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OPTIMAL ERROR ESTIMATES OF THE LOCAL
DISCONTINUOUS GALERKIN METHOD FOR WILLMORE
FLOW OF GRAPHS ON CARTESIAN MESHES

LIANGYUE JI AND YAN XU

Abstract. In this paper, we analyze a local discontinuous Galerkin method
for the willmore flow of graphs. We derive the optimal error estimates for
this nonlinear equation in one-dimension and in multi-dimensions for Cartesian
meshes using completely discontinuous piecewise polynomial space with degree
k>1.
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1. Introduction

In this paper, we consider the error estimates of the local discontinuous Galerkin
(LDG) method [23] for the Willmore flow of graphs

1 Vu®V 1 H?
(1.1)  w+QV- (5 (I - %) V(QH)) - 5QV- (6%) =0,

where @ is the area element

(1.2) Q=1+ |Vu?

and H is the mean curvature of the domain boundary I'

(1.3) H=V. (%).

In [23], we developed a LDG method for the for the Willmore flow of graphs and gave
a rigorous proof for its energy stability. In this method the basis functions used are
discontinuous in space. The LDG discretization also results in a high order accurate,
extremely local, element based discretization. In particular, the LDG method is
well suited for hp-adaptation, which consists of local mesh refinement and/or the
adjustment of the polynomial order in individual elements. In this paper, we will
present the optimal error analysis for the LDG method of the Willmore flow of
graphs on Cartesian meshes. The analysis is made for the fully nonlinear case
and the results are valid for all space dimension d < 3 and polynomial degree
k > 1. We generalize the analysis to fully nonlinear case comparing with analysis
for linear fourth order equation in [13]. We also obtain the optimal accuracy results
comparing with the results for continuous linear finite element method in [12].
The DG method is a class of finite element methods, using discontinuous, piece-
wise polynomials as the solution and the test space. It was first designed as a
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method for solving hyperbolic conservation laws containing only first order spatial
derivatives, e.g. Reed and Hill [17] for solving linear equations, and Cockburn et al.
[5, 4, 3, 6] for solving nonlinear equations. It is difficult to apply the DG method
directly to the equations with higher order derivatives. The LDG method is an
extension of the DG method aimed at solving partial differential equations (PDEs)
containing higher than first order spatial derivatives. The first LDG method was
constructed by Cockburn and Shu in [7] for solving nonlinear convection diffusion
equations containing second order spatial derivatives. Their work was motivated
by the successful numerical experiments of Bassi and Rebay [1] for the compressible
Navier-Stokes equations. The idea of the LDG method is to rewrite the equations
with higher order derivatives into a first order system, then apply the DG method
on the system. The design of the numerical fluxes is the key ingredient to ensure sta-
bility. The LDG techniques have been developed for convection diffusion equations
(containing second derivatives) [7], nonlinear one-dimensional and two-dimensional
KdV type equations [25, 22] and Cahn-Hilliard equations [20, 21]. Recently, there
is a review paper on the LDG methods for high-order time-dependent partial dif-
ferential equations [24]. More general information about DG methods for elliptic,
parabolic and hyperbolic partial differential equations can be found in the three
special journal issues devoted to the DG method [9, 10, 11], as well as in the recent
books and lecture notes [15, 14, 18, 19].

The paper is organized as follows. In Section 2, we give some notations, definition
and projections. In Section 3, we show LDG scheme for the Willmore flow of graphs
and the main results in this paper. In section 4, we give some auxiliary results
which is important for our analysis. In section 5, we present the proof of the error
estimates. Concluding remarks are given in Section 6. Some of the more technical
proofs of several lemmas are collected in Appendix A.

2. Notations, definitions and projections

We first introduce notations, definitions and projections to be used later in the
paper. We define some projections and present certain interpolation and inverse
properties for the finite element spaces that will be used in the error analysis.

2.1. Tessellation and function spaces. Let 7, denote a tessellation of Q0 with
shape-regular elements K. Let I' denote the union of the boundary faces of elements
K €Ty, ie I' =Uger, 0K, and Ty = T'\0N.

In order to describe the flux functions we need to introduce some notations. Let
e be a face shared by the “left” and “right” elements K, and K (we refer to [25]
and [24] for a proper definition of “left” and “right” in our context). Define the
normal vectors vy, and vg on e pointing exterior to Ky and Kg, respectively. If
1 is a function on K and Kpg, but possibly discontinuous across e, let 17, denote
(Y|k,)|e and ¥ i denote (Y|, )|e, the left and right trace, respectively.

Let QF(K) be the space of tensor product of polynomials of degree at most k > 0
on K € T in each variable. The finite element spaces are denoted by

Vi={peX@): ¢lceQ'(K), VKeT),
zh:{n:<m,~~,nd>Te(L2(m>d: mlx € Q°(K), 1=1---d, VKGE}'

For one-dimensional case, we have Q¥(K) = P*(K) which is the space of polyno-
mials of degree at most £k > 0 defined on K. Note that functions in V} and ¥j,
are allowed to have discontinuities across element interfaces. Here we only consider
periodic boundary conditions. Notice that the assumption of periodic boundary
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conditions is for simplicity only and not essential: the method can be easily de-
signed for non-periodic boundary conditions. The development of the LDG method
for the non-periodic boundary conditions can be found in [16].

2.2. Notations for different constants. We will adopt the following conven-
tion for different constants. These constants may have a different value in each
occurrence.

We will denote by C a positive constant independent of h, which may depend
on the solution of the problem considered in this paper. For problems considered
in this section, the exact solution is assumed to be smooth with periodic. Also,
0 <t <T for afixed T. Therefore, the exact solution is always bounded.

