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IMMERSED FINITE ELEMENT METHODS FOR ELLIPTIC

INTERFACE PROBLEMS WITH NON-HOMOGENEOUS JUMP

CONDITIONS

XIAOMING HE, TAO LIN, AND YANPING LIN

Abstract. This paper is to develop immersed finite element (IFE) functions

for solving second order elliptic boundary value problems with discontinuous

coefficients and non-homogeneous jump conditions. These IFE functions can be

formed on meshes independent of interface. Numerical examples demonstrate

that these IFE functions have the usual approximation capability expected

from polynomials employed. The related IFE methods based on the Galerkin

formulation can be considered as natural extensions of those IFE methods in the

literature developed for homogeneous jump conditions, and they can optimally

solve the interface problems with a nonhomogeneous flux jump condition.

Key Words. Key words: interface problems, immersed interface, finite ele-

ment, nonhomogeneous jump conditions.

1. Introduction

In this paper, we consider the following typical elliptic interface problems:

−∇ ·
(

β∇u
)

= f(x, y), (x, y) ∈ Ω,(1.1)

u|∂Ω = g(x, y)(1.2)

together with the jump conditions on the interface Γ:

[u] |Γ = 0,(1.3)
[

β
∂u

∂n

]

|Γ = Q(x, y).(1.4)

Here, see the sketch in Figure 1, without loss of generality, we assume that Ω ⊂ IR2 is
a rectangular domain, the interface Γ is a curve separating Ω into two sub-domains
Ω−, Ω+ such that Ω = Ω− ∪ Ω+ ∪ Γ, and the coefficient β(x, y) is a piecewise
constant function defined by

β(x, y) =

{

β−, (x, y) ∈ Ω−,
β+, (x, y) ∈ Ω+.

Interface problem (1.1) - (1.4) appears in many applications. For example, the
electric potential u satisfies jump conditions (1.3) and (1.4) on the interface between
two isotropic media if the surface charge density Q on Γ is not zero [10]. Another
example is the modeling of water flow in a domain consisting of two stratified porous
media with a source at the interface between the media [35].
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Figure 1. A sketch of the domain for the interface problem.

The interface problem (1.1) - (1.4) can be solved by conventional numerical meth-
ods, including both finite difference (FD) methods, see [17, 37] and references
therein, and finite element (FE) methods, see [3, 6, 9] and references therein, pro-
vided that the computational meshes are body-fitting. A body-fitting mesh, see
the illustration in Figure 2, is constructed according to the interface such that each
element/cell in this mesh is essentially on one side of the interface. Physically, this
means each element/cell in a body-fitting mesh is essentially occupied by one of the
materials forming the simulation domain of the interface problem.

Figure 2. The plot on the left shows how elements are placed
along an interface in a standard FE method. An element not al-
lowed in a standard FE method is illustrated by the plot on the
right.

For a non-trivial interface Γ, it is usually not possible to solve the interface problem
on a structured mesh satisfactorily. On the other hand, there are applications, such
as particle-in-cell simulation of plasma driven by the electric field in a Micro-Ion
Thrusters [39, 40], in which it is preferable to solve the interface problem on a
structured Cartesian mesh. Therefore, many efforts have been made for developing
interface problem solvers that can use meshes independent of interface. In finite
difference/volume formulation, we note the Cartesian grid methods [36], embedded
boundary methods [18], immersed interface method [12, 20, 26, 27, 29], cut-cell
methods [19, 21], matched interface and boundary methods [44, 45], etc.. In finite
element formulation, Babuška et al. [4, 5] developed the generalized finite element
method. Their basic idea is to form the local basis functions in an element by solving
the interface problem locally. The local basis functions in their method can capture
important features of the exact solution and they can even be non-polynomials. The
recently developed immersed finite element (IFE) methods [1, 2, 8, 11, 13, 15, 16,
24, 25, 28, 30, 31, 32, 33, 34, 38, 41] also fall into this framework. The IFEs are
developed such that their mesh can be independent of the interface, but the local
basis functions are constructed according to the interface jump conditions; hence,
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structured Cartesian meshes can be used to solve interface problems with non-trivial
interfaces. Also, the basis functions in an IFE space are piecewise polynomials.
Some other methods and related applications can be seen in [7, 22, 23, 42, 43].

However, most of the previous articles about IFE are developed for solving interface
problems with the homogeneous flux jump condition. Recently, Y. Gong, B. Li and
Z. Li [13] have developed an IFE method using homogenization based on the level
set idea to deal with the nonhomogeneous flux jump conditions. Our goal here is to
present an alternative approach by enriching the IFE spaces locally in elements cut
through by interfaces. The basic idea is to locally add piecewise polynomials that
can approximate the non-homogeneous flux jump condition satisfactorily. Since
this new method is completely in the finite element framework, it can be easily
implemented by slightly modifying the existing IFE packages.

The rest of this article is organized as follows. In Section 2, we construct IFE
functions for solving interface problems with a nonhomogeneous flux jump condi-
tion. IFE functions built locally on interface elements in 1D, 2D triangular, and
2D rectangular meshes will be discussed. In Section 3, we will discuss how to form
the IFE interpolation to approximate functions with a nonhomogeneous flux jump.
We will demonstrate that our new IFE interpolations have the optimal convergence
rate. In Section 4, we show how these IFE functions can be used in a Galerkin
formulation to solve interface problems with a nonhomogeneous flux jump, and nu-
merical examples will be presented to show the optimal convergence of these new
IFE methods. Brief conclusions will be given in Section 5.

