of uniform optimal error estimates for both velocity and pressure
terms under the assumption of the uniqueness condition.

(v) improvement in the singular behavior (as t → 0) of the pressure estimate,
i.e., ‖(p− ph)(t)‖ ≤ Kht−1/2 instead of Kht−1.

For related papers on finite element approximations to parabolic partial integro-
differential equations, we may refer to [7, 20, 22, 25, 33] for smooth solutions and



ERROR ESTIMATE FOR THE OLDROYD FLUID OF ORDER ONE 327

[21, 26, 27, 33] for the nonsmooth initial data. The smoothing properties proved
via energy argument in [27] will be useful for deriving the regularity results for the
present problem without nonlocal compatibility assumptions on the data at t = 0.

The remaining part of this paper is organized as follows. In Section 2, we discuss
some notations, weak formulation, basic assumptions and statement of positivity
and Gronwall’s Lemma. Section 3 focuses on uniform estimates in L∞(L2) and
L∞(H1)-norms and new regularity results without nonlocal compatibility condi-
tions. In Section 4, a semidiscrete Galerkin method is discussed. Section 5 is
devoted to optimal L∞(L2) error estimates of the velocity term, for the nonsmooth
initial data. In Section 6, optimal error bound for the pressure term is derived.
It is also shown that under the uniqueness assumption, uniform estimates in time
t > 0 are also established. Finally, we summarize our results in the Section 7.

2. Preliminaries

For our subsequent use, we denote by bold face letters the R
2-valued function

space such as

H1
0 = [H1

0 (Ω)]
2, L2 = [L2(Ω)]2 and Hm = [Hm(Ω)]2,

where Hm(Ω) is the standard Hilbert Sobolev space of order m. Note that H1
0 is

equipped with a norm

‖∇v‖ =





2
∑

i,j=1

(∂jvi, ∂jvi)





1/2

=

(

2
∑

i=1

(∇vi,∇vi)

)1/2

.

Further, we introduce some more function spaces for our future use:

J1 = {φ ∈ H1
0 : ∇ · φ = 0}

J = {φ ∈ L2 : ∇ · φ = 0 in Ω,φ · n|∂Ω = 0 holds weakly},

where n is the outward normal to the boundary ∂Ω and φ · n|∂Ω = 0 should be
understood in the sense of trace in H−1/2(∂Ω), see [31]. Let Hm/R be the quotient
space consisting of equivalence classes of elements of Hm differing by constants,
which is equipped with norm ‖p‖Hm/R = ‖p + c‖m. For any Banach space X , let
Lp(0, T ;X) denote the space of measurable X -valued functions φ on (0, T ) such
that

∫ T

0

‖φ(t)‖pX dt < ∞ if 1 ≤ p < ∞,

and for p = ∞

ess sup
0<t<T

‖φ(t)‖X < ∞ if p = ∞.

Further, let P be the orthogonal projection of L2 onto J. Through out this paper,
we make the following assumptions:
(A1). For g ∈ L2, let the unique pair of solutions {v ∈ J1, q ∈ L2/R} for the
steady state Stokes problem

−∆v+∇q = g,

∇ · v = 0 in Ω, v|∂Ω = 0,

satisfy the following regularity result

‖v‖2 + ‖q‖H1/R ≤ C‖g‖.

(A2). The initial velocity u0 and the external force f satisfy for positive constant
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M0, and for T with 0 < T ≤ ∞

u0 ∈ J1, f , ft ∈ L∞(0, T ;L2) with ‖u0‖1 ≤ M0, sup
0<t<T

{

‖f(., t)‖, ‖ft(., t)‖
}

≤ M0.

Setting

−∆̃ = −P∆ : J1 ∩H2 ⊂ J → J

as the Stokes operator, the condition (A1) implies

‖v‖2 ≤ C‖∆̃v‖ ∀v ∈ J1 ∩H2,

‖v‖2 ≤ λ−1
1 ‖∇v‖2 ∀v ∈ J1, ‖∇v‖2 ≤ λ−1

1 ‖∆̃v‖2 ∀v ∈ J1 ∩H2,

where λ1 is the least positive eigenvalue of the Stokes operator −∆̃, see [12].
Before going into the details, let us introduce the weak formulation of (1.1)-(1.3).
Find a pair of functions {u(t), p(t)}, t > 0, such that

(ut,φ) + µ(∇u,∇φ) + (u · ∇u,φ) +

∫ t

0

β(t− s)(∇u(s),∇φ) ds

= (p,∇ · φ) + (f ,φ) ∀φ ∈ H1
0,(2.1)

(∇ · u, χ) = 0 ∀χ ∈ L2.

Equivalently, find u(t) ∈ J1 such that

(ut,φ) + µ(∇u,∇φ) + (u · ∇u,φ) +

∫ t

0

β(t− s)(∇u(s),∇φ) ds(2.2)

= (f ,φ), ∀φ ∈ J1, t > 0.

For our subsequent analysis, we use the positive property (see [22] for a definition)
of the kernel β associated with the integral operator in (1.1). This can be seen as a
consequence of the following lemma. For a proof, we refer the reader to Sobolevskii
([30], p.1601), McLean and Thomeé [22].

Lemma 2.1. For arbitrary α > 0, t∗ > 0 and φ ∈ L2(0, t∗), the following positive
definite property holds

∫ t∗

0

(∫ t

0

exp [−α(t− s)]φ(s) ds

)

φ(t) dt ≥ 0.

In order to deal with the integral term, we present the following Lemma. See [28].

Lemma 2.2. Let g ∈ L1(0, t∗) and φ ∈ L2(0, t∗) for some t∗ > 0. Then the
following estimate holds
(

∫ t∗

0

(∫ s

0

g(s− τ)φ(τ) dτ

)2

ds

)1/2

≤

(

∫ t∗

0

|g(s)| ds

) (

∫ t∗

0

|φ(s)|2 ds

)1/2

.

Lemma 2.3 (Gronwall’s lemma). Let g, h, y be three locally integrable non-negative
functions on the time interval [0,∞) such that for all t ≥ 0

y(t) +G(t) ≤ C +

∫ t

0

h(s) ds+

∫ t

0

g(s)y(s) ds,

where G(t) is a non-negative function on [0,∞) and C ≥ 0 is a constant. Then,

y(t) +G(t) ≤
(

C +

∫ t

0

h(s) ds
)

exp
(

∫ t

0

g(s) ds
)

.
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3. A Priori Estimates

In this Section, we discuss a priori bounds for the solution {u, p} of (1.1)-(1.3).
Here, we present a step-by-step proof of uniform estimate (in time) in H1, when
d = 2. Below, we derive a priori bounds following the proof techniques of [28].

Lemma 3.1. Let 0 < α < min (δ, λ1µ), and let the assumption (A2) hold. Then,
there is a positive constant K0 = K0(M0, µ, δ, λ1) such that the solution u of (2.2)
satisfies, for t > 0

‖u(t)‖2 + µ

∫ t

0

‖∇u(s)‖2ds ≤ ‖u0‖
2 +

1

µλ1

∫ t

0

‖f(s)‖2ds

≤ M2
0

(

1 +
t

λ1µ

)

,(3.1)

‖u(t)‖2 + (µ−
α

λ1
)e−2αt

∫ t

0

e2ατ‖∇u(τ)‖2 dτ ≤ e−2αt‖u0‖
2

+
(1− e−2αt)

2α(λ1µ− α)
‖f‖2L∞(L2) = K0.(3.2)

Moreover,

(3.3) lim
t→∞

‖∇u(t)‖ ≤
‖f‖2L∞(L2)

λ1µ2
= K2

01.

Proof. We easily modify the proof of Lemma 4.1 in [28](pg 758) to derive estimates
(3.1)-(3.2). For the estimate (3.3), we again modify the technique of [28] to obtain

‖u(t)‖2 + µe−2αt

∫ t

0

e2ατ‖∇u(τ)‖2 dτ ≤ e−2αt‖u0‖
2 + 2e−2αtα

∫ t

0

e2ατ‖u(τ)‖2 dτ

+
‖f‖2L∞(L2)

2αλ1µ
(1− e−2αt).(3.4)

Now, taking limit supremum as t → ∞, the second term on the left-hand side (3.4)
becomes

lim
t→∞

µe−2αt

∫ t

0

e2ατ‖∇u(τ)‖2 dτ = µ lim
t→∞

∫ t

0
e2ατ‖∇u(τ)‖2 dτ

e2αt
(3.5)

=
µ

2α
lim
t→∞

‖∇u(t)‖2,

and therefore, we find that

µ

2α
lim
t→∞

‖∇u(t)‖2 ≤
‖f‖2L∞(L2)

2αλ1µ
.

This completes the rest of the proof. �

Remark 3.1. We obtain the final result (3.3) by using L’Hospital rule in (3.5),

under the assumption that
∫ t

0 e
2αt‖∇u‖2ds is not bounded as t → ∞. This allows

us to claim the uniform (in time) Dirichlet norm of u in the next lemma. On the

contrary, if
∫ t

0 e
2αt‖∇u‖2ds is bounded for all time, then we can obtain uniform (in

time) Dirichlet norm of u directly using Gronwall’s Lemma in (3.8)(see, Lemma
3.2).
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Lemma 3.2. Let 0 < α < min (δ, λ1µ) and let assumption (A2) hold. Then there
is a positive constant M3 = M3(α, µ, λ1,M0) such that for all t > 0

‖∇u(t)‖2 + e−2αt

∫ t

0

e2ατ‖∆̃u(τ)‖2 dτ ≤ M2
3 .