2.3. Projection and interpolation properties.

2.3.1. One-dimensional case. In what follows, we will consider the standard
L2-projection of a function w with k 4 1 continuous derivatives into space Vj,

PE:HY(Q) — Vi,

which are defined as the following. Given a function n € H'(f2) and an arbitrary
subinterval K; = (z;_1,x;), the restriction of P*1 to K are defined as the elements
of P*(K;) that satisfy

(2.1) / (Pt —n)wdz =0, Ywe P 1(K;), and PTyn(x;_1)=n(zj_1),
K;

(2.2) / (Pn—nwdr =0, VYwecPYK;), and P n(z;)=n(z;).
K;

For the projections mentioned above, it is easy to show (c.f. [2])
(2.3) In°llex + Rl [l oe ) + B2 [In°[le < CR*Y,

where n° = mp—n or n° = P¥n—n. 7 is the standard L? projection of the function
7. The positive constant C, only depending on 7, is independent of h. Here and
below an unmarked norm || - ||o, || - |- refers to the usual L? norm for the space
variables on the domain ) and the boundary T'.

2.3.2. Two-dimensional case. To prove the error estimates for two-dimensional
problems in Cartesian meshes, we need a suitable projection P* similar to the
one-dimensional case. The projections P~ for scalar functions are defined as

(2.4) P~ =P, @P,

where the subscripts x and y indicate that the one-dimensional projections defined
by (2.2) on a two-dimensional rectangle element I ® J = [z;_1, ;] X [yj—1, y;].

The projection IT* for vector-valued function p = (p1(z,y), p2(x,y)) are defined
as

(2.5) Otp = (P @myp1,me ® P;pg).

Here 7, 7, is the standard L? projection in z or y direction. It is easy to see that,
for any p € [H'(£2)])?, the restriction of [ITp to I ® J are elements of [Q*(I ® J)]?
that satisfy

(2.6) //(H*p —p) - Vwdydz =0
1)y
for any w € Qk(I® J), and

(2.7) /](H’Lp(fci—l,y) —p(xic1,y)) -vw(z) ,, y)dy =0 Ywe Q"I ®J),
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28) [ plays1) = plogs1)) ol )y =0 e Q1w )
I
where v is the normal vector of the domain integrated. For the definition of similar
projection on three-dimensional case, we refer to [8].
Similar to the one-dimensional case, there are some approximation results for
the projections (2.4) and (2.5) in [13]

¢l + 2= [[7[e < CR**Hlnll gess oy, V€ HEFH(SQ),
€ 1 €
PNl + h=[p°r < CHM|pllprsi(a), Vo € [HH(Q)Y,

where 7° = 7 — 1, p° = 1p — p or n° = PTy —n, p¢ = *p — p and C is
independent of h.

The projection P~ on the Cartesian meshes has the following superconvergence
property (see [13], Lemma 3.7).

Lemma 2.1. Suppose (n, p) € H**2(Q) ® ¥, and the projection, then we have

(2.9) |/Q(77 — P )V - pdQ2 — /F(Tl — P=n)p-vdl| < ChF |yl grsz oy [l pll L2 ()
where “hat” term is numerical fluz.

2.4. Inverse Properties and Approximation. Finally we list some inverse
properties of the finite element space V}, that will be used in our error analysis.
For any wy, € V;, there exists a positive constant C' independent of wy, and h, such
that

(2.10) (i) 19zwnlle < Ch~Mlwnllo, (i) lwnlle < Ch™2[lwnlla,

n

(i) [|wn || ooy < Ch™3

wlla,

where d = 1, 2 or 3 is the spatial dimension. For more details of these inverse
properties, we refer to [2].

3. The LDG method for the Willmore flow of graphs

In this section, we consider the local discontinuous Galerkin method for the
Willmore flow of graphs equation (1.1) in Q € R? with d < 3. We will give the
energy stability property of the LDG method. The main error estimates results
will be presented.

3.1. The LDG method. To define the local discontinuous Galerkin method, we
rewrite equation (1.1) as a first order system:

(3.1a) %—i—V-(s—v):O,
(3.1b) s—E(r)p=0,

3.1 LH =0
(3.1¢c) v— 567“ =0,
(3.1d) p— VW =0,

(3.1e) W — QH =0,
(3.1f) H-V.q=0,
(3.1h) r—Vu =0,
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with
1 re r>

3.2 Er)y==|(I-—,

(32 m=5(1- "5

(3.3) Q=1+,
where s, v, p, g, r are vectors, E(r) is the d x d matrix and I is the d x d identity
matrix.

Applying the LDG method to the system (3.1), we have the scheme: Find wy,
Hy, Wy € Vi, S, Un, Pis Gy, Th € 2, such that, for all test function ¢, &, 9 € V},

and ¢a ¢7 n, p, C S Ehv

(3.4a) / (un ) pdK — / (sh —vp) - VepdK +/ (5; ‘v —vp - v)pds =0,
K Qh K 0K

@av) [ s-gar = [ Bewp,-garx o,

1 H?
(3.4c) vy - PdK — ——r,-YpdK =0,
K K 2Qn

(3.4d) / D - ndK+/ WiV -ndK — | Wyv-nds =0,
K K oK

(3.4e) / thdK—/ QrHpEdK =0,
K K

(3.41) / HpddK +/ q, - VUdK — q;, - vids =0,
K K oK

(3.4g) / gy - pdK —/ Th L pdK =0,
K K @n

(3.4h) / Th -CdK—i—/ upV - CdK — upv - Cds = 0,
K K 0K

where v is the normal vector to K. E(rp) and @, are similarly defined as follows:

1 rL & T‘h)
3.5 E(ry)=—|I- )
(5.5) =g (1"

(36) Qh =\ 1+ |T‘h|2.