2. IFE functions for the nonhomogeneous flux jump condition

In this section we describe IFE functions that can be used to approximate func-
tions satisfying interface jump conditions (1.3) and (1.4). IFE functions defined on
the 1D, 2D triangular, and 2D rectangular meshes will be discussed. In each case,
we first recall those IFE spaces capable of handling homogeneous jump conditions.
Then, we will describe how to enrich these spaces locally in each interface element
by adding a new IFE function that is constructed with the nonhomogeneous flux
jump condition.

2.1. One dimensional IFE functions. In one dimension, the interface problem
(1.1) - (1.4) becomes

−(βu′)′ = f, x ∈ Ω = (a, b),(2.5)

u(a) = gl, u(b) = gr,(2.6)

[u]|α = u(α+)− u(α−) = 0,(2.7)

[βu′]|α = β+u′(α+)− β−u′(α−) = Q,(2.8)

where, without loss of generality, we have assumed that there exists only one inter-
face α ∈ (a, b) and

β(x) =

{

β−, x ∈ Ω− = (a, α),

β+, x ∈ Ω+ = (α, b).

From now on, for any subset Λ of Ω, we let

Λs = Λ ∩Ωs, s = −,+.

First, we recall the 1-D linear IFE functions developed for handling the homoge-
neous jump conditions [28]. We refer the readers to [1, 2] for extensions to 1D higher
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degree IFE functions and related analysis. We start with a mesh Th of Ω = (a, b):

a = A0 < A1 < · · · < Ai < Ai+1 < · · · < AN < AN+1 = b,

hj = Aj+1 −Aj , j = 0, 1, · · · , N, h = max
0≤j≤N

hj ,

such that α ∈ (Ai, Ai+1). For a typical non-interface element T = [Ak, Ak+1], k =
0, 1, · · · , N, k 6= i, we use the usual linear finite element functions to define the local
finite element space Sh(Tk) = span{ψ1(x), ψ2(x)} with

ψ1(x) =
Ak+1 − x

hk
, ψ2(x) =

x−Ak

hk
.

On the interface element T = [xi, xi+1], we will use the IFE functions in the fol-
lowing form:

φ(x) =











φ−(x) = alx+ bl, x ∈ T−
i = [Ai, α],

φ−(x) = arx+ br, x ∈ T+
i = [α,Ai+1],

[φ]|α = 0, [βφ′]|α = 0.

It can be shown [2] that, on the interface element, there exists a unique linear IFE
function φ1(x) such that

φ1(Ai) = 1, φ1(Ai+1) = 0.

Also, there exists uniquely another IFE function φ2(x) such that

φ2(Ai) = 0, φ2(Ai+1) = 1.

Then we define the local IFE space on the interface element T by Sh(T ) = span{φ1, φ2}.

By definition, every IFE function vh(x) ∈ Sh(Ω) satisfies the homogeneous jump
conditions. In order to handle the nonhomogeneous flux jump condition (2.8), we
enrich the local IFE space Sh(T ) on the interface element T by introducing another
IFE function φT,J (x) such that

φT,J (x) =











c−(x− xi), x ∈ T−
i

c+(xi+1 − x), x ∈ T+
i ,

[φT,J ]|α = 0, [βφ′T,J ]|α = 1.

(2.9)

By straightforward calculations, we can see that

φT,J (xi) = φT,J (xi+1) = 0

and the coefficients c− and c+ can be uniquely determined as follows:

c− =
Ai+1 − α

β−(α−Ai+1) + β+(Ai − α)
,(2.10)

c+ =
Ai − α

β−(α−Ai+1) + β+(Ai − α)
.(2.11)

See Figure 3 for a sketch of φT,J (x) where T = [−1, 1], β− = 1, β+ = 2, and
α = π/6.

2.2. Two dimensional triangular IFE functions. We now consider triangular
IFE functions for solving the 2-D interface problem (1.1) - (1.4). First, we introduce
a typical triangular mesh Th on Ω that is independent of the interface Γ. When the
mesh size is small enough, only a few elements in Th are cut through by the interface
Γ and we call them the interface elements. Most of the element are non-interface
elements. Without loss of generality, we assume in the discussion from now on that
the mesh Th has the following features when the mesh size is small enough:
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Figure 3. The 1D linear IFE function dealing with the non-
homogeneous flux jump condition on the reference element with
β− = 1, β+ = 2, α = π/6.

(H1): The interface Γ will not intersect an edge of any element at more than two
points unless this edge is part of Γ.

(H2): If Γ intersects the boundary of an element at two points, then these two
points must be on different edges of this element.