Proof. Setting û = eαtu and using the Stokes operator ∆̃, we rewrite (2.2) as

(ût,φ)− α(û,φ)− µ(∆̃û,φ) −

∫ t

0

β(t− τ)eα(t−τ)(∆̃û(τ),φ) dτ

= −e−αt(û · ∇û,φ) + (f̂ ,φ),(3.6)

With φ = −∆̃û in (3.6), we note that

−(ût, ∆̃û) =
1

2

d

dt
‖∇û‖2.

Thus,

d

dt
‖∇û‖2 + 2µ‖∆̃û‖2 + 2

∫ t

0

β(t− τ)eα(t−τ)(∆̃û(τ), ∆̃û(t)) dτ

= −2α(û, ∆̃û) + 2e−αt(û · ∇û, ∆̃û)− 2(f̂ , ∆̃û).

On integration with respect to time and using Lemma 2.1 with definition of β, it
follows for 0 < α < min (δ, λ1µ) that

‖∇û(t)‖2 + 2µ

∫ t

0

‖∆̃û(τ)‖2dτ ≤ ‖∇u0‖
2 − 2α

∫ t

0

(û, ∆̃û) dτ

+ 2

∫ t

0

e−ατ (û · ∇û, ∆̃û) dτ − 2

∫ t

0

(f̂ , ∆̃û) dτ

= ‖∇u0‖
2 + I1 + I2 + I3.(3.7)

To estimate |I1| and |I3|, we apply Cauchy-Schwarz inequality with ab ≤ 1
2ǫa

2+ ǫ
2b

2,
a, b ≥ 0, ǫ > 0 to obtain

|I1|+ |I3| ≤
α2

ǫ

∫ t

0

‖û(τ)‖2dτ +
1

ǫ

∫ t

0

‖f̂(τ)‖2dτ + 2ǫ

∫ t

0

‖∆̃û(τ)‖2dτ.

To estimate I2, a use of Hölder’s inequality shows that

|(û · ∇û, ∆̃û)| ≤ ‖û‖L4(Ω)‖∇û‖L4(Ω)‖∆̃û‖.

Now, we appeal to the following Sobolev inequality(d = 2)(see [31])

‖φ‖L4(Ω) ≤ 21/4‖φ‖1/2‖∇φ‖1/2, φ ∈ H1
0 (Ω),

and, therefore,

|I2| ≤ C

∫ t

0

e−ατ‖û‖1/2‖∇û‖ ‖∆̃û‖3/2 dτ

≤ C(ǫ)

∫ t

0

e−4ατ‖û‖2‖∇û‖4 dτ + ǫ

∫ t

0

‖∆̃û‖2 dτ.

Substituting the estimates of I1, I2 and I3 in (3.7), we find that

‖∇û(t)‖2 + µ

∫ t

0

‖∆̃û(τ)‖2dτ ≤ ‖∇u0‖
2 + C(α, µ)

∫ t

0

(‖û(τ)‖2 + ‖f̂(τ)‖2) dτ

+ C(µ)

∫ t

0

‖u‖2‖∇u‖2‖∇û‖2 dτ .(3.8)
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Using Gronwall’s lemma, we arrive at

‖∇û(t)‖2 + µ

∫ t

0

‖∆̃û(τ)‖2 dτ ≤
{

‖∇u0‖
2 + C(α, µ)

∫ t

0

(‖û(τ)‖2 + ‖f̂(τ)‖2) dτ
}

× exp
(

C(µ)

∫ t

0

‖u‖2‖∇u‖2 dτ
)

.

Finally, we use Lemma 3.1 with condition (A2) to obtain the following integral
inequality

‖∇u(t)‖2 + µe−2αt

∫ t

0

e2αs‖∆̃u(τ)‖2dτ ≤
(

e−2αtM2
0 + C(α, µ){K0 +M2

0 }
)

× exp
(

C(µ,M0,K0)(1 +
t

λ1µ
)
)

.

This inequality along with lim supt→∞ ‖∇u‖ ≤ K01 would lead us to the following
conclusion

‖∇u(t)‖ < M3 t > 0,

for some positive constantM3. Now (3.8) along with this estimate of ‖∇u(t)‖ would
provide us the desired result. �

Remark 3.2. Although Lemma 3.2 provides a uniform Dirichlet norm estimate in
time, it is difficult to obtain a precise bound for the estimate ‖∇u‖ for all t > 0.
We present below another proof of the uniform estimate in L∞(H1

0) norm which
enables us to obtain a precise bound depending on the initial data, forcing term and
the smoothness of the domain.

Lemma 3.3. (Uniform estimate in L2). Let the assumption (A2) hold. Then,
for 0 < α < min (2δ, λ1µ), the solution u of (2.2) satisfies the following estimates
for t > 0

‖u(t)‖2 +
1

γ
‖∇ũβ‖

2 ≤ e−αt‖u0‖
2 +

‖f‖2L∞(L2)

λ1µα
(1− e−αt) = M1,(3.9)

and for fixed T0 > 0
∫ t+T0

t

(

µ‖∇u(s)‖2 +
2δ

γ
‖∇ũβ‖

2

)

ds ≤ M1 +
M2

0T0

λ1µ
= M2,(3.10)

where ũβ(t) =
∫ t

0 β(t− s)u(s) ds.

Proof. With

ũβ(t) =

∫ t

0

β(t− s)u(s) ds,

we rewrite the equation (2.2) as

(3.11) (ut,φ) + µ(∇u,∇φ) + (u · ∇u,φ) + (∇ũβ ,∇φ) = (f ,φ), ∀φ ∈ J1, t > 0.

Take φ = u in (3.11) and use ũβ,t + δũβ = γu, to obtain

(3.12)
d

dt
(‖u‖2 +

1

γ
‖∇ũβ‖

2) + µ‖∇u‖2 +
2δ

γ
‖∇ũβ‖

2 ≤
1

µλ1
‖f‖2.

We use the Poincaré inequality λ1‖u‖
2 ≤ ‖∇u‖2 and multiply (3.12) by eαt to find

that
d

dt

(

eαt(‖u‖2 +
1

γ
‖∇ũβ‖

2)
)

≤
1

µλ1
eαt‖f‖2.



332 DEEPJYOTI GOSWAMI AND AMIYA K. PANI

Now, integrate with respect to time and multiply by e−αt to conclude (3.9). Next,
we integrate (3.12) from t to t+T0, for fixed T0 > 0 and use (3.9) to obtain (3.10).
This completes the rest of the proof. �

Lemma 3.4. (Uniform estimates in H1). Let 0 < α < min (δ, λ1µ). Under
assumption (A2), there exists a positive constant M3 = M3(α, µ, λ1,M1) such that
for T0 > 0 with t ∈ [T0,∞), the following estimates hold:

‖∇u(t)‖2 +
1

γ
‖∆̃ũβ‖

2 ≤ M2
3 , t ≥ T0, ∀ T0 > 0.

and

‖∇u(t)‖2 + e−2αt

∫ t

0

e2ατ‖∆̃u(τ)‖2 dτ ≤ M2
3 , t > 0.

Proof. Put φ = −∆̃u in (3.11) and use ũβ,t + δũβ = γu, to obtain
(3.13)
1

2

d

dt
(‖∇u‖2 +

1

γ
‖∆̃ũβ‖

2) + µ‖∆̃u‖2 +
δ

γ
‖∆̃ũβ‖

2 ≤ ‖f‖‖∆̃u‖+ |(u · ∇u,−∆̃u)|.

Recollecting the estimates of I2, I3 of (3.7), we find that

(3.14) ‖f‖‖∆̃u‖ ≤
µ

6
‖∆̃u‖2 +

3

µ
‖f‖2,

and

(3.15) |(u · ∇u,−∆̃u)| ≤
µ

6
‖∆̃u‖2 + (

9

2µ
)3‖u‖2‖∇u‖4.

Using (3.14)-(3.15) in (3.13), we obtain

d

dt

(

‖∇u‖2 +
1

γ
‖∆̃ũβ‖

2

)

+
4µ

3
‖∆̃u‖2 +

2δ

γ
‖∆̃ũβ‖

2(3.16)

≤
3

µ
‖f‖2 + (

9/2

µ
)3‖u‖2‖∇u‖4.

Note that
α0‖∇u‖2 = α0(u,−∆̃u) ≤ α0‖u‖‖∆̃u‖,

where α0 > 0 is a constant to be chosen precisely at a later stage and then, we find
that

(3.17) α0‖∇u‖2 ≤
µ

3
‖∆̃u‖2 +

3

4µ
α2
0‖u‖

2.

Now, add (3.17) to (3.16) and use the inequality ‖∆̃u‖2 ≥ λ1‖∇u‖2 to arrive at

d

dt

(

‖∇u‖2 +
1

γ
‖∆̃ũβ‖

2

)

+
(

α0 + µλ1 − (
9/2

µ
)3‖u‖2‖∇u‖2

)

‖∇u‖2 +
2δ

γ
‖∆̃ũβ‖

2

≤
3

µ
‖f‖2 +

3

4µ
α2
0‖u‖

2.