The “hat” terms in (3.4) at the cell boundary obtained after integration by parts
are the so-called “numerical fluxes”, which are functions defined on the cell edges
and should be designed based on different guiding principles for different PDEs to
ensure stability. It turns out that we can take the simple choices

(3.7) 8ule =8nRr: Unle=vnr, Qule=anr Whale =Whr, Unle=unr,

which ensure energy stability. Numerical examples for the schemes (3.4)-(3.7) can
be found in [23].

The LDG method for the Willmore flow equation satisfies the following energy
stability.

Proposition 3.1. (Energy stability [23]) The solution of the Willmore flow equa-
tion using the schemes (3.4)-(3.7) satisfies energy stability

1d 2
(3.8) ——/H,%th9+/ ) 060 20, Vi, Hy € Vi,
2dt Jo o Q@
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3.2. The main results of error estimates. In this section, we state the main
error estimates of the semi-discrete LDG scheme (3.26) in Cartesian meshes.
We introduce notations
€y = U — Up, eH:H*Hha eW:W*Wh; €r =T —Th,
€q=4q—4qy, €Ep =P —Pp, € =8 — Sp, €y =V — VUp.
We assume the periodic boundary conditions and the equation has a unique solution
u, which satisfy
(3.9)  we L((0,T); W*()) N L*((0,T); HY(2)) N L((0, T); (%)),
(3.10)  up € L°°((0,7); W*°(Q)) N L2((0,T); L*(Q)) N L>((0,T); H**()),

which implies ||ul| Lo ((0,7), me+4()), [Utll oo (0,7), 55440y + [Plloos [[Ttlloos [[H [loos
| Htlloo, [|Pllocs [|ut]|co are all bounded. || - |loo denotes || - || Loo((0,7):L(02))-

Theorem 3.2. Assume that (3.1a)-(3.1h) with periodic boundary conditions has a
unique solution u, which satisfies (3.9)-(3.10). Let up be the numerical solution of
the semi-discrete LDG scheme (8.4)-(3.7). For rectangular triangulation of Q, if
the finite element space is the piecewise tensor product polynomials of degree k > 1,
then for small enough h there holds the following error estimates

(3.11) max llerlla + max lew|lo < CRFHL,

(3.12) mas g o + max [lew o + max ey o < CAT,
T T T

613) [ lewlbdit [ llegltdis [ lealat < cne2,
0 0 0

(3.14) mtax||eu|\g < ChF L,

where C' depends on ||ul| o (o,1):m5+4)), NutllLoco,m)me+4 )y [ITloos I7tlloo,
[Hlloos [Helloos IPlloos [[1tlloo, T

4. Auxiliary results

In this section, we present some basic geometric formulas and auxiliary results
which are used for error analysis.

4.1. Basic geometric formulas. We start by introducing the following notation:
(=r, D" (=, )T
Y= T7 Th = T’
NE® = [ 1= Quik.
Here, 7, is finite element approximation to . And we denote

Qni=1+ru2, Nu(t):=> NE(@).
K

Here | - | is used for 2-norm of a vector or 2-norm of a matrix depending on the
situation.

Lemma 4.1. Using the notation introduced above, the follow inequalities hold:

1 1
(4.1) ‘@@ <y =l 1Q — Qrl < QQuly — 4l
r Th rer rh QT
(4.2) o O < v =l 0 " on <3QQn|Y —ul,

(4.3) Iy = vnl <|r—rhl
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Proof. The proof of this lemma will be given in Appendix A.1. O

4.2. A priori assumption. To derive the error estimates. We need to make a
priori assumption:

e d<3
(4.4) |H — Hyllo < h¥,
(4.5) v — rullo < hE.
Then we get
(4.6) |r = 74]l0e < ChT,
(4.7) | — Hyllss < CRY,
where C' is a constant independent of h. So we get
(4.8) |Hylle < C,

where C' depends on ||H||« and T'.
Recalling that Qp = /1 + |ry|?, we immediately get

(4.9) 1@nlloe = V14 [rn?lloe < R,

where R depends on ||7||oc and T. Without loss of generality, let us assume ||7||oc <
R and take R = max{R, ||7|loc} otherwise. This assumption will be used to get the
Auxiliary Estimates Lemmas in Section 5.

Remark 4.1. The assumption will be satisfied if k > 1. We will give the explana-
tion in the end of the proof.

4.3. Properties of matrix E(r). The matrix E(r) has the Lipschitz continuity
and coercivity. We have the following properties of E(r) [12].

Lemma 4.2.

(4.10) |E(q) — E(p)| < clq —pl,
2
q
(4.11) |E(p)| <2, E(p)g-q= Ll 5, Vp,g € R%
1+ |p|?
Proof. The proof of this lemma will be given in Appendix A.2. O

5. Proof of the main result

In this section we will give the proof of the main results. We present some
auxiliary lemmas which are very crucial to our estimates. Finally, with the help of
these lemmas, we obtain the error estimates.

5.1. Error equations. The numerical solutions satisfy the LDG scheme (3.4a)-
(3.4h). Obviously the exact solutions of the equation (3.1) also satisfy (3.4a)-(3.4h).
Differentiating (3.4f)-(3.4h) with respect to time ¢ and using the relations such that

(@ = (VIFP) = 1, (—) ST By,

Q Q Q Q3
Qe = (VT TraPy = Tl () (e é(”)t — B(ra)(r)e,
t 1

we combine them with (3.4a)-(3.4e) to get the error equations

/K <% - (gbh)t) P — /K((S —v) — (sn —vn)) - VpdK
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(5.1a)
+/8K((.s —sp) v —(v—vp) V)pds =0,
(5.1b)
[ (5= s0) @i~ [ (B@)p - Erp,) - ¢k =0
K K
(5.1c)
| H>  H} B
/K(U —vp) - YdK — /K 5(67“ - @Th) pdK =0,
(5.1d)
/ (p—pp) -ndK +/ (W —Wy)V -ndK — (W/—\VV}L)V -mds = 0,
K K K
(5.1e)
v —waear - [ @t - Qu)ear = o
K K
(5.1f)
/ (Hy — (Hp)o)0dK + / (@, — (@n)e) - VOAK — [ (q,— (qn):) - v9ds = 0,
K K oK
(5.1g)

[ (@ @) -pd = [ (B =B - pak =0
(5.1h)

/(rt—(rh)t)-CdK—i-/(ut—uht)V-CdK—/ (utf(\uh)t)l/-Cds:O.