On a typical non-interface element T = △A1A2A3, we use the usual local linear
finite element space Sh(T ) = span{ψi(x, y), i = 1, 2, 3} with linear polynomials
such that

ψi(Aj) =

{

1, if i = j

0, if i 6= j.
(2.12)

Note that linear polynomials are universal, they have no direct relationship with
the interface problems to be solved. Hence, on each interface element, we will use
the IFE functions that can partially solve the interface problems in a certain sense.
To describe these IFE functions on a typical interface element T = △A1A2A3, we
assume that the interface Γ intersect the boundary of T at pointsD and E. The line
DE separates T into two sub-elements T̃− and T̃+, see the illustration in Figure 4.
As in the 1-D case, we will introduce two groups of IFE functions on T . The first
group of IFE functions can represent functions values at the vertices of T and the
second group are for representing the non-zero flux jump. The IFE functions in the
first group are those introduced in [31, 32] characterized by the following formulas:

φ(x, y) =



















φ−(x, y) = a−x+ b−y + c−, (x, y) ∈ T̃−,

φ+(x, y) = a+x+ b+y + c+, (x, y) ∈ T̃+,
φ−(D) = φ+(D), φ−(E) = φ+(E),

β+ ∂φ+

∂nDE
− β− ∂φ−

∂nDE
= 0,

(2.13)

where nDE is the unit vector perpendicular to the line DE. It has been shown [31]
that functions defined by (2.13) can satisfy the homogeneous flux jump condition
across the interface Γ exactly in a weak sense as follows:

∫

Γ∩T

(

β− ∂φ
−

∂nΓ

− β+ ∂φ
+

∂nΓ

)

ds = 0.

In addition, it has been shown [31, 32] that, for each each i = 1, 2, 3, there exists a
unique triangular IFE function φi(x, y) such that

φi(Aj) =

{

1, if i = j,

0, if i 6= j,
(2.14)



IMMERSED FEM FOR ELLIPTIC PROBLEMS WITH NON-HOMOGENEOUS JUMPS 289

and we call them the local nodal linear IFE basis functions on an interface element
T . We then use these nodal basis functions to defined the local IFE space Sh(T ) =
span{φ1, φ2, φ3}.

A1

A2

A3 D

E

T̃−

T̃+

Γ

Figure 4. A typical triangular interface elements.

To handle the non-zero flux jump condition on an interface element T , we introduce
another IFE function φT,J (x, y) that is zero at all the vertices of T but it can satisfy
the unit flux jump condition. Here, we will describe the construction of φT,J (x, y)

for the case in which the interface point D is on A1A3, E is on A1A2, see Figure 4,
other cases can be handle similarly. First, the nodal value configuration suggests
that

φT,J (x, y) =

{

φ−T,J (x, y) = c2ψ2(x, y) + c3ψ3(x, y), (x, y) ∈ T̃−,

φ+T,J (x, y) = c1ψ1(x, y), (x, y) ∈ T̃+
(2.15)

with coefficients ci, i = 1, 2, 3 to be determined by the following interface jump
conditions:

φ−T,J (D) = φ+T,J (D), φ−T,J (E) = φ+T,J (E),(2.16)

β+
∂φ+T,J

∂nDE

− β−
∂φ−T,J

∂nDE

= 1.(2.17)

Here, nDE is the unit vector perpendicular to DE pointing to the same direction
of the outer normal vector of Γ ∩ T .

To describe the computation of ci, i = 1, 2, 3, we turn to reference element T̂ =

△Â1Â2Â3 with

Â1 = (0, 0), Â2 = (1, 0), Â3 = (0, 1).

We can describe φT,J (x, y) by a function φ̂J (x̂, ŷ) defined on the reference element

T̂ such that

φT,J (X) = φ̂T,J (X̂) = φ̂T,J (B
−1(X −A1)),

where B is the matrix used in the usual affine mapping between T and T̂

F : T̂ −→ T,

F x̂ = Bx̂+A1 = [A2 −A1, A3 −A1]x̂+A1.

Through this affine mapping, we can see that (2.15) - (2.17) lead to

φ̂T,J (x̂, ŷ) =

{

φ̂−T,J (x̂, ŷ) = c2ψ̂2(x̂, ŷ) + c3ψ̂3(x̂, ŷ), (x̂, ŷ) ∈ ˆ̃T−,

φ̂+T,J (x̂, ŷ) = c1ψ̂1(x̂, ŷ), (x̂, ŷ) ∈ ˆ̃T+
(2.18)
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and

φ̂−T,J (D̂) = φ̂+T,J (D̂), φ̂−T,J (Ê) = φ̂+T,J (Ê),(2.19)

β+ ∂φ̂
+

∂n̂
− β− ∂φ̂

−

∂n̂
= 1,(2.20)

where

D̂ = F−1(D) = (0, d̂)t, Ê = F−1(E) = (ê, 0)t,

(n̂1, n̂2)
t = n̂ = B−1nDE ,

ˆ̃T s = F−t(T̃ s), s = ±.

Solving the linear system (2.19) and (2.20), we obtain

c1 =
d̂ê

Λ
, c2 =

d̂(1− ê)

Λ
, c3 =

ê(1− d̂)

Λ
,

Λ = −β+(n̂1 + n̂2)d̂ê+ β−(n̂1d̂(−1 + ê) + n̂2ê(−1 + d̂)).

It can be shown that, on an interface element T , the IFE function φT,J defined

in (2.15) is uniquely determined by (2.16) and (2.17). The IFE function φ̂T,J is
illustrated in Figure 5.