As ‖u‖2 ≤ M1 from Lemma 3.1, and ‖f‖L∞(L2) ≤ M0, we obtain

d

dt

(

‖∇u‖2 +
1

γ
‖∆̃ũβ‖

2

)

+
(

α0 + µλ1 − (
9

2µ
)3‖u‖2‖∇u‖2

)

‖∇u‖2 +
2δ

γ
‖∆̃ũβ‖

2

≤ K1(M0, µ, α0,M1) = K1.(3.18)

Setting

(3.19) h(t) = min
{

α0 + µλ1 − (
9

2µ
)3‖u‖2‖∇u‖2, 2δ

}
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we obtain from (3.18) with E(t) = ‖∇u‖2 + 1
γ ‖∆̃ũβ‖

2,

d

dt
E(t) + h(t)E(t) ≤ K1.

Hence, for 0 ≤ s < t, we find that

d

dt

(

e
∫

t

s
h(τ) dτE(t)

)

≤ K1e
∫

t

s
h(τ) dτ .

On integrating with respect to time over 0 to t, we arrive at

(3.20) E(t) ≤ e−
∫

t

0
h(τ) dτ‖∇u0‖

2 +K1

∫ t

0

e−
∫

t

s
h(τ) dτ ds.

Now, from (3.19), we note, for some T0 > 0 that
∫ t+T0

t

h(s) ds = min
{

(α0 + µλ1)T0 − (
9

2µ
)3
∫ t+T0

t

‖u(s)‖2‖∇u(s)‖2 ds, 2δT0

}

.

A use of Lemma 3.1 yields

(
9

2µ
)3
∫ t+T0

t

‖u(s)‖2‖∇u(s)‖2 ds ≤
CM1

µ3

∫ t+T0

t

‖∇u(s)‖2 ds ≤
CK0

µ4
M2 = K2.

Therefore, we obtain
∫ t+T0

t

h(s) ds ≥ min
{

(α0 + µλ1)T0 −K2, 2δT0

}

.

Now, choose α0T0 = K2 to arrive at

(3.21)

∫ t+T0

t

h(s) ds ≥ T0 min{µλ1, 2δ} ≥ αT0.

Given s and t with 0 ≤ s < t, we choose two positive integers k and l such that

kT0 ≤ s ≤ (k + 1)T0, lT0 ≤ t ≤ (l + 1)T0.

Then, from (3.21) and −h(t) ≥ −2δ, t > 0 using (3.19), we find that
∫ t

s

h(τ) dτ =

∫ (l+1)T0

kT0

h(τ) dτ −

∫ s

kT0

h(τ) dτ −

∫ (l+1)T0

t

h(τ) dτ

≥ (l + 1− k)αT0 − 2δT0 − 2δT0

≥ (t− s)α− 4δT0.

Hence,

−

∫ t

s

h(τ) dτ ≤ 4δT0 − (t− s)α.

Now, without loss of generality, we have assumed that s ≤ (k+1)T0 ≤ lT0 ≤ t (with
one of these ≤ is strict inequality to preserve the fact that 0 ≤ s < t). All other
possible cases will simplify the present situation and hence, we skip the related
analysis.
From (3.20), we obtain

E(t) ≤ e−tαe4δT0‖∇u0‖
2 +K1

∫ t

0

e−(t−s)α ds e4δT0

≤
(

e−tα‖∇u0‖
2 +

K1

α
(1 − e−tα)

)

e4δT0

≤ e4δT0

(

‖∇u0‖
2 +

K1

α

)

= M2
3 .



334 DEEPJYOTI GOSWAMI AND AMIYA K. PANI

This establishes the first estimate of Lemma 3.4. Use it in (3.8) to obtain the second
estimate, and this completes the rest of the proof. �

Remark 3.3. (i) It is difficult to apply the uniform Gronwall’s Lemma to (3.16)
to obtain the desired result as we do not have an estimate of

(3.22)

∫ t+T0

t

(‖∇u(s)‖2 +
1

γ
‖∆̃ũβ(s)‖

2) ds ≤ M4, T0 > 0,

where M4 is some positive constant independent of t. Note that from Lemma 3.1,
we only obtain the estimate

µ

∫ t+T0

t

‖∇u(s)‖2 ds ≤ M2.

(ii) Instead of the assumption (A2), if we make the following assumption
∫ t

0

e2αt‖f(τ)‖2 dτ ≤ M1, and ‖∇u0‖
2 ≤ M1,

then a simple modification of the above Lemmas yields

‖∇u(t)‖ ≤ C(α, µ, δ, λ1,M1)e
−αt ∀t > 0,

and
∫ t

0

e2ατ‖∆̃u(τ)‖2 dτ ≤ C(α, µ, δ, λ1,M1) ∀t > 0.

Note that we have the exponential decay property for the gradient of u(t) in L∞(L2)-
norm.
(iii) Following the arguments of Sobolevskii [30], it is possible to obtain similar
asymptotic behavior for some 0 < δ0 < min(δ, λ1µ) provided

sup
0<t<∞

(eδ0t‖f(t)‖) ≤ M,

for some positive constant M . With some changes in the proof of the above Lemmas
like setting α = δ0±α0 with 0 < α0 < min{δ− δ0, µλ1− δ0}, it is easy to derive the
exponential decay proper for the solution now replacing α by δ0. In fact, the above
asymptotic behavior holds true, when f ≡ 0, see Pani et al. [28].
(iv) A priori bounds in above Lemmas are useful for proving existence of a unique
global strong solutions to (1.1)-(1.3) by employing Faedo-Galerkin method, see
Temam [31], Ladyzhenskaya [19] for similar analysis in case of Navier-Stokes equa-
tions.

We present below, regularity results for the nonsmooth u0, i.e., when u0 ∈ J1.

Theorem 3.1. Suppose the assumptions (A1) and (A2) hold. Then, there is a
constant K = K(M0,M3, α, µ, δ, γ) > 0 such that for 0 < α < min(δ, λ1µ) the
following estimate

sup
0<t<∞

(τ∗)1/2(t){‖u‖2 + ‖ut‖+ ‖p‖H1/R} ≤ K

holds, where τ∗(t) = min{t, 1}.

Proof. Following the proof of Theorem 2.1 in ([28], page 760), we arrive at

(3.23) e−2αt

∫ t

0

e2αs‖ut(s)‖
2 ds ≤ C(M3).
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Next, we differentiating the equation (2.2) with respect to time, to obtain

(utt,φ)− µ(∇ut,∇φ)− β(0)(∇u,∇φ)−

∫ t

0

βt(t− s)(∇u(s),∇φ) ds

= −(ut · ∇u+ u · ∇ut,φ) + (ft,φ), ∀ φ ∈ J1.(3.24)

Setting φ = σ(t)ut in (3.24), where σ(t) = τ∗(t)e2αt, we rewrite the resulting
equation as

1

2

d

dt
(σ(t)‖ut‖

2)−
(e2αt

2
+ ασ(t)

)

‖ut‖
2

+µσ(t)‖∇ut‖
2 − σ(t)

∫ t

0

βt(t− s)(∆̃u(s),ut)ds

= β(0)σ(t)(∆̃u,ut)− τ∗(t)e−αt(eαtut · ∇û, eαtut) + τ∗(t)(eαtft, e
αtut).

Observe that ‖ut‖
2 ≤ 1

λ1
‖∇ut‖

2. Now we use Hölder’s inequality for the nonlinear
term on the right-hand side to obtain

1

2

d

dt
(σ(t)‖ut‖

2) + (µ−
α

λ1
)σ(t)‖∇ut‖

2 ≤
1

2
e2αt‖ut‖

2 + γσ(t)‖∆̃u‖‖ut‖

+ τ∗(t)e−αt‖eαtut‖
2
L4(Ω).‖∇û‖+ σ(t)‖ft‖‖ut‖

+
τ∗(t)

δ

∫ t

0

β(t− s)eα(t−s)‖∆̃û(s)‖‖eαtut‖ ds.

As usual, we can estimate the third term (say I1) on the right-hand side as follows

I1 ≤ ǫ0.σ(t)‖∇ut‖
2 +

1

2ǫ0
σ(t)e−2αt‖ut‖

2‖∇û‖2,

for some positive ǫ0.

d

dt
(σ(t)‖ut‖

2) + 2(µ−
α

λ1
)σ(t)‖∇ut‖

2 ≤ e2αt‖ut‖
2 + γ2σ(t)‖∆̃u‖2

+ 2ǫ0 σ(t)‖∇ut‖
2 +

1

ǫ0
σ(t)‖ut‖

2
(

ǫ0 + e−2αt‖∇û‖2
)

+ σ(t)‖ft‖
2 +

τ∗(t)

δ2

(

∫ t

0

β(t− s)eα(t−s)‖∆̃û(s)‖ ds
)2

.

With ǫ0 = 1
2 (µ − α

λ1

), and σ(t) ≤ e2αt for all t > 0, we integrate with respect to

time in the interval 0 < ε < t ≤ ∞ and use (A2) to obtain

σ(t)‖ut(t)‖
2 + (µ−

α

λ1
)

∫ t

ε

σ(s)‖∇ut(s)‖
2 ds(3.25)

≤ σ(ε)‖ut(ε)‖
2 + C(µ, α, λ1,M1)

∫ t

ε

e2αs‖us(s)‖
2 ds+

∫ t

ε

e2αs‖∆̃u(s)‖2 ds

+

∫ t

ε

σ(s)‖ft(s)‖
2 ds+

1

δ2

∫ t

ε

(

∫ s

0

β(s− τ)eα(s−τ)‖∆̃û(τ)‖ dτ
)2

ds.