K K oK

Denote
e, =u—up=u— Pu+ Pu—up =u— Pu+ Pe,,
ey =H-H,=H—-PH+ PH—-H,=H—- PH + Pey,
ew =W -—-W, =W — PW+ PW —W; =W — PW + Pey,
e,=r—rp=7—1r+1r—r,=r—1r +1Ile,,
eq=q—q,=q—1Ilg+1lg — g, = g —llg + Ileg,
ep=p—p,=p—lUp+Ilp—p, =p—1Ilp+llep,
es=8—8,=58—Ils+1ls — s, =s —IIs + Iles,
ey =v—vp,=v—llv+1Ilv—v, =v—1lv+lle,,

where P and II be the projections onto the finite element spaces Vj, and ),
respectively. We choose the projection as follows

(5.2) (P,II) = (P~,P") in one dimension,
(5.3) (P,IT) = (P~,10I") in multi-dimension.
We will choose the initial data up(x,0) which can satisfy following estimates
Lemma 5.1.
la(z,0) = gu(2,0)la + [r(x,0) — ri(z,0)llo < CR*,
1 H(,0) — Hy(w,0)llo + u(z,0) — wn(z,0)[lo < CHFH,
where C is some positive constant depends on the ||u(x,0)|| gr+s(q)-

Choice of the initial data up(z,0) and the proof of Lemma 5.1 will be given in
Appendix A.3.
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Choosing the test functions

@:Peuu ¢:He7’t7 "/):_He'r’m n:Heqta
¢ =—Pey,, U=Pew, p=-lle,, ¢ =I1le,—Ileg,

a simple calculation gives

(5.4) LHS = RHS
where
U (un)t
5.5 LHS:/ (— — >PeutdK
( ) K Q Qh
+/ (E(r)r — E(ra)(ra):) -Hede—/ (E(r)p — E(ri)py) - Ten dK
K K
2 2
+/ 1 (H—’I‘ — ﬂrh) ~H67-t +/ (QH* QhHh)PthdK,
K2\ @ Qn K
and
RHS = / ((s —1Is) — (v — Iv)) - VPe,,dK — ((siﬁs) V- (viﬁv) -v)Pe,,ds
K oK
- / (s —1s) - e, dK —|—/ (v —Tv) - e, dK — / (p —Ip) - Tleq, dK
K K K
- / (W — PW)V - Tleg,dK + / (W — PW)w - Tleg,ds + / (W — PW)Pey,dK
K oK K
- / (H, — PH,)PewdK — / (g, —Tg,) - VPewdK + / (q, — Ilq,) - vPewds
K K oK
—|—/ (g, — Ilq,) - llepdK —/ (re — Iry) - (e, — Tes)dK
K K
(5.6)

— / (us — Puy)V - (e, — Teg)dK —|—/ (ut/—?ut)(ﬂev —Tles) - vds.
K oK
For the calculation of the LH .S, please refer to the proof for stability in [23].

5.2. Auxiliary Estimates. In this section we shall estimate some variables and
nonlinear terms appeared in (5.4)

Lemma 5.2. For any time t, there exists C' > 0 depending on ¢ which is an any
positive constant, such that

t t
(57 ||Pe <e / | Pey, |3dt + C / | Peu|3dt + |[Pes(- 0)|I3.

Proof. We get the estimate easily by Holder inequality

t t
d
/ —(|\Peu||?2)dt:2/ /PeuPeutdet
o dt o Ja
t
<2 [ ||Pe.alPes ot
0

t t
1
Se/ I\Peutl\?zdw—/ | Pey||Bdt,
0 € Jo

where we use Cauchy-Schwarz inequality with € in the last step for any positive

constant € > 0.
O
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Lemma 5.3. For any time t, there exists C > 0 depends on ||Q||s and constant
R defined in (4.9) such that

(5.8) ler[|§ < CNu(t).
Proof.

e —ofT T _o(L_ L
er =T T”“9<Q Qh> ‘9<Q Qh)T”
Using (4.1) and (4.2), we have
lex| < QY — 4l + QY —nllral

Thanks to a priori assumption, we have
lex|? < ClQI|Y =7 [PQ% < CRIy —7u*Qn
S C|7 - 7h|2Q}l)

where C' depends on ||Q|l and constant R defined in (4.9). Then we integrate
both sides with spacial variable to get the estimates (5.8). O

Lemma 5.4. For any time t, there exists C = C(||s|| gr+1(0), [|7]loos [[Plloc) > 0
such that

(5.9) e, [[f, < C(NR(t) + h*F2 + |[Tep|3,).