Figure 5. The 2D triangular IFE function dealing with the non-
homogeneous flux jump condition on the reference element with
β− = 1, β+ = 20, D = (0, 0.3)t, E = (0.4, 0)t.

2.3. Two dimensional bilinear IFE functions. Now, let Th, h > 0 be a family
of rectangular meshes of the solution domain Ω that can be a union of rectangles.
There are two types of rectangle interface elements in a mesh Th. Type I are those
for which the interface intersects with two of its adjacent edges; Type II are those
for which the interface intersects with two of its opposite edges, see the sketches in
Figure 6.

As usual, on a non-interface element T = �A1A2A3A4, we will use the bilinear
finite element space Sh(T ) = span{ψi, 1, 2, 3, 4}, where φi, i = 1, 2, 3, 4 are the
standard bilinear local nodal basis functions associated with the vertices of T .

Our main concern is the finite element functions in an interface element T ∈ Th.
Assume that the four vertices of T are Ai, i = 1, 2, 3, 4, with Ai = (xi, yi)

t, and we
use D = (x

D
, y

D
)T and E = (x

E
, y

E
)T to denote the interface points on its edges.



IMMERSED FEM FOR ELLIPTIC PROBLEMS WITH NON-HOMOGENEOUS JUMPS 291

Γ

Γ

A1A1 A2A2

A4 A4A3 A3D

D

EE

T̃+

T̃+T̃−T̃−

Figure 6. Two typical interface elements. The element on the
left is of Type I while the one on the right is of Type II.

Note that the line DE separates T into two subelements: T̃− and T̃+. Here T̃− is
the polygon contained in T sharing at least one vertex of T̃− inside Ω− and the other
subelement is T̃+. The bilinear IFE functions on T are then formed as piecewise
bilinear polynomials according to T̃− and T̃+ that can satisfy the interface jump
conditions in a certain sense. Specifically, we will use the bilinear IFE functions
discussed in [14, 15, 16, 33] on an interface element T with the following formulation:

φ(x, y) =























φ−(x, y) = a−x+ b−y + c− + d−xy, (x, y) ∈ T̃−,

φ+(x, y) = a+x+ b+y + c+ + d+xy, (x, y) ∈ T̃+,
φ−(D) = φ+(D), φ−(E) = φ+(E), d− = d+,
∫

DE

(

β+ ∂φ+

∂nDE
− β− ∂φ−

∂nDE

)

ds = 0.

(2.21)

We let φi(X) be the IFE function described by (2.21) such that

φi(xj , yj) =

{

1, if i = j,
0, if i 6= j,

for 1 ≤ i, j ≤ 4, and we call them the bilinear IFE nodal basis functions on an
interface element T . Then, we define the local bilinear IFE space on an interface
element T by Sh(T ) = span{φi, i = 1, 2, 3, 4}.

On each interface element T , we extend the local bilinear IFE space Sh(T ) by
adding another bilinear IFE function that can capture the non-homogeneous flux
jump in a weak sense. In general, this new IFE function can be described as follows:

φT,J (x, y) =











































φ−T,J (x, y) = a−x+ b−y + c− + d−xy, (x, y) ∈ T̃−,

φ+T,J (x, y) = a+x+ b+y + c+ + d+xy, (x, y) ∈ T̃+,

φT,J (xj , yj) = 0, j = 1, 2, 3, 4,
φ−T,J (D) = φ+T,J (D), φ−T,J (E) = φ+T,J (E),

d− = d+,

∫

DE

(

β+
∂φ+T,J

∂nDE
− β−

∂φ−T,J

∂nDE

)

ds = 1.

(2.22)

Because (2.22) leads to a linear system whose coefficient matrix is the same as that
in the linear system defining φi in (2.21), the existence and uniqueness of φT,J are
equivalent to those of φi, which have been showed in [14, 15, 33].

On the other hand, the zero nodal values lead to a simpler determination of φT,J

than solving for 8 coefficients a±, b±, c±, d± directly from the linear system de-
scribed in (2.22). To see this, let us consider a Type I interface element as sketched
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in Figure 6, other cases can be discussed similarly. In this case, φT,J can be equiv-
alently rewritten as follows

φT,J (x, y) =











































φ−T,J (x, y) = c2ψ2(x, y) + c3ψ3(x, y) + c4ψ4(x, y), (x, y) ∈ T̃−,

φ+T,J (x, y) = c1ψ1(x, y), (x, y) ∈ T̃+,

φ−T,J (D) = φ+T,J (D), φ−T,J (E) = φ+T,J (E),

∂2φ−T,J

∂x∂y
=
∂2φ+T,J

∂x∂y
,

∫

DE

(

β+
∂φ+T,J

∂nDE
− β−

∂φ−T,J

∂nDE

)

ds = 1,

where ψi, i = 1, 2, 3, 4 are the standard bilinear finite element nodal basis functions
at Ai, i = 1, 2, 3, 4, and nDE has the same meaning as in the triangular case
covered in the previous subsection. This means that φT,J is actually determined
by 4 coefficients ci, i = 1, 2, 3, 4.