Note that the first term on the right-hand side may not be finite as ε → 0 and
hence, there can be some problem in integrating directly from 0 to t. Now, by
(3.23), we find that

∫ t

0

e2αs‖ut(s)‖
2 ds ≤ C(M1)e

2αt.

Therefore, there exists a sequence of positive real numbers εn → 0 such that

εn{e
2αεn‖ut(εn)‖

2} → 0, as n → ∞.
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Choosing ε = εn in (3.25) and passing the limit as n → ∞, and using Lemma 3.1,
(A2), (3.23) and the estimate (for a proof see [28])

I =

∫ t

0

(

∫ s

0

β(s− τ)eα(s−τ)‖∆̃û(τ)‖ dτ)2 ds

≤ (
γ

δ − α
)2
∫ t

0

‖∆̃û(s)‖2 ds,(3.26)

we conclude that

(3.27) τ∗(t)‖ut(t)‖
2 + (µ−

α

λ1
)e−2αt

∫ t

0

σ(s)‖∇ut(s)‖
2 ds ≤ K.

To estimate ‖∆̃u(t)‖, we proceed as in the proof of Theorem 2.1 in [28] to obtain

µ‖∆̃û(t)‖2 ≤ C(µ)
{

e2αt‖ut‖
2 + e2αt‖u‖2‖∇u‖4 + ‖f̂‖2

}

+C(γ, µ)
(

∫ t

0

e−(δ−α)(t−s)‖∆̃û(s)‖ ds
)2

.

The integral term can be estimated as

≤ C(γ, µ)(

∫ t

0

e−2(δ−α)(t−s) ds)(

∫ t

0

‖∆̃û(s)‖2 ds) ≤ C(γ, µ, δ)

∫ t

0

‖∆̃û(s)‖2 ds.

Note that if we majorize the exponential term by 1, then the right-hand side depends
on time. For the sake of brevity, in the rest of the paper, similar integrals are
estimated by constants independent of time, skipping the explicit calculations.
Using the assumption (A2) and Lemma 3.2, we now arrive at

‖∆̃u(t)‖2 ≤ C(γ, α, δ, µ){‖ut‖
2 +M6

3 +M2
0 +M2

3 }

Now, multiply by τ∗(t) and use the fact τ∗(t) ≤ 1 and (3.27) to find that

(3.28) τ∗(t)‖∆̃u‖2 ≤ K.

For the pressure term, we again appeal to the equation (1.1) and with the help of
the results in Theorem 3.1, namely; (3.27) and (3.28), we complete the rest of the
proof. �

Theorem 3.2. Under the assumptions of the Theorem 2.1, there is a constant
K > 0 such that the pair of solutions {u, p} satisfies the following estimates for
0 < α < min {δ, λµ}

sup
0<t<∞

e−2αt

∫ t

0

σ(s)‖ut‖
2
1 ds ≤ K, sup

0<t<∞
τ∗(t)‖ut‖1 ≤ K,

where τ∗(t) = min{t, 1}. Moreover,

sup
0<t<∞

e−2αt

∫ t

0

σ1(s)
(

‖ut‖
2
2 + ‖utt‖

2 + ‖pt‖
2
H1/R

)

ds ≤ K,

where σ1(t) = (τ∗)2(t)e2αt.

Proof. First estimate clearly follows from (3.27). For the second one, we follow the
proof of Theorem 2.2 in ([28], page 763), except that, we use σ1(t) in place of σ(t).
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We obtain as earlier

d

dt
(σ1(t)‖∇ut‖

2) + µσ1(t)‖∆̃ut‖
2 ≤ C(µ, γ)σ1(t)

(

‖∆̃u‖2 + ‖ft‖
2
)

+ σ1,t(t)‖∇ut‖
2 + C(µ)

(

sup
t>0

τ∗(t)‖∆̃u(t)‖2
)

σ(t)‖∇ut‖
2

+
γ2

2ǫδ2
(τ∗(t))2

(

∫ t

0

e−(δ−α)(t−s)‖(∆̃û(s)‖ ds
)2

.

We integrate with respect to time in the interval 0 < ǫ < t ≤ ∞ and using (3.27),
we can pass the limit as ǫ → 0 and then using the estimates (3.27), (3.26) and
Lemma 3.2, we arrive at

(τ∗(t))2‖∇ut‖
2 + µe−2αt

∫ t

0

σ1(s)‖∆̃ut‖
2 ≤ K.

Next, form an inner product between (3.24) and σ1(t)utt(t) and proceed in a similar
fashion to obtain
∫ t

0

σ1(s)‖utt‖
2 ds ≤ C(γ, µ)

∫ t

0

σ1(s)
(

‖∆̃u‖2 + ‖∆̃ut‖
2 + ‖ft‖

2 + ‖∇ut‖
2
)

ds,

and the required estimate for utt now follows by multiplying e−2αt and by using
previously obtained estimates. Similar analysis, using the equation (1.1), would
result in the estimate of the pressure term. �

Remark 3.4. As in [28], we can easily modify our analysis to derive regularity
results, when u0 ∈ J1 ∩H2 .

4. Semidiscrete Galerkin Approximations

From now on, we denote h with 0 < h < 1 by a real positive discretization
parameter tending to zero. Let Hh and Lh, 0 < h < 1 be two family of finite
dimensional subspaces of H1

0 and L2, respectively, approximating velocity vector
and the pressure. Assume that the following approximation properties are satisfied
for the spaces Hh and Lh:
(B1) For each w ∈ H1

0 ∩H2 and q ∈ H1/R there exist approximations ihw ∈ Hh

and jhq ∈ Lh such that

‖w− ihw‖+ h‖∇(w− ihw)‖ ≤ K0h
2‖w‖2, ‖q − jhq‖L2/R ≤ K0h‖q‖H1/R.

Further, suppose that the following inverse hypothesis holds for wh ∈ Hh

‖∇wh‖ ≤ K0h
−1‖wh‖.

For defining the Galerkin approximations, set for v,w,φ ∈ H1
0,

a(v,φ) = (∇v,∇φ)

and

b(v,w,φ) =
1

2
(v · ∇w,φ)−

1

2
(v · ∇φ,w).

Note that the operator b(·, ·, ·) preserves the antisymmetric property of the original
nonlinear term, that is,

b(vh,wh,wh) = 0 ∀vh,wh ∈ Hh.
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The discrete analogue of the weak formulation (2.1) now reads as: Find uh(t) ∈ Hh

and ph(t) ∈ Lh such that uh(0) = u0h and for t > 0

(uht,φh) + µa(uh,φh) + b(uh,uh,φh)− (ph,∇ · φh) = (f ,φh)

−

∫ t

0

β(t− s)a(uh(s),φh)ds ∀φh ∈ Hh,(4.1)

(∇ · uh, χh) = 0 ∀χh ∈ Lh,

where u0h ∈ Hh is a suitable approximation of u0 ∈ J1.
In order to consider a discrete space analogous to J1, we impose the discrete in-
compressibility condition on Hh and call it as Jh. Thus, we define Jh, as

Jh = {vh ∈ Hh : (χh,∇ · vh) = 0 ∀χh ∈ Lh}.

Note that Jh is not a subspace of J1. With Jh as above, we now introduce an
equivalent Galerkin formulation as: Find uh(t) ∈ Jh such that uh(0) = u0h and for
t > 0

(uht,φh) + µa(uh,φh) +

∫ t

0

β(t− s)a(uh(s),φh) ds

= −b(uh,uh,φh) + (f ,φh) ∀φh ∈ Jh.(4.2)

Since Jh is finite dimensional, the problem (4.2) leads to a system of nonlinear
integro-differential equations. For global existence of a solution pair of (4.2), we
refer to [28]. Uniqueness is obtained on the quotient space Lh/Nh, where

Nh = {qh ∈ Lh : (qh,∇ · φh) = 0, ∀φh ∈ Hh}.

The norm on Lh/Nh is given by

‖qh‖L2/Nh
= inf

χh∈Nh

‖qh + χh‖.

For continuous dependence of the discrete pressure ph(t) ∈ Lh/Nh on the discrete
velocity uh(t) ∈ Jh, we assume the following discrete inf-sup (LBB) condition for
the finite dimensional spaces Hh and Lh:
(B2′) For every qh ∈ Lh, there exists a non-trivial function φh ∈ Hh and a positive
constant K0, independent of h, such that

|(qh,∇ · φh)| ≥ K0‖∇φh‖‖qh‖L2/Nh
.

Moreover, we also assume that the following approximation property holds true for
Jh.
(B2) For every w ∈ J1 ∩H2, there exists an approximation rhw ∈ Jh such that

‖w − rhw‖+ h‖∇(w − rhw)‖ ≤ K5h
2‖w‖2.

This is a less restrictive condition than (B2′) and it has been used to derive the
following properties of the L2 projection Ph : L2 7→ Jh. We now state, without
proof, these results. For a proof, see [12]. For φ ∈ Jh, note that

(4.3) ‖φ− Phφ‖+ h‖∇Phφ‖ ≤ Ch‖∇φ‖,

and for φ ∈ J1 ∩H2,

(4.4) ‖φ− Phφ‖+ h‖∇(φ− Phφ)‖ ≤ Ch2‖∆̃φ‖.