Proof. We consider (3.4b) separately to get the error equation

[ (5= s0) i~ [ (B~ Brwp) @ =0
K K
Let ¢ = Ileg, we have

/ Tle,|2dK = — / (s —1Is) - Tle,dK
K K

+ [ (B) - B@)p+ Bl ) Teadk
K

Using the Cauchy-Schwarz inequality and Lemma 4.2, we get

1
/|Hes|2dK§5/ |Hes|2dK—|——/ |s — IIs|?dK
K K de Jk

+c/ |r—r;l||Hes|dK+2/ ip— p, || Tes|dK
K K
1
gg/ |Hes|2dK—|——/ |s — IIs|>dK
K de [k

+ g/ [Tles|?dK + C(/ lr —rp2dK + / Ip — pp,|2dK).
K K K
Summing up all the elements K and using the projection error estimates, we obtain
Tes |8 < Cllenlld + 2 + |[Hep|)
< C(Nw(t) + h* 42 + |[Hep 3),

where C' depends on ||s|| gx+1(q) and [|7]|oo, ||P|lcc- The last step is due to Lemma
5.3. (I

Lemma 5.5. For any time t, there evists C' = C(||H||oo, ||| gr+1(q)) > 0, such
that

(5.10) TTey||3, < C (Nh(t) + p2R T2 +/
Q

e%,thQ> .
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Proof. We consider (3.4c) separately to get the error equation.
1 [(H? H?
v — vy -def/ - (—r —hrh> ~pdK = 0.
/K( ) K2\ Q Qn
Taking the test function v = Ile,,, we have

/ Ty [2dK
K

1/ H? o?
= — v —Iv -HevdK—i—/ —(—r——hr)-HevdK
/K( ) 2\ Q Q"

1 T Th Th , 19 9
= - v—Hv-HevdKJr—/ <H2<——)+—H — H})) -TleydK.
fw-m 2 [\ G an) T
Using the Cauchy-Schwarz inequality, we obtain

/|Hev|2dK
K
1
§3e/ |He,,|2dK+—/ (v — Tw)*dK
K de J
b /H4 1"—’12dK+/ |”|2(H+H V2(H — Hy)2dK
16e \Jx " 1Q @Qn k Q3 " "
1
§3e/ |He,,|2dK+—/ (v — Tv)*dK
K K

4e
1
+ — H4/
166 <|| ||O<) 1% Q Qh

1
< 3e/ [Tle, |2dK + —/ (v — Tw)*dK
K de Jk

|75 |?

2
KQh

r Th

2
dE + (| H||oo + [|Hnlloo)

(H — Hh)QdK>

i 1
16¢

where the last step is due to Lemma 4.1 and the relations
Qn=1, Qh=1+|rl? |ra” < @i

Adding all the elements K, the estimate follows by employing L? projection error
and a priori assumption. O

(IIHIIio /K by — Y PQudE + (| Hll oo + | Hnlo0)? /K <H—Hh>2Q,ldK).

Lemma 5.6. For any time t and every € > 0, there exists a constant C, such that

&2
GA1)  lleglt < [ SR+ OWM0 + 1+ [ ehQua)
o @n Q
with C' depending on €, |[ul| greraqay, [Tlocs [ H|loos [[utllocs [[Ploo-
Proof. The proof of this lemma will be given in Appendix A.4. O

Lemma 5.7. For any time t, there exists C = C(||H oo, |W | grr+1(0), [7]lo0) > 0,
such that

(5.12) | Pew ||i < C(Np(t) + h2F+2 +/ €3,Qrd02).
Q
Proof. We consider (3.4e) separately to get the error equation.

/ (W — Wy)edK — / (QH — QuHy)edK — 0.
K K
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Let £ = Peyy, we have
[ (pewis = — [ W~ Pwypewdic + [ (@~ Quiti)Pewa
K K x
=— /K(W — PW)PewdK + /K H((Q = Qn) + (H — Hp)Qp) Pew dK
1
< 36/I((Pew)2dK+ " /K(W — PW)2dK

B [ (@-qu+ (1 - myQpax

where the last step is due to the Cauchy-Schwarz inequality. Again we use (4.1) to
get

/K(PeW)QdK

< 36/ (Pew )*dK + i/ (W — PW)2dK
K de Ji

112 [ECS
1= [@-quran + 155 [ a1 - m)atax

1
< 36/ (Pew)*dK + 4—/ (W — PW)?dK
K

H H2 | HIZ 22
Q Qrly —plPdK + —= e (H — Hp)*QpdK
K

< 36/ (PeW)QdK + —/ (W — PW)%dK
K de Ji

012 141 / = fuar + P g, 1 [ = HQuir.
K K

Taking e = 1/6 and adding all elements yields (5.12). Here we use a priori assump-
tion and the error for the projection. O

Lemma 5.8. For any time t, there exists C = C(||q|| gr+1(q)) > 0, such that
(5.13) Meq[[§ < C(Nu(t) + h*F2).

Proof. We consider (3.4g) separately to get the error equation

Th o
/K(qqh)ﬁdK/K(@@) -pdK =0,

Choosing the test function p = Ileq, we have

Mey|2dK = — | (g —Tiq)-Te dK + | (= — ) . Ie,dK,
q q q
K K K \Q Qn

Adding all elements K and using Lemma 4.1, we get
Z/ Tey 2dK < eZ/ ey [2dK + Ch2+2 + Z/ Iy =, |TTeq|dK,
K VK K YK K VK

where C' comes from the error for the projection which depends on [|q|| gx+1(q). For
any positive constant € > 0, again we employ the Cauchy-Schwarz inequality to get

1
Z/ |Heq|2dK§2eZ/ |Heq|2dK+Ch2k+2+4—Z/ Iy — v |2dK
VK K VK €K IK
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1
gzeZ/ |Heq|2dK+C’h2k+2+4—Z/ Iy — v, QrdK
Kk VK €K K

1
_ 2 2k+2
— 2 EK:/K [Meg|*dK + Ch*+2 + = Ni(8).