Following a procedure similar to the one used for the triangular interface elements,
we can compute ci, i = 1, 2, 3, 4 on the reference element T̂ with vertices Âi =
(x̂i, ŷi)

T , i = 1, 2, 3, 4 such that

Â1 =

(

0
0

)

, Â2 =

(

1
0

)

, Â3 =

(

1
1

)

, Â4 =

(

0
1

)

.

Using the usual affine mapping:

X = F (X̂) = A1 +BX̂, B = (A2 −A1, A4 −A1), X =

(

x
y

)

, X̂ =

(

x̂
ŷ

)

.

we define

φ̂T,J (X̂) = φ̂T,J (B
−1(X −A1)) = φT,J (X).

Note that through this affine mapping D and E become

D̂ = F−1(D) =

(

0

b̂

)

, Ê = F−1(E) =

(

â
0

)

and D̂Ê separates T̂ into ˆ̃T+ and ˆ̃T−. Suppose the local interface element has size
h× h. Then (2.23) leads to

φ̂T,J (x̂, ŷ) =















































φ̂−T,J (x̂, ŷ) = c2ψ̂2(x̂, ŷ) + c3ψ̂3(x̂, ŷ) + c4ψ̂4(x̂, ŷ), (x̂, ŷ) ∈ ˆ̃T−,

φ̂+T,J (x̂, ŷ) = c1ψ̂1(x̂, ŷ), (x̂, ŷ) ∈ ˆ̃T+,

φ̂−T,J (D̂) = φ̂+T,J (D̂), φ̂−T,J (Ê) = φ̂+T,J (Ê),

∂2φ̂−T,J

∂x̂∂ŷ =
∂2φ̂+T,J

∂x̂∂ŷ ,

∫

D̂Ê

(

β+
∂φ̂+T,J

∂n̂
− β−

∂φ̂−T,J

∂n̂

)

hdŝ = 1.

Here ψ̂i, i = 1, 2, 3, 4 are the four standard bilinear finite element nodal basis func-
tions associated with Âi, i = 1, 2, 3, 4 and n̂ = (n̂1, n̂2)

t = B−1nDE . Solving the
linear system defined by (2.23), we obtain the following formulas for ci, i = 1, 2, 3, 4:

c1 =
2âb̂

Λ
, c2 =

2b̂(1− â)

Λ
, c3 =

2(â+ b̂− âb̂)

Λ
, c4 =

2â(1− b̂)

Λ
,

Λ = h

√

(â2 + b̂2)(−2β−ân̂2 + 2β−ân̂2b̂− 2β−b̂n̂1 + 2β−b̂n̂1â+ β+b̂2n̂1â

+β+â2n̂2b̂− 2β+b̂n̂1â− 2β+ân̂2b̂− β−b̂2n̂1â− β−â2n̂2b̂).
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See Figure 7 for sketches of the two typical bilinear IFE functions of Type I and
Type II for the nonhomogeneous flux jump condition.
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Figure 7. The plot on the left is a φJ on a Type I interface
element and the plot on the right is a φJ on a Type II interface
element.

3. Approximation capability of the IFE functions

In this section, we discuss how to use the new IFEs to approximate continuous
functions that have a nonhomogeneous flux jump across the interface. We will
present numerical results to demonstrate the optimal approximation capability of
these IFE functions from the point of view of the polynomials employed. Following
notation will be used in the description of the IFE interpolation: for a given set
Λ ⊂ Ω, we let

PH2
int(Λ) =

{

u ∈ C(T ), u|Λs ∈ H2(Λs), s = −,+,

[

β
∂u

∂nΓ

]

= Q on Γ ∩ Λ

}

.

First, for a given continuous function u, we construct the interpolation with these
IFE functions locally on each element T in a mesh Th. If T is a non-interface
element, we define the interpolation of u on T as:

Ih,Tu(X) =

NT
∑

i=1

u(Ai)ψi(X),

where

X =

{

x, if T is a 1D element,

(x, y), if T is a 2D element,

NT =











2, if T is an 1D element,

3, if T is a 2D triangular element,

4, if T is a 2D rectangular element,

and ψi, 1 ≤ i ≤ NT are the standard linear or bilinear local nodal basis functions
on T .

On an interface element T ∈ Th, assuming that u is in PH2
int(T ), we define the IFE

interpolation of u by

Ih,Tu(X) =

NT
∑

i=1

u(Ai)φi(X) + qTφT,J (X),
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where φi, 1 ≤ i ≤ NT are the local nodal IFE functions on T with a homogeneous
flux jump discussed in the previous section, and φT,J (X) is the new IFE function
with a unit flux jump in a certain sense. We also have the following choices for the
interpolation parameter qT :

qT =































Q, if T is an 1D interface element,

∫

Γ∩T
Qds

∣

∣DE
∣

∣

, if T is a 2D triangular interface element,

∫

Γ∩T Qds, if T is a 2D rectangular interface element.

(3.23)

Accordingly, for a function u ∈ PH2
int(Ω), we let Ihu be its interpolation such

that Ihu|T = Ih,T (u|T ) for any T ∈ Th. Using the properties of the local IFE
functions, we can show that the IFE function Ihu on an interface element T has
the following features:

• Ih,Tu(Ai) = u(Ai), 1 ≤ i ≤ NT and this implies Ih,Tu(X) interpolates u(X)
on T .