We now define the discrete operator ∆h : Hh 7→ Hh through the bilinear form
a(·, ·) as

a(vh,φh) = (−∆hvh,φ) ∀vh,φh ∈ Hh.(4.5)
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Set the discrete analogue of the Stokes operator ∆̃ = P∆ as ∆̃h = Ph∆h. The
restriction of ∆̃h to Jh is invertible and its inverse is denoted as ∆̃−1

h . We recall the
’discrete’ Sobolev norms on Jh (see [13]): For r ∈ R, set

‖vh‖r := ‖(−∆̃h)
r/2vh‖, vh ∈ Jh.

We note that ‖vh‖0 = ‖vh‖ and ‖vh‖1 = ‖∇vh‖ for vh ∈ Jh. The norms ‖∆̃h(·)‖
and ‖ · ‖2 are equivalent in Jh, with constants independent of h.
Using Sobolev embedding and Sobolev inequality, it is easy to prove the following
properties for the nonlinear term:

Lemma 4.1. Suppose conditions (A1),(B1) and (B2) are satisfied. Then there
exists a positive constant C such that for v ∈ J1 and φ, ξ ∈ Jh

|b(v,φ, ξ)| ≤ C‖v‖1/2‖∇v‖1/2‖φ‖‖∇ξ‖1/2‖∆̃hξ‖
1/2(4.6)

|b(v,φ, ξ)| ≤ C‖∇v‖1/2‖∆̃v‖1/2‖φ‖‖∇ξ‖(4.7)

and for φh, ξ, χ ∈ Jh

|b(φh, ξ,χ)| ≤ C‖φh‖‖∇ξ‖
1/2‖∆̃hξh‖

1/2(‖χ‖1/2‖∇χ‖1/2 + ‖∇χ‖)(4.8)

|b(φh, ξ,χ)| ≤ C‖φh‖(‖∇ξ‖+ ‖ξ‖1/2‖∇ξ‖1/2)‖∇χ‖1/2‖∆̃hχ‖
1/2(4.9)

Examples of subspaces Hh and Lh satisfying assumptions (B1), (B2′), and (B2)
can be found in [9, 4, 3]. For nonconforming finite elements, we would like to
refer to [12]. The error estimate, presented in this paper, would also go through
for nonconforming finite elements with appropriate incorporation of the boundary
terms. These terms along with their estimates can be found in [12] in the context
of Navier-Stokes equations.
Before proceeding to the next section, we state without proof some estimates of uh.
The proof proceeds along the lines of proof of Lemmas 3.1− 3.4 and Theorem 3.1
using the definition of discrete Stokes operator (see (4.5)).

Lemma 4.2. The semi-discrete Galerkin approximation uh of the velocity u sat-
isfies, for t > 0,

‖uh(t)‖ + e−2αt

∫ t

0

e2αs‖∇uh(t)‖
2 ds ≤ K,(4.10)

‖∇uh(t)‖ + e−2αt

∫ t

0

e2αs‖∆̃huh(t)‖
2 ds ≤ K,(4.11)

(τ∗(t))1/2‖∆̃huh(t)‖ ≤ K,(4.12)

where K depends only on the given data. In particular, K is independent of h.

5. A priori Error Estimates for the Velocity

Since Jh is not a subspace of J1, the weak solution u satisfies

(ut,φh) + µa(u,φh) +

∫ t

0

β(t− s)a(u(s),φh) ds = −b(u,u,φh)

+ (f ,φh) + (p,∇ · φh) ∀φh ∈ Jh.(5.1)
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In this Section, we discuss optimal error estimates for the error e = u− uh. By
introducing an intermediate solution vh which is a finite element Galerkin approx-
imation to a linearized Oldroyd equation, that is, vh satisfies

(vht,φh) + µa(vh,φh) +

∫ t

0

β(t− s)a(vh(s),φh) ds(5.2)

= (f ,φh)− b(u,u,φh) ∀φh ∈ Jh,

we split e as

e := u− uh = (u− vh) + (vh − uh) = ξ + η.

Note that ξ is the error committed by approximating a linearized Oldroyd equation
and η represents the error due to the presence of non-linearity in the equation.
Below, we derive some estimates of ξ. Subtracting (5.2) from (5.1), the equation
in ξ is written as

(5.3) (ξt,φh) + µa(ξ,φh) +

∫ t

0

β(t − s)a(ξ(s),φh) ds = (p,∇ · φh), φh ∈ Jh.

Lemma 5.1. Let vh(t) ∈ Jh be a solution of (5.2) with initial condition vh(0) =
Phu0 and u be a weak solution of (1.1) with initial condition u0 ∈ J1. Then, ξ
satisfies

∫ t

0

e2ατ‖ξ(τ)‖2 dτ ≤ Ce2αth4, t > 0.

For a proof, see [28]. Note that the estimate involving the pressure term can
easily be obtained using the equation (1.1), (3.23) and Lemma 3.2 in Section 3. For
optimal error estimates of ξ in L∞(L2) and L∞(H1)-norms, we recall the Stokes-
Volterra projection Vhu : [0,∞) → Jh, which is introduced in [28], satisfying,

µa(u− Vhu,φh) +

∫ t

0

β(t− s)a(u(s)− Vhu(s),φh) ds = (p,∇ · φh),(5.4)

for φh ∈ Jh. Now, we decompose the error ξ as follows:

ξ = (u− Vhu) + (Vhu− vh) = ζ + θ.

First of all, we derive optimal error bounds for the error ζ = u− Vhu.

Lemma 5.2. Assume that the conditions (A1), (B1) and (B2) are satisfied. Sup-
pose u is a weak solution of (1.1) with initial condition u0 ∈ J1. Then there is a
positive constant C such that

‖(u− Vhu)(t)‖
2 + h2‖∇(u− Vhu)(t)‖

2 ≤ Ch4
(

K2(t) + e−2αt

∫ t

0

e2αsK2(s) ds
)

where

K(t) := ‖∆̃u(t)‖+ ‖∇p(t)‖.

Moreover, the following estimate holds:

‖(u−Vhu)t(t)‖
2+h2‖∇(u−Vhu)t(t)‖

2 ≤ Ch4
(

K2(t)+K2
t (t)+e−2αt

∫ t

0

e2αsK2(s) ds
)

,

where

Kt(t) := ‖∆̃ut(t)‖+ ‖∇pt(t)‖.



ERROR ESTIMATE FOR THE OLDROYD FLUID OF ORDER ONE 341

Proof. We again refer to [28] for a proof of the first estimate involving ζ = u−Vhu.
For estimate involving ζt, we differentiate (5.4) with respect to the temporal vari-
able t to find that, for φh ∈ Jh,

(5.5) µa(ζt,φh) + β(0)a(ζ(t),φh) +

∫ t

0

βt(t− s)a(ζ(s),φh) ds = (pt,∇ · φh).

Chooseφh = e2αtPhζt in (5.5), use discrete incompressibility condition,H1
0-stability

of Ph for the term on the right-hand side and approximation properties, and finally
observe that

φh = e2αtζt − e2αt(ζt − Phζt) and ζt − Phζt = ut − Phut.

Then, we obtain

µ‖eαt∇ζt‖
2 = µa(eαtζt, e

αt(ut − Phut))−
1

γ
a(ζ̂, Ph(e

αtζt))

+δ

∫ t

0

β(t− s)eα(t−s)a(ζ̂(s), Ph(e
αtζt)) ds

+(eαtpt − jh(e
αtpt),∇ · Ph(e

αtζt))

≤ C‖eαt∇ζt‖
[

h‖eαt∆ût‖+ ‖∇ζ̂‖+

∫ t

0

‖∇ζ̂(s)‖ ds+ h‖∇pt‖
]

.

Now, with the help of estimate of ‖∇ζ(t)‖ we complete the proof of the estimate
‖∇ζt‖.
Finally, for the estimation of ζt in L2-norm, we appeal to Aubin-Nitsche duality
argument. For fixed h, let {w, q} be a pair of unique solution of the following steady
state Stokes system

−µ∆w +∇q = eαtζt in Ω(5.6)

∇ ·w = 0 in Ω

w|∂Ω = 0.

From assumption (A1), the following regularity result for the problem (5.6)

(5.7) ‖w‖2 + ‖q‖H1/R ≤ C‖eαtζt‖,

holds. Form L2-inner-product with eαtζt to obtain

‖eαtζt‖
2 = µa(eαtζt,w − Phw)− (eαt∇ · ζt, q) + µa(eαtζt, Phw).

From (5.5) with φh = Phw and a use of discrete incompressibility condition now
leads to

‖eαtζt‖
2 = µa(eαtζt,w − Phw)− (eαt(ut − Phut),∇q)− (∇ · Ph(e

αtζt), q − jhq)

+ (eαt(pt − jhpt),∇ · (Phw −w))− β(0)a(ζ̂, Phw−w) + β(0)(ζ̂,−∆w)

+

∫ t

0

β(t− s)eα(t−s)a(ζ̂(s), Phw −w) ds−

∫ t

0

β(t− s)eα(t−s)(ζ̂(s),−∆w) ds.

Using Cauchy-Schwarz inequality, properties of Ph and regularity results, we note
that

‖ζt‖ ≤ C(µ, γ, δ)
[

h2
(

‖∆̃ut‖+ ‖∇pt‖
)

+ h(‖∇ζt‖+ ‖∇ζ‖

+ e−αt

(∫ t

0

‖∇ζ̂(s)‖2 ds

)1/2

)

]

+ C

(

‖ζ‖+ e−αt

(∫ t

0

‖ζ̂(s)‖2 ds

)1/2
)

.
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On substituting various known estimates of ζ, we obtain the required result for ζt
in L2-norm and this completes the rest of the proof. �

Remark 5.1. Lemmas 5.1 and 5.2 are still valid for u0 ∈ J1 ∩H2.