By taking € = 1/4 we get the estimate (5.13). O
Lemma 5.9. For any time t, there exists C' = C(||7t]looc) > 0, such that
T T 1d K
5.14 - - rndK > -—N CN;* (t).
(510 J (55 -enar = 5 NE @) - ONE(
Proof. The proof of this lemma will be given in Appendix A.5. O

Lemma 5.10. For any time t and every € > 0 there exist a positive C such that

d e’
(5.15) ANty < (Nh(t) 22 4 / e?HthQ) be / Cuc g,
dt Q o @n
where C depends on |Jug||gr+1 (o), [[H mevi o), [[7ell o), @l e @)
Proof. The proof of this lemma will be given in Appendix A.6. (I

Lemma 5.11. For any time t,

(5.16) /Q(%(Qh)) €, dQ > = / = d€y — C(Nu(t) + h*12),

where C' depends on ||ut]|oo, |7 ||co, lwell mrr+1()-

(% th) Cusd
/K(%_ Qn ) “t_(“”)t)dK_/K(%_

e, 1 1
B K Qh dK+/ <Q Qh>( (Uh)t)dK

T e — (un)o) (e — Pu)
/Kut <Q Qh> (Ut Put dK / Qh dK

For any positive constant € > 0, employing Cauchy-Schwarz inequality and (4.1),

we have
L (@ - @) (ue — (“h)t)dK‘

T (3 ) g

2
ge;/ Q“;dKJr ”“t” Z/ (———) QndK
eut o)
< e;/ on dK + —Hui! ;/KW’MPthK

e e |3
:62/ C;;LdK+ 4°°N()
K

Proof.

u}l)t) (Ut — Put)dK
h
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Similarly we can estimate the other two terms

—Z/ s (_ - _) (s — Pug)dK

<33 [y [ (G- o)
h

K

1
S ||ut||ooz/| ok

K

1 / e |2 / 2 ot el
<= +—= |y —nI" QrdK < Ch*"2 + 22Ny (t),
2; 2 ; X 2
and

<

72/ utr))(;ut)dK
<e Z/ “‘dKJr—Z/ e Z St P“t dK
<€Z/ “*dK+ Ch2k+2

where C' depends on ||ut]| gr+1(q), €. Using three terms above,we get

() - o

*Z/ ut <§@> (Utput)dK;/K (ut
26;/I(ﬁdKC(Nh(t)+h2k+2)’

where C' depends on [|u¢|| gr+1(q) and e. By taking € = 1/4, we get estimates
(5.16). O

ur — (up)e)(ur — Puy)
;/ Qh K

utfPut)dK

Lemma 5.12. For any time t and every € > 0, there exists C' > 0, such that

Z(/K (B(r)r — Blr)(r)) - Heydk — [ (Br)p— Bra)p,) Ty, k)

K

> —— ((% - 1) (Yn —Yn) — (g: 7 — 7h|27h>> - (Ilp, 0)"dS

Z/ r)p — E(Ilr)Ip) - e, dK

— C(Nu(t) + h*+2) — || Tlep |},

with C depending on e, ||7{|oo, |Plloos |7l mrr1(q)s I7ell mrrrys 1P ar+r)s 1Pl st )
where

—~ _ —IIr, )T
Qn=+1+[IrP?, v, = (?)

h

Proof. The proof of this lemma will be given in Appendix A.7. (I
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Lemma 5.13. For any time t, there exists a positive C, such that

H? H?
/(QH QhHh)PthdQ‘i’/Q 5 ( 0 r— @’I‘h> ~He,,tdQ
1d d 1 1
> / hQui+ 5 [ (@ Qu(H ~ HHA+ [ SHPGly — 7 Qa0

dt
( eHdQ + h2k+2) ,
where C depends on |[7lloo, 1Hlloos 7tlloos [Hell rr+1(a)-
Proof. The proof of this lemma will be given in Appendix A.8. O

5.3. Proof of the estimates. We firstly estimate the right hand of (5.4). Using
the projection IT and numerical fluxes, we get

> RHS = Xy + X + X3 + Xy,
where
Xy =— /Q(s —IIs) - Ile,., d2 + /Q(’U — Ilv) - ey, d2 — /Q(p —1lp) - lleq, d2
+ /Q(W — PW)Pep,dS),
Xy = — /Q(Ht — PHy)Peyw d§) + /Q(Qt —lgq,) - llepdS — /K(Tt —1Ilry) - (lley —Tley),
Xy == [ (= Pu)V - (e, ~Tle)d+ [ (ur = Pu)(lle, ~Tle,) - v

Xy = _/(W — PW)V - Ile,, +/ (W= PW)w - Tleg, dr.
Q Iy

Now we estimate Xp, Xa, X3, Xjy.
e Estimate AXj.
Integrating X} with respect to time ¢

¢ ¢
/ Xidt = — / (s —1Is) - Ie,d2 —|—/ /(st —Is;) - e, dQdt
0 Q o Jo
¢
+ / (v —Iv) - lle,.d) — / /('vt — v,) - e, dQdt
Q 0o Jo
¢
—/(p—Hp) 1leqdS —/ /(pt —1Ip,) - TleqdSdt
Q o Ja

t
+ / (W — PW)Pegd2 —/ /(Wt — PW,)PeydQdt.
Q 0 JQ
In view of Lemma 5.3 and Lemma 5.8, we have

t t
/ Xy dt ge/(e%+lneql2+lerl2)d9+o(h2k+2+/ (Nh(t)+/e%,d9)dt),
0 Q 0 Q

where C' depends on ¢, |lul| gr+a(qy, |uell grvaco)-
o Estimate Xs.

|Aa| < e/(Pew2 +lepl* + lew|* + |es]?)d2 + Ch* 2,
Q
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where C' depends on depending on e, |[u¢||r+s(q). Using Lemma 5.4, Lemma 5.5,
Lemma 5.6, Lemma 5.7

2
|As| < e/ €y, dQ +C (Nh(t) _|_/ 6%th9+h2k+2) ,
o Qn o

where C' depends on €, [[ull gr+a(qy, [7lloos [H oo, utllos P]lso-
e Estimate A3.