• In the 1D case, Ih,Tu is in PH2
int(T ), i.e., Ih,Tu can exactly satisfy the

interface jump conditions.
• In the 2D case, [Ih,Tu]DE = 0 which implies that Ih,Tu ∈ C0(T ) and Ih,Tu
locally satisfies interface jump condition (1.3).

• In the 2D case, Ihu can also satisfy the flux jump condition (1.4) exactly
in the following weak sense:

∫

Γ∩T

[

β
∂Ih,Tu

∂n

]

ds =

∫

Γ∩T

Qds.

All of these properties suggest that Ihu should be a reasonable approximation
to u. We now use numerical examples to demonstrate that Ihu can approximate u
with an optimal convergence rate provided that u have enough piecewise smooth-
ness.

1D IFE interpolation: We consider a function

u(x) =

{

ex, x ∈ [0, α],

sin((x− α)) + eα, x ∈ [α, 1]
(3.24)

with

β− = 1, β+ = 20000, α = π/6.

By simple calculations we can see that u satisfies the following jump conditions at
α:

[u]|α = 0, β+u′(α+)− β−u′(α−) = 20000− eα.

The errors of Ihu in the L2 and the semi-H1 norms are listed in Table 1. Applying
linear regression on the datum in this table, we have

‖Ihu− u‖0 ≈ 7.7584× 10−2h1.9916, |Ihu− u|1 ≈ 2.7160× 10−1h0.9934.

which clearly demonstrate the optimal approximation capability of Ihu because Ihu
is a piecewise linear polynomial.
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h ‖Ihu− u‖0 |Ihu− u|1
1/16 3.0784× 10−4 1.7139× 10−2

1/32 7.7837× 10−5 8.7038× 10−3

1/64 1.9706× 10−5 4.3791× 10−3

1/128 4.9804× 10−6 2.2083× 10−3

1/256 1.2451× 10−6 1.1042× 10−3

1/512 3.1128× 10−7 5.5208× 10−4

1/1024 7.7819× 10−8 2.7604× 10−4

Table 1. Errors in the 1D linear IFE interpolation Ihu with β− =
1 and β+ = 20000.

2D triangular IFE interpolation: In this example, we use the following func-
tion to demonstrate the approximation capability of the triangular IFE functions:

u(x, y) =























(x2 + y2)α/2

β− , (x, y) ∈ Ω−,

(x2 + y2)α/2

β+ +

(

1
β− − 1

β+

)

rα0

+δ(
√

x2 + y2 − r0), (x, y) ∈ Ω+,

(3.25)

where α = 3, r0 = π/6.28, δ = 10,Ω = (−1, 1)× (−1, 1),

Ω− = {(x, y)t ∈ IR2 | x2 + y2 < r20}

and Ω+ = Ω\Ω−. The coefficient β is

β(x, y) =

{

β− = 10000, (x, y) ∈ Ω−,

β+ = 10, (x, y) ∈ Ω+,

which is discontinuous across the interface

Γ = {(x, y)t ∈ IR2 | x2 + y2 = r20}.

Note that u(x, y) satisfies the following jump conditions:

[u]Γ = 0,

[

β
∂u

∂n

]

Γ

= δβ+ = 100.

The errors of Ihu in the L2 and semi-H1 norms are listed in Table 2. To generate
datum in this table, we use a Cartesian mesh Th for each h that is formed by
partitioning Ω with rectangles of size h × h, and then cutting each rectangle into
two triangles along a diagonal line. Using the linear regression, we can see that the
datum in this table obey

‖Ihu− u‖0 ≈ 2.2694 h1.9992

|Ihu− u|1 ≈ 7.4239 h1.0008

which indicate that Ihu can converge to u optimally in either the L2 norm or the
semi-H1 norm.

2D rectangular IFE interpolation: In this example, the domains Ω, Ω− and
Ω+, and the interface Γ are the same as in the previous example. The function to
be interpolated is

u(x, y) =
(x2 + y2)5/2

β− .(3.26)
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h ‖Ihu− u‖0 |Ihu− u|1
1/16 8.8806× 10−3 4.6305× 10−1

1/32 2.2228× 10−3 2.3144× 10−1

1/64 5.5590× 10−4 1.1557× 10−1

1/128 1.3903× 10−4 5.7778× 10−2

1/256 3.4767× 10−5 2.8884× 10−2

Table 2. Errors in the 2D triangular IFE interpolation Ihu with
β− = 10000 and β+ = 10.

We note that u(x, y) satisfies the following jump conditions across the interface Γ:

[u]Γ = 0,

[

β
∂u

∂n

]

= Q(x, y) = 5(β+ − β−)
(x2 + y2)5/2

r0
.