Now we are in a position to estimate ξ in L∞(L2) and L∞(H1
0)-norms. Since

ξ = ζ + θ and estimates of ζ are known from the previous Lemma, it is sufficient
to estimate θ. From (5.3) and (5.4), the equation in θ becomes

(θt,φh) + µa(θ,φh) +

∫ t

0

β(t − s)a(θ(s),φh) ds = −(ζt,φh) ∀φh ∈ Jh.(5.8)

Note that for estimation of ‖ζt‖ in (5.8), it is essential to introduce σ(t) term, as in
[28], so that we can avoid nonlocal compatibility conditions. However, a direct use
of σ(t) as in Heywood and Rannacher [12] forced us to apply Gronwall’s Lemma.
This is mainly due to the presence of the integral term in (5.8). Therefore, as in
Pani and Sinha [27], we first introduce

θ̃(t) =

∫ t

0

θ(s) ds,

and shall derive an improved estimate for

∫ t

0

eαt‖∇θ̃(s)‖2 ds.

This, in turn, helps us to introduce σ(t) and then we derive estimates of θ without
using Gronwall’s Lemma.

Lemma 5.3. There is a positive constant K such that for u0 ∈ J1, ξ satisfies, for
t > 0, the following estimate

‖ξ(t)‖ + h‖∇ξ(s)‖ ≤ Ch2t−1/2.

Proof. Following the proof of Lemma 5.3 in [28] (page 772), we obtain

e2αt‖θ̃(t)‖2 + (µ−
α

λ1
)

∫ t

0

e2αs‖∇θ̃(s)‖2 ds ≤
1

(µλ1 − α)

∫ t

0

‖ζ̂(s)‖2 ds

≤ Ch4

∫ t

0

e2αsK2(s) ds.(5.9)

Now, choosing φh = σ(t)θ in (5.8), it now follows that

1

2

d

dt

(

σ(t)‖θ‖2
)

+ µσ(t)‖∇θ‖2 = −σ(t)(ζt, θ) +
1

2
σt(t)‖θ‖

2

−σ(t)

∫ t

0

β(t− τ)a(θ(τ), θ) dτ(5.10)

≤
1

2
σ1(t)‖ζt‖

2 +
1

2
(e2αt + σt(t))‖θ(t)‖

2 + I1.

For I1, we follow the arguments of [28] to obtain

(5.11)

∫ t

0

|I1(s)| ds ≤ C(µ, δ, γ)

∫ t

0

e2αs‖∇θ̃(s)‖2 ds+
µ

2

∫ t

0

σ(s)‖∇θ(s)‖2 ds.
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On integrating (5.10) with respect to time and substituting the above estimate in
the resulting equation, it follows that

σ(t)‖θ(t)‖2 + µ

∫ t

0

σ(s)‖∇θ(s)‖2 ds ≤ C

∫ t

0

σ1(s)‖ζt‖
2 ds

+ C

∫ t

0

e2αs(‖θ(s)‖2 + ‖∇θ̃(s)‖2) ds

≤ C

∫ t

0

(σ1(s)‖ζt‖
2 + e2αs(‖ξ‖2 + ‖ζ‖2) + e2αs‖∇θ̃(s)‖2) ds

≤ Ch4
{

e2αt +

∫ t

0

(e2αsK2(s) + σ1(s)K
2
s(s)) ds

}

,

where we have used Lemmas 5.1-5.2 and the estimate (5.9). Now, Theorem 3.2
yields

‖θ(t)‖2 + σ−1(t)

∫ t

0

σ(s)‖∇θ(s)‖2 ds ≤ Ch4t−1.

An use of triangle inequality and inverse hypothesis finally completes the rest of
the proof. �

We require a couple of Lemmas before we can establish our main result.

Lemma 5.4. Suppose the assumptions (A1)-(A2) and, (B1) and (B2) hold. Let
uh(t) be a solution of (4.2) with initial condition u0h = Phu0, where u0 ∈ J1. Then,
there exists a positive constant C such that for 0 < T < ∞ with t ∈ (0, T ]

∫ T

0

e2αs‖e(s)‖2 ds ≤ Ce2αth4.

Proof. In view of the Lemma 5.1, we only need to prove the estimate for η. From
(4.2) and (5.2), the equation in η becomes

(ηt,φh) + µa(η,φh) +

∫ t

0

β(t− s)a(η(s),φh) ds(5.12)

= b(uh,uh,φh)− b(u,u,φh), φh ∈ Jh.

Choose φh = e2αt(∆̃−1
h η) to obtain

1

2

d

dt
‖η̂‖2−1 − α‖η̂‖2−1 + µ‖η̂‖2 +

∫ t

0

β(t− s)eα(t−s)a(η̂(s), η̂) ds(5.13)

= eαtΛh(∆̃
−1
h η̂),

where

Λh(φh) =b(uh,uh,φh)− b(u,u,φh)(5.14)

=− b(e,uh,φh)− b(u, e,φh).

Using e = ξ + η in (5.14) along with (4.6) and (4.9), we find that

|eαtΛh(∆̃
−1
h η̂)| ≤ C

(

‖∇uh‖++‖uh‖
1/2‖∇uh‖

1/2 + ‖u‖1/2‖∇u‖1/2
)

×
(

‖η̂‖
1/2
−1 ‖η̂‖

3/2 + ‖η̂‖‖ξ̂‖
)

≤ ε‖η̂‖2 + C(ε)
(

‖∇uh‖
2 + ‖uh‖‖∇uh‖+ ‖u‖‖∇u‖

)

‖ξ̂‖2

+ C(ε)‖η̂‖2−1

(

‖∇uh‖
4 + ‖uh‖

2‖∇uh‖
2 + ‖u‖2‖∇u‖2

)

(5.15)
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Put ε = µ/2 in (5.15), substitute it in (5.13) and use Lemmas of Section 3 and 4
to estimate u and uh to yield

d

dt
‖η̂‖2−1 + µ‖η̂‖2 +

∫ t

0

β(t− s)eα(t−s)a(η̂(s), η̂) ds ≤ C(K,µ)‖ξ̂‖2(5.16)

+ (C(K,µ) + 2α)‖η̂‖2−1.

Integrate (5.16). Observe that the double integral is positive and η(0) = 0.

‖η̂‖2−1 + µ

∫ t

0

‖η̂‖2 ≤ C(K,µ)

∫ t

0

‖ξ̂‖2ds+ (C(K,µ) + 2α)

∫ t

0

‖η̂‖2−1ds.

Apply Gronwall’s Lemma, use Lemma 5.1 and now, a use of triangular inequality
completes the rest of the proof. �

Lemma 5.5. Suppose the assumptions (A1)-(A2) and, (B1) and (B2) hold. Let
uh(t) and vh(t), both in Jh, be solutions of (4.2) and (5.2), respectively, with initial
conditions uh(0) = vh(0) = Phu0. Then, η = vh − uh satisfies

∫ t

0

e2αs‖∇η̃(s)‖2ds ≤ C(t)eCth4,

where η̃(t) =
∫ t

0
η(s) ds.

Proof. We integrate (5.12) to arrive at the following

(5.17) (η,φh) + µa(η̃,φh) +

∫ t

0

∫ s

0

β(s− τ)a(η(τ),φh) dτ ds =

∫ t

0

Λh(φh) ds.

As in the proof of Lemma 5.3 in [28] (page 772), we find

(5.18)

∫ t

0

∫ s

0

β(s− τ)a(η(τ),φh) ds =

∫ t

0

β(t− s)a(η̃(s),φh) ds.

Combining (5.17)-(5.18) yields

(5.19) (η,φh) + µa(η̃,φh) +

∫ t

0

β(t− s)a(η̃(s),φh) ds =

∫ t

0

Λh(φh) ds.

Put φh = e2αtη̃ in (5.19) to obtain

1

2

d

dt
(e2αt‖η̃‖2)−αe2αt‖η̃‖2 + µe2αt‖∇η̃‖2

+

∫ t

0

β(t− s)eα(t−s)a(eαsη̃(s), eαtη̃) ds = e2αt
∫ t

0

Λh(η̃) ds(5.20)

Integrate (5.20) and use the positivity of the double integral term to drop it. This
results in the following

(5.21) e2αt‖η̃‖2+2(µ−
α

λ1
)

∫ t

0

e2αs‖∇η̃(s)‖2 ds ≤ 2

∫ t

0

e2αs|

∫ s

0

Λh(η̃(s)) dτ | ds.

It remains to estimate the nonlinear term in (5.21). Similar to (5.14), we find that

(5.22) Λh(η̃) = −b(e,uh, η̃)− b((u, e, η̃).