In one-dimension, X3 = 0. In multi-dimension, recalling Lemma (2.1), we get
|As] < ChM (Jlew |18, + les1?),

where C' depends on ||u|| gr+2. Employing Lemma 5.4, Lemma 5.5, Lemma 5.6 we
obtain

|X3|<e/ “tdQ+C( ()+/e%{thQ+h2k+2),
Q

where C' depends on ¢, ||u||Hk+4(Q), (171l oos 1 H |loo, l|ttlloos |P]]oo-
e Estimate Xj.

In one-dimension, Ay = 0. In multi-dimension, integrating X with respect to time

t —_—
/ Xydt = — / (W — PW)V - TlegdQ + / (W = PW)v - Teydl
0 Q

r
t t —

—|—/ /(Wt — PWy)V - Ileqd2dt — / / (Wt — PWt)I/ -legdl'dt.
0 JQ o Jr

Using Lemma 2.1 and Lemma 5.8, we get

t t
|/ Xydt| < eNy(t) 4+ C (h%“ +/ Nh(t)dt) :
0 0

where C' depends on [|W || gu+1, ||Well grtr, ||@] g1
Collecting the estimates X7, Xo, X3, Xy, we obtain

(5.17) |/Ot§:(é\fi)dt| < e/t (/Q( Uy 62 )d0) 4 Nt )) dt
+C / (Nh / eHdQ) dt + Ch?k+2,

where C depends on ¢, [[ull e sy, el 43y [7llo0s | Hlloo, el 1Plloe- Using
Lemma 5.11, Lemma 5.12, Lemma 5.13, we obtain from (5.4)

1 [ el 1d
(5.18) Q“h dQ + i ), e%QndQ

<-4 [@-quur-mmae~ [ S0 Gh - vkaude

. o )
ta dt ((Qh 1) (Yn =) + B <a|‘m — Yl 'Yh)) - (IIp, 0)* dQ

dtz/ r)p — E(Ilr)Ip) - Te,dK + ¢||Tlep| 3

+ X+ X+ 5+ X+ C (Nh(t) +/ e%,dﬂ+h2k+2> ,
Q
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Denote
Xy = jt (Q — Qn)(H — Hyp)HdQ — / HQat( Y = Va[*Qn)dY
+dt ((gh 1)( —vn) + 1(@ 7 — 'rhIQ‘Th)) - (ITp, 0)" d€2
1 h
npa Z / r)p — E(Ilr)lp) - e dK
_ _% (Q — Qn)(H — Hy)Hd®
jt H ( Y =¥ P Qn d9+/HHt 317~ Ml Qa2
+ dt ((gh 1) (Y =) +% (thlﬂ W;LIQ‘YZ)) - (Ip, 0)"d2
" h
npa Z / r)p — E(IIr)Tip) - Tle,dK.

Integrating Xg, with respect to time ¢, we have estimate

|/Ot Xy dt| gi /Q €2,QndY + C/Ot Np(t)dt + Ch? 42 4 C Ny (1),
where C' depends on 7] gr+1(qy, 1P|l ar+1(q), [[Helloos [[H|loo- And Cy depends on
[7lloos [[Hl[oos TPl[oos 1Vplloo- Taking
Ry =Ci +1,
we sum the following terms
(5.15) x Ry + (5.18) + (5.11).

Integrating with respect to time ¢ and choosing € sufficiently small, we obtain
t
/ (lew I + llep@)dt + Nu(t) + llen %
0

t
< c/ (Nu(t) + lleml|B)dt + Ch2+2,
0
where we use the error estimate for the initial date on Lemma 5.1. Gronwall
inequality yields
max (N (t) + [len[|) < Ch?+2,

T
| lewl+ legliyar < cnr2,
0

where C' depends on |[ul| e (0,7 m5+4(0)), 1Utll oo ((0,1);5+2(2))> T]locs 17t ]lc0s
[Hlloos [[Htlloos Plloc, [[ttlloc, T
Recalling Lemma 5.4, Lemma 5.5, Lemma 5.7, Lemma 5.8, we obtain estimates

max(|leq|l?, + lew & + llew||%) < CR*F2,

T
/ lesl[2dt < Ch2+2.
0

Recalling Lemma 5.2 and Lemma 5.1, we can also get the following estimates

||u — UhHQ < ChFt1,
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To complete the proof, let us verify the a priori assumptions (4.4)-(4.5). For
k> 1 and d < 3, we can consider h small enough so that ChF*! < %h%, where C' is
the constant determined by the final time T'. Then, if t* = sup{¢ : ||r(s) —rn(s)]| <
hi, ||H(s) — Hu(s)|| < hi, s € [0,£)}, we would have ||[r(t*) — rj,(t*)]| = hft,
| H (t*) — Hy(t*)|| = hi by continuity if ¢* is finite. On the other hand, our proof
implies that (4.4) and (4.5) holds for ¢ < ¢*, in particular

1 1
[(t) = rn ()] < CR¥FE < ZhE,[H(t") — Hy(t)|| < CR*F2 < 2hi.

This is a contradiction if t* < T. Hence t* > T and our a priori assumptions (4.4)
and (4.5) are justified when d < 3.

6. Concluding remarks

In this paper, we have presented the optimal error analysis for the LDG method
of the Willmore flow of graphs on Cartesian meshes. The analysis is made for
the fully nonlinear case and the results are valid for all space dimension d < 3
and polynomial degree k > 1. And our results for ||u — up|lq is just true for one
dimension. Another important issue not addressed in this paper is L? a priori
error estimates on triangular meshes. If we follow the same proof technique in this
paper for triangular meshes, we could easily lose half an order or even one order in
accuracy, because of a lack of control for certain jump terms at cell boundaries and
difficulty from the nonlinear terms. Such error estimates are left for future work.