One important feature of this example is that the flux jump across the interface
is not a constant function. Table 3 contains actual errors of the IFE interpolation
Ihu with various partition sizes h for β− = 1, β+ = 10. Using linear regression, we
can also see that the datum in this table obey

‖Ihu− u‖0 ≈ 3.6279 h1.9998, |Ihu− u|1 ≈ 8.7742 h0.9998,

which clearly indicate that the bilinear IFE interpolation Ihu converges to u with
the optimal convergence rates O(h2) and O(h) in the L2 norm and H1 norm,
respectively.

h ‖Ihu− u‖0 |Ihu− u|1
1/16 1.4172× 10−2 5.4838× 10−1

1/32 3.5460× 10−3 2.7443× 10−1

1/64 8.8666× 10−4 1.3724× 10−1

1/128 2.2167× 10−4 6.8620× 10−2

1/256 5.5418× 10−5 3.4310× 10−2

Table 3. Errors in the 2D bilinear IFE interpolation Ihu with
β− = 1 and β+ = 10.

4. IFE methods for problems with nonhomogeneous flux jump

Our numerical examples in the previous section demonstrate that the new IFE
functions can optimally approximate a piecewise smooth functions with a nonhomo-
geneous flux jump condition across the interface. In this section, we describe how
to use these IFE functions to solve the interface problems with a non-homogeneous
flux jump condition.

First, we multiply the differential equation (1.1) by any v ∈ H1
0 (Ω) and integrate

it over Ωs(s = +,−) to have

−

∫

Ωs

∇ ·
(

βs∇u)v dxdy =

∫

Ωs

fv dxdy, ∀ v ∈ H1
0 (Ω).

Then a straightforward application of the Green’s formula leads to
∫

Ωs

βs∇u · ∇v dxdy −

∫

∂Ωs

β
∂u

∂n
v ds =

∫

Ωs

fv dxdy, s = +,−, ∀ v ∈ H1
0 (Ω).
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Summing the above equation over s, we obtain a weak formulation for the interface
problem:

∫

Ω

β∇u · ∇v dxdy =

∫

Ω

fv dxdy −

∫

Γ

Qvds, ∀ v ∈ H1
0 (Ω).(4.27)

Here we have used the flux jump condition (1.4) and the fact that v ∈ H1
0 (Ω). Also,

we have assumed

Q = β+ ∂u

∂n
|Ω+∩Γ − β− ∂u

∂n
|Ω−∩Γ

with n being the unit normal vector of Γ pointing from Ω− to Ω+.

To describe the IFE solution for the interface problem, we start with a mesh Th of
the solution domain Ω, and let

Nh = {(xi, yi)
t ∈ IR2 | (xi, yi)

t is a node of Th},

N o
h = Nh ∩Ω, N b

h = Nh ∩ ∂Ω,

T i
h = {T ∈ Th | T is an interface element}.

For each node Xi = (xi, yi)
t ∈ Nh, we define a global IFE basis function Φi(X) =

Φi(x, y) as follows:

• Φi|T ∈ Sh(T ), ∀T ∈ Th.
• Φi(Xj) = δij , ∀Xj ∈ Nh.
• Φi is continuous at every node Xj ∈ Nh.

Then we define the IFE space Sh(Ω) over the whole solution domain as follows:

Sh(Ω) = span{Φi, i ∈ Nh},

where i ∈ Nh means (xi, yi) ∈ Nh. We note that every function of Sh(Ω) satisfies
the homogeneous interface jump conditions. Also, for each interface element T ∈
T i
h , we use the IFE function φT,J to globally define a function ΦT,J by the usual zero

extension outside T . Then, the IFE interpolation discussed in the previous section
suggests we look for an IFE solution to the interface problem in the following form:

uh(X) =
∑

j∈No

h

ujΦj(X) +
∑

j∈N b

h

g(Xj)Φj(X) +
∑

T∈T i

h

qTΦT,J(X),

with coefficient uj , j ∈ N o
h to be determined, where g(X) is given in the boundary

condition (1.2) and qT is given by (3.23). Finally, using the weak form (4.27), we
have the following equations for the IFE solution uh:

∑

j∈No

h

(

∑

T∈Th

∫

T

β∇Φi · ∇ΦjdX

)

uj

=

∫

Ω

ΦifdX −

∫

Γ

ΦiQds−
∑

j∈N b

h

(

∑

T∈Th

∫

T

β∇Φi · ∇ΦjdX

)

g(Xj)(4.28)

−
∑

T∈T i

h

qT

(
∫

T

β∇Φi · ∇ΦT,JdX

)

, ∀i ∈ N o
h .

Remarks:

• If the flux jump Q = 0, then the IFE method described by (4.28) reduces
to those IFE methods in [15, 32, 31, 33] developed for solving interface
problems with homogeneous jump conditions; hence, the new IFE methods
presented here are natural extensions of the previous IFE methods.
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• Furthermore, we note that the coefficient matrix and the vector correspond-
ing to the first integral on the right hand side of (4.28) are exactly the same
as those in the IFE methods for homogeneous jump conditions discussed
in [15, 32, 31, 33]. The other three terms on the right hand of (4.28) can
be easily implemented through the standard vector assembling procedure
in finite element computation.

• All the discussions above can be readily apply to the 1D interface problem
(2.5) - (2.8).

We now use numerical examples to demonstrate the convergence of the new IFE
methods for solving interface problems with a nonhomogeneous flux jump condition.