Use (4.7) and (4.8) to estimate the nonlinear terms in (5.22):

|Λh(η̃)| ≤ C‖e‖‖∇uh‖
1/2‖∆̃huh‖

1/2‖η̃‖1/2‖∇η̃‖1/2

+ C‖e‖‖∇η̃‖{‖∇uh‖
1/2‖∆̃huh‖

1/2 + ‖∇u‖1/2‖∆̃u‖1/2}.
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Hence, we find that
∫ t

0

|Λh(η̃)| ds(5.23)

≤ C
(

∫ t

0

‖e(s)‖{‖∇uh(s)‖
1/2‖∆̃huh(s)‖

1/2 + ‖∇u(s)‖1/2‖∆̃u(s)‖1/2} ds
)

‖∇η̃‖

≤ C
(

∫ t

0

‖e(s)‖2ds
)1/2(

∫ t

0

(‖∇uh(s)‖‖∆̃huh(s)‖ + ‖∇u(s)‖‖∆̃u(s)‖) ds
)1/2

‖∇η̃‖.

Use the uniform bound for the Dirichlet norm and the fact that eαt ≥ 1 for α
positive and for t ≥ 0, to rewrite (5.23) as:

∫ t

0

|Λh(η̃)| ds ≤ C
(

∫ t

0

‖ê(s)‖2ds
)1/2

(5.24)

×
(

∫ t

0

(‖∆̃huh(s)‖ + ‖∆̃u(s)‖) ds
)1/2

‖∇η̃‖.

Use Lemmas 3.4 and 5.4 in (5.24) to arrive at

(5.25)

∫ t

0

|Λh(η̃)| ds ≤ Ch2t1/4eαt‖∇η̃‖.

And hence, from (5.25), we find

2

∫ t

0

e2αs
∫ s

0

|Λh(η̃(s))| dτ ds ≤ C(µ, λ1)h
4t1/2e4αt(5.26)

+ (µ−
α

λ1
)

∫ t

0

e2αs‖∇η̃(s)‖2 ds.

Plug (5.26) in (5.21) and this completes the rest of the proof. �

Below, we discuss one of the main theorems of this Section.

Theorem 5.1. Let Ω be a convex polygon and let the conditions (A1)-(A2) and,
(B1) and (B2) be satisfied. Further, let the discrete initial velocity u0h ∈ Jh with
u0h = Phu0, where u0 ∈ J1. Then, there exists a positive constant C such that for
0 < T < ∞ with t ∈ (0, T ]

‖(u− uh)(t)‖ + h‖∇(u− uh)(t)‖ ≤ CeCth2t−1/2.

Proof. Since e = u− uh = (u − vh) + (vh − uh) = ξ + η and the estimate of ξ is
known, it is enough to estimate ‖η‖. Choose φh = σ(t)η in (5.12) to obtain

1

2

d

dt
(σ(t)‖η‖2) + µσ(t)‖∇η‖2 =

1

2
σt(t)‖η‖

2 − σ(t)

∫ t

0

β(t − s)a(η(s),η) ds+ σ(t)Λh(η)

=
1

2
σt(t)‖η‖

2 + I2(t) + σ(t)Λh(η).(5.27)

Observe that we follow the proof of Lemma 5.3, the only difference with (5.10)
being the involvement of the nonlinear term in this case. Similar to estimate (5.11)
in Lemma 5.3, we find

(5.28)

∫ t

0

|I2(s)| ds ≤ C(µ, δ, γ)

∫ t

0

e2αs‖∇η̃(s)‖2 ds+
µ

4

∫ t

0

σ(s)‖∇η(s)‖2 ds,

where η̃(t) =
∫ t

0
η(s) ds. We treat the nonlinear term, as has been done before, to

arrive at the following:

(5.29) σ(t)|Λh(η̂)| ≤
µ

4
σ(t)‖∇η‖2 + Cσ(t)‖e‖2

(

‖∇u‖‖∆̃u‖+ ‖∇uh‖‖∆̃huh‖
)

.
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Incorporate the estimate (5.29) in (5.27), integrate the resulting inequality and use
(5.28) to yield

σ(t)‖η‖2 + µ

∫ t

0

σ(s)‖∇η(s)‖2(5.30)

≤ 2(1 + α)

∫ t

0

‖η̂(s)‖2ds+ C

∫ t

0

e2αs‖∇η̃(s)‖2ds

+ C

∫ t

0

τ∗(s)(‖∇u(s)‖‖∆̃u(s)‖+ ‖∇uh(s)‖‖∆̃huh(s)‖)‖ê(s)‖
2.

Apply Theorem 3.1 and Lemmas 3.4, 5.4 and 5.5. Multiply the resulting inequality
by e−2αt to yield

τ∗(t)‖η‖2 + e−2αtµ

∫ t

0

σ(s)‖∇η‖2 ds ≤ C(K,µ)eCth4.

Here, eCt is of the form exp(C(µ, α, δ)
∫ t

0
(‖∇uh‖

4 + ‖u‖2‖∇u‖2) ds), contributed
by Lemma 5.4.
Since η ∈ Jh, we use inverse hypothesis to obtain an estimate for ‖∇η‖. A use of
triangle inequality with Lemma 5.3 completes the rest of the proof. �

Remark 5.2. (i) If u0 and f are sufficiently small with respect to the norms in
the assumption (A2) such that

µ− C(µ, λ1, δ, γ)(‖∇uh‖
4 + ‖uh‖

2‖∇uh‖
2 + ‖∇u‖2‖∆̃u‖2) ≥ 0,

then, in (5.16), we can avoid Gronwall’s Lemma so as to obtain
∫ t

0

‖η̂‖2ds ≤ Ch2,

where C is independent of time. This means, the estimate of Lemma 5.4 is uniform
in time and hence the estimate

‖η‖ ≤ Ch2

remains uniformly bounded as t → ∞.
(ii) When d = 2 and f ∈ H1(0,∞,L2(Ω)), then it is straight forward to check that

∫ t

0

‖∆̃u‖2 ds < ∞.

Thus, the error estimates holds for all time t > 0.
(iii) For u0 ∈ J1 ∩ H2, based on the analysis of [28], we can easily obtain the
following error estimate for the velocity term

‖(u− uh)(t)‖ ≤ Ch2eCt, t ∈ [0, T ].

Below, we derive uniform (in time) error estimate for the velocity term under
the assumption of the uniqueness condition, that is,

(5.31)
N

ν2
‖f‖L∞(0,∞;L2(Ω)) < 1 and N = sup

u,v,w∈H1

0
(Ω)

b(u,v,w)

‖∇u‖‖∇v‖‖∇w‖
,

where ν = µ+ γ
δ .

Theorem 5.2. Under the assumptions of Theorem 5.1 and the uniqueness condi-
tion (5.31), there exists a positive constant C, independent of time and h, such that
for all t > 0

‖(u− uh)(t)‖ ≤ Ch2t−1/2.
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Proof. We note that, in Lemma 5.3, it is shown that estimates of ξ are uniform in
time, for all time away from zero. As e = ξ+η, uniform estimates of η would give
us the desired result. In Theorem 5.1, we apply Gronwall’s Lemma, and hence,
the constant depends on exponential in time. In order to have estimates which are
uniformly valid for all t > 0, we need a different estimate of the nonlinear term
Λh(η̂) with the help of the uniqueness condition. We rewrite

(5.32) Λh(η) = −[b(ξ,uh,η) + b(η,uh,η) + b(u, ξ,η)].

Using the uniqueness condition, we find

(5.33) |b(η,uh,η)| ≤ N‖∇η‖2‖∇uh‖.

Using (4.7) and (4.8), we find
(5.34)

|b(u, ξ,η)|+ |b(ξ,uh,η)| ≤ C(‖∇u‖1/2‖∆u‖1/2 + ‖∇uh‖
1/2‖∆̃huh‖

1/2)‖∇η‖‖ξ‖.

Substitute (5.33)-(5.34) in (5.32) and use Lemmas 3.1, 3.2, Theorem 3.1 and Lem-
mas 4.2, 5.3 to find that

(5.35) |Λh(η)| ≤ N‖∇η‖2‖∇uh‖+ Ch2[τ∗]−3/4‖∇η‖.

We now modify the proof of Theorem 5.1 as follows: We choose Choose φh = e2αtη
in (5.12) and use the estimate (5.35) to obtain

d

dt
‖η̂‖2 + 2(µ−N‖∇uh‖)‖∇η̂‖

2 + 2

∫ t

0

β(t− s)eα(t−s)a(η̂(s), η̂(t)) ds(5.36)

≤ 2α‖η̂‖2 + Ch2[τ∗]−3/4e2αt‖∇η‖.

Integrate (5.36) with respect to time from 0 to t and multiply by e−2αt to arrive at

‖η(t)‖2 + e−2αt

∫ t

0

e2αs 2(µ−N‖∇uh(s)‖)‖∇η(s)‖
2 ds

+ 2e−2αt

∫ t

0

e2αs
∫ s

0

β(s− τ)a(η(τ),η(s)) dτds

≤ e−2αt
[

‖η(0)‖2 + 2α

∫ t

0

e2αs‖η(s)‖2 ds+ Ch2

∫ t

0

[τ∗(s)]−3/4e2αs‖∇η(s)‖ ds
]

.

Take t → ∞ and use the following results from [11]

lim
t→∞

2e−2αt

∫ t

0

e2αs
∫ s

0

β(s− τ)a(φ(τ),φ(s))dτds =
γ

αδ
lim
t→∞

‖∇φ(t)‖2,

lim
t→∞

‖∇uh(t)‖
2 ≤ ν−1‖f‖L∞(0,∞;L2(Ω))

and

lim
t→∞

(τ∗(t))−3/4 = 1

to find that

1

α

[

(µ−Nν−1‖f‖L∞(0,∞;L2(Ω))) +
γ

δ

]

lim
t→∞

‖∇η(t)‖2 ≤
Ch2

α
lim
t→∞

‖∇η(t)‖.

Therefore, we obtain

1

ν
(1 −Nν−2‖f‖L∞(0,∞;L2(Ω))) lim

t→∞
‖∇η(t)‖ ≤ Ch2.

From (5.31), we conclude that

lim
t→∞

‖∇η(t)‖ ≤ Ch2.
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Clearly,

lim
t→∞

‖η(t)‖ ≤ Ch2.

This, with uniform estimate of ξ from Lemma 5.3, leads to

lim
t→∞

‖e(t)‖ ≤ Ch2t−1/2.

Note that the constant C is valid uniformly for all t > 0, and this completes the
rest of the proof. �

6. A priori Error Estimates for the Pressure

In this Section, we derive optimal error estimates for the Galerkin approximation
ph of the pressure p. The main theorem of this Section is stated as follows.

Theorem 6.1. In addition to the hypotheses of Theorem 5.1, assume that (B2′)
holds. Then, there exists a positive constant C such that for 0 < t < T and for
u0 ∈ J1,

‖(p− ph)(t)‖L2/Nh
≤ CeCtht−1/2.

Now, we prove Theorem 6.1 with the help of a series of Lemmas.
As in [28], we obtain the following result.

Lemma 6.1. The semi-discrete Galerkin approximation ph of the pressure satisfies
for all t > 0
(6.1)

‖(p−ph)(t)‖L2/Nh
≤

[

C‖|et‖|−1;h + (K̃ + C‖e‖L3)‖∇e‖+

∫ t

0

β(t− s)‖∇e(s)‖ ds

]

,

where

‖|g‖|−1;h = sup
{< g,φh >

‖∇φh‖
, φh ∈ Hh, φh 6= 0

}

.

From Theorem 5.1, the estimate ‖∇e‖ is known and using Sobolev embedding
Theorem for d = 2, the estimate ‖e‖L3 ≤ C‖∇e‖ ≤ K. In order to complete the
proof of Theorem 6.1, we need to estimate ‖|et‖|−1;h in (6.1). Since Hh ⊂ H1

0, we
note that

‖|et‖|−1;h = sup
{< et,φh >

‖∇φh‖
, φh ∈ Hh, φh 6= 0

}

≤ sup
{< et,φ >

‖∇φ‖
, φ ∈ H1

0, φ 6= 0
}

,

supremum being taken over a bigger set. Therefore, we obtain

‖|et‖|−1;h ≤ ‖et‖−1.

Lemma 6.2. The error e = u−uh in approximating the velocity satisfies for t > 0

‖et(t)‖−1 ≤ CeCth(τ∗(t))−1/2,

where τ∗(t) = min{t, 1}.

Proof. From (4.2) and (5.1), we write the equation in e as

(et,φh) + µa(e,φh) +

∫ t

0

β(t− s)a(e(s),φh) ds(6.2)

= Λh(φh) + (p,∇ · φh)∀φh ∈ Jh,
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where, from (5.14), we find

Λh(φh) = −b(e,uh,φh)− b(u, e,φh).

Since Ph : L2 → Jh, then, for any ψ ∈ H1
0, we obtain using (6.2),

(et,ψ) = (et,ψ − Phψ) + (et, Phψ)(6.3)

= (et,ψ − Phψ)− µa(e, Phψ)−

∫ t

0

β(t − s)a(e(s), Phψ) ds

+Λh(Phψ) + (p,∇ · Phψ).

Using discrete incompressibility condition, we write

(p,∇ · Phψ) = (p− jhp,∇ · Phψ)

and hence, H1-stability of Ph yields

(6.4) |(p,∇ · Phψ)| ≤ Ch‖∇p‖‖∇ψ‖.

Also, using the Cauchy-Schwarz inequality and H1-stability of Ph, we obtain

(6.5) |Λh(Phψ)| ≤ ‖∇e‖(‖∇uh‖+ ‖∇u‖)‖∇ψ‖.

Using approximation property of Ph, we find that

(6.6) (et,ψ − Phψ) = (ut,ψ − Phψ) ≤ Ch‖ut‖‖∇ψ‖.

Substitute (6.4)-(6.6) in (6.3) and use the boundedness of a(·, ·) to obtain

(et,ψ) ≤
{

Ch‖ut‖+ C‖∇e‖+

∫ t

0

β(t− s)‖∇e(s)‖ ds

+‖∇e‖(‖∇uh‖+ ‖∇u‖) + Ch‖∇p‖
}

‖∇ψ‖,

and therefore,

‖et‖−1 = sup
{< et,φ >

‖∇φ‖
, φ ∈ H1

0, φ 6= 0
}

(6.7)

≤ Ch‖ut‖+ C‖∇e‖+

∫ t

0

β(t − s)‖∇e(s)‖ ds

+‖∇e‖(‖∇uh‖+ ‖∇u‖) + Ch‖∇p‖.

From Lemma 4.2, we find that

‖∇uh(t)‖ ≤ K, t > 0.

Now, using Theorem 3.1 and 5.1, we obtain from (6.7)

‖et‖−1 ≤ CeCth(τ∗(t))−1/2 +

∫ t

0

β(t− s)‖∇e(s)‖ ds(6.8)

≤ CeCth(τ∗(t))−1/2
{

1 +

∫ t

0

(τ∗(s))−1/2 ds
}

≤ CeCth(τ∗(t))−1/2,

and this completes the rest of the proof. �

Proof of Theorem 6.1. Use (6.8) in (6.1) to obtain

‖(p− ph)(t)‖L2/Nh
≤ CeCth(τ∗(t))−1/2 + (K̃ + C‖e‖L3)‖∇e‖(6.9)

+

∫ t

0

β(t− s)‖∇e(s)‖ ds.
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The last term involving integral can be estimated as in (6.8). From Theorem 5.1,
we find that

‖∇e‖ ≤ CeCth(τ∗(t))−1/2

‖e‖L3 ≤ C‖∇e‖ ≤ CeCth(τ∗(t))−1/2.

Now, plugging these estimates in (6.9), we obtain

‖(p− ph)(t)‖L2/Nh
≤ CeCth(τ∗(t))−1/2,

and this completes the rest of the proof. �

Remark 6.1. Under the uniqueness condition (5.31), we establish error estimate
for pressure, which is valid for all time t > 0. From the proof of Theorem 5.2 and
using the inverse inequality along with the triangle inequality, we easily arrive at

‖∇e‖ ≤ Ch(τ∗(t))−1/2,

where generic constant C is independent of time. As the estimates in Theorem 3.1
are uniform in time, we obtain from Lemma 6.2

‖et‖−1 ≤ Ch(τ∗(t))−1/2.

Finally,
∫ t

0

β(t− s)‖∇e(s)‖ ds ≤Che−δt

∫ t

0

eδs(τ∗(s))−1/2 ds

=Che−δt
{

∫ 1

0

eδss−1/2 ds+

∫ t

1

eδs ds
}

≤Ch{2 +
1

δ
}.(6.10)

Note that the second integral on right-hand side of (6.10) vanishes for t ≤ 1.
Now, an appeal to (6.1) yields

‖(p− ph)(t)‖L2/Nh
≤ Ch(τ∗(t))−1/2,

and we obtain optimal error estimate for the pressure term, which is uniform in
time.

7. Conclusion

In this paper, we have discussed optimal error estimates of the velocity and
the pressure terms in L∞(L2) and L∞(L2), respectively, for the semidiscrete finite
element approximations to the equations of motion arising in the 2D Oldroyd fluids
of order one. We have also established uniform in time error estimates under the
uniqueness assumption. All these results are proved when forcing term f in L∞(L2)
and initial velocity u0 in J1. Optimal error estimates are also proved in [28], when
f ≡ 0 and u0 in J1 ∩H2. The main difficulty we encounter here, in proving a priori
estimate in H1

0, which is uniform in time, is due to nonzero f , with f , ft ∈ L∞(L2).
Although a vast amount of literature is devoted to the problem (1.1)-(1.3) (mainly
Oskolkov and his pupil, Sobolevskii and recently Lin et.al), to the best of our
knowledge, a direct proof of uniform estimate in Dirichlet norm is missing in the
literature. Therefore, in the first part of this article, we have discussed a step-
by-step proof of this estimate, which is uniform in time, in Section 3. All the
regularity results are obtained without the nonlocal compatibility conditions. In
[11], authors have considered assumptions (A1)-(A2) and derived error estimate
which is optimal in L∞(H1), but suboptimal in L∞(L2) of the velocity. We, in this
paper, have improved their results in [11] and obtain optimal error estimate for the
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velocity in L∞(L2)-norm. Under the uniqueness condition, uniform error estimates
in time, for both velocity and pressure are also obtained.

We have also managed to improve the pressure estimate in the following sense.
For u0 ∈ J1, we obtain ‖p−ph‖ ≤ Kht−1/2, which exhibits similar singular behavior
(as t → 0) as that of velocity estimate. In earlier articles (e.g. [28], [11]), this
singularity is of order 1, i.e. ‖p− ph‖ ≤ Kht−1.

Finally, we would like to comment that, although Lemmas 3.1 and 3.2 yield
estimates in Dirichlet norm which is uniform in time, they do not provide us with a
concrete bound for the norm. Lemma 3.4 gives us a concrete bound, which in turn
will be useful in the study of global attractors for the Oldroyd model of order one.
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