IFE solution to the 1D interface problem: We consider applying the new
1D IFE functions to solve the interface problem (2.5) - (2.8) in which f and the
boundary conditions are chosen such that its exact solution u is given in (3.24).
Also, we assume that the coefficient β and interface location α are as before. Table
4 lists the errors in L2 and semi-H1 norms of the IFE solution uh for this interface
problem. The datum in this table obey

‖uh − u‖0 ≈ 7.7582× 10−2 h1.9916, |uh − u| ≈ 2.7160× 10−1 h0.9934

which demonstrate the optimal convergence of the IFE solution.

h ‖uh − u‖0 |uh − u|1
1/16 3.0784× 10−4 1.7139× 10−2

1/32 7.7836× 10−5 8.7038× 10−3

1/64 1.9706× 10−5 4.3791× 10−3

1/128 4.9804× 10−6 2.2083× 10−3

1/256 1.2451× 10−6 1.1042× 10−3

1/512 3.1127× 10−7 5.5208× 10−4

1/1024 7.7821× 10−8 2.7604× 10−4

Table 4. Errors in the IFE solutions for the 1D interface problem
with β− = 1 and β+ = 20000.

Triangular IFE solution to the 2D interface problem: In this example,
we consider using the IFE functions on triangular meshes to solve the interface
problem (1.1)-(1.4) to which the exact solution is u(x, y) defined by (3.25). Also,
we assume that all the domains and parameters are the same as those in the 2D
triangular IFE interpolation example in the previous section. The errors in the
L2 and semi-H1 norms for the triangular IFE solutions are listed in Table 5 from
which we have

‖uh − u‖0 ≈ 3.0268 h2.0431, |uh − u|1 ≈ 7.7877 h1.0087

demonstrating that our triangular IFE method can solve the interface problems
with nonhomogeneous flux condition at the optimal convergence rate.

Bilinear IFE solution to 2D interface problems: In this example, we use
the bilinear IFE functions to solve the interface problem (1.1)-(1.4) to which the
exact solution is u(x, y) defined by (3.26). Again, we assume that all the domains
and parameters are the same as those in the 2D rectangular IFE interpolation
example in the previous section. Table 6 contains errors of the bilinear IFE solutions
uh with various mesh size h. We can easily see that the datum in the first and second



IMMERSED FEM FOR ELLIPTIC PROBLEMS WITH NON-HOMOGENEOUS JUMPS 299

h ‖uh − u‖0 |uh − u|1
1/16 9.9678× 10−3 4.7479× 10−1

1/32 2.7714× 10−3 2.3745× 10−1

1/64 6.0798× 10−4 1.1687× 10−1

1/128 1.4727× 10−4 5.8104× 10−2

1/256 3.6370× 10−5 2.9108× 10−2

Table 5. The errors of the triangular IFE solutions for the 2D
interface problem with β− = 10000 and β+ = 10.

columns of this table satisfy

‖uh − u‖0 ≈
1

4

∥

∥uĥ − u
∥

∥

0
, |uh − u|1 ≈

1

2

∣

∣uĥ − u
∣

∣

1
,

for h = ĥ/2. Using linear regression, we can also see that the data in this table
obey

‖uh − u‖0 ≈ 4.1440 h1.9806, |uh − u|1 ≈ 8.5601 h0.9906,

which indicate that the bilinear IFE solution uh converges to the exact solution
with convergence rates O(h2) and O(h) in the L2 norm and H1 norm, respectively.

However, numerical experiments indicate that the IFE solution does not always
have the second order convergence in the L∞ norm. For example, the data in the
fourth column of Table 6 obey

|uh − u|∞ ≈ 0.2261 h1.1140

which clearly shows that the rate at which uh converges to u is not O(h2). Similar
phenomenons have been observed when IFE methods are applied to solve interface
problems with homogeneous jump conditions [15, 31]. The question under what
conditions the IFE solution can have a second order convergence in the L∞ norm
deserves further investigations.

h ‖uh − u‖0 |uh − u|1 ‖uh − u‖∞
1/16 1.8523× 10−2 5.5089× 10−1 1.2984× 10−2

1/32 3.9352× 10−3 2.7578× 10−1 3.2897× 10−3

1/64 1.0293× 10−3 1.3888× 10−1 2.4211× 10−3

1/128 3.0337× 10−4 6.9828× 10−2 1.0082× 10−3

1/256 6.9673× 10−5 3.5349× 10−2 4.9377× 10−4

Table 6. The errors of the rectangular IFE solutions for the 2D
interface problem with β− = 1 and β+ = 10.

5. Conclusions

In this paper, we have discussed immersed finite element (IFE) functions that can
be used to solve the typical 2nd order elliptic partial differential equations whose
discontinuous coefficient leads to a nonhomogeneous flux jump condition. The mesh
of these IFE functions can be formed without consideration of the interface loca-
tion. Our numerical experiments demonstrate that these new IFE functions can
approximate functions with a nonhomogeneous flux jump at the optimal conver-
gence rate. We have developed Galerkin methods based on these new IFE functions
that can optimally solve the interface problems with a nonhomogeneous flux jump
condition. These new IFE methods are natural extensions of those IFE methods
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[2, 15, 32, 31, 33] designed for handling homogeneous jump conditions such that
the new IFE methods can be easily implemented by adding simple subroutines to
the existing codes for the previous IFE methods.
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