Appendix A. Appendix: Proof of several Lemmas

A.1. Proof of Lemma 4.1. We obverse that the second inequality of the (4.1) is
a consequence of the first inequality. Recalling the definition of v and ~;,, we have

r ry, 1 1 T
T-nm=\"5*to 5"

Q' QQ
Obviously,
2 2
Al PR S (l_i)
( ) |’Y ’Y}ll Q Qh + Q Qh
We get

1 1 r T
\ <y =l

a_@ §|’Y—’7h|, @_@

To prove (4.2), let us introduce the notation z = %, zZp = C—St:, thus

reTr L QTH

Q Qn

=12 ®2Q — 2z, ® 2,Q4|

=[(z—2p) ®2Q+2,®2(Q —Qn) + 21, ® (2 — 21)Qn|

Therefore, the triangle inequality and the fact that |z — zp| < |y — ;| vield (4.2).
It remains only to demonstrate (4.3). By the definition of v and =,

(=, )" =~Q, (—rn, )" =~,Qn,
We have
(r =71, 0)" = 7,Qn — Q.
In view of |y| = |y, =1
r—ru? = (Q — Qn)* + |7 — 74*QQn-
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Clearly, @ > 1 and @, > 1, we have
v =l <1y =7 PQQK < |r — 7il?.
Consequently, we obtain (4.3).

A.2. Proof of Lemma 4.2. For any vector p and g we define «v; and =, as follows
(71); 1)T (7‘1; 1)T
N Rl AV Do)

NE TR 2T R,
We denote

Ry =+/1+41p]?, Ra2=+/1+]qf?,
then

Ri=1+1p*, Ri=1+lql*
According to the definition of E(p), we have

1 pRP 1 Ip|?
E(p)| = |—(1I— <l=|(1+2)<a.
And
2
q-q9 |p-q 1
E(p)q q:—f| ©_ (la/°R3 — |p- q?)

Ry R} RS
1

> ﬁ(quQR? — pl*lq?)
1

g q?

- p3 T —3"
By T+ p]?

2
q
= R )
1

Now we finish the proof of (4.11).
We follow the proof in A.1, we have

1 P q
| <y — 2 A<y, =l
R, R, < v =7l ‘Rl R2‘_|'Y1 Yol
Let us introduce the notation z1 = £, 22 = 7, so
p q
21—z =|—0—— =< -
|z1 2| ‘Rl RJ_|’Y1 Yal;

thus we can obtain

PP g®Qq| |z1®2z1 22022
‘Rff - R3 Ri R,
1 1 1 1
= (Zl—z2)®Z1R—1 + (22 ® 21 (R—I—R—2>‘+ z2®(zl—z2)R—2

< 3[v1 =72l
By the definition of v, and «,,
(=, )" =7 R1, (=q,1)" =73 Ro,
we have
(p—q,0)" =73R2 — v, R1.

In view of |v,| = |7, =1,

lp—al* = (Ri — R2)? + |71 — 72[*Ri R
Clearly, Ry > 1 and Ry > 1, we have

Y1 =72l < vy =72l RiRe < [p - g
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So we finally get

|B(p) — E(q)| = ‘I (RL _ RL) B (p%p B q%q)‘

‘p®p q®ﬂ

R} R3
<4y, =72 <4lp—ql.

A.3. Proof of Lemma 5.1. For the given the initial function ug(z), we choose
Vug(z)

V1+ [Vue()]?

The initial data up(z,0) is the solution of the following equations

qh(za 0) = HJrq(xv 0); q(xv 0) -

(A.2) / Hy9dK + / a, - VOAK — | @ wds =0,
K K oK

(A.3) / qh~de7/ Th . pdK =0,
K K Qh

(A4) / T ~CdK+/ upV - CdK — upv - Cds =0,
K K oK

and also satisfies

(A.5) /Qu(:c,O)dQ:/uh(:c,O)dQ,

Q

where V¥ € V, and Vp, ¢ € ¥,
For given g,,, we can easily see that rj, is well-defined. Now we use rj, to find a
well-defined uy. We consider the elliptic linear problem

—¢*=VE, in Q
n*=V-¢", in Q
with the periodic boundary conditions. To make the problem well-defined, we

should assume that the average of ¢* on 2 is a given constant and that of n* is
zero. We have the elliptic regularity result

1€7 e ) + 167 120y < Clin*ll2(an)-

The existence is obvious. We know very well that if u;, satisfies (A.4) then up + ¢
also satisfies (A.4). Here ¢ is any constant. If there are two solutions up; and wupe
both satisfying (A.4) and the assumption (A.5)

/Qu(:c,())dQ:/Quhl(:c,O)dQ:/uhg(z,O)dQ,

Q
then we can easily get

/ (un1 — up2)V - CdK — (Un1 — upz)v - €ds = 0,
K oK

/Q(uhl(:c, 0) — up2(z,0))dQ2 = 0.
Taking n* = upi(x,0) — upa(z,0) in the corresponding elliptic linear equation we
get
(un1 — un2, up1 — Un2) K
(un1 —un2, V- ¢k
=(un1 — un2, V- (¢* = TIC")) ik + (un1 — un2, V- TI¢") i



272 L.Y. JI AND Y. XU

=(up1 —un2, V- (¢ —1¢")) k— < uni — unz, v - (¢ —TICY) >ox + < U1 — Unz, v - ¢* >ok
=— (V(upr — un2),¢" —IIC") k+ < up1 — upa, v - (CF —IIC") >ok
— < Up1 —upz, V- (" —1ICT) >ox + < Uni — Un2, v - ¢ >ok

Recalling that @y, = u,,, we take II¢* = IT*¢* and sum over K. By the continuity
of ¢* and the definition of the projection II™ we obtain

(U1 — un2, Un1 — up2) = 0.

Then we get up1 = upe. Finally we have proved that uy, is well-defined.
In the following, we will give the proof of the error estimate in Lemma 5.1. We
have the error equations

(A.6) /K(H — Hp)9dK + /K(q —q,) VYK — /BK (qd—aq,) vdds =0,

(A.T) /K(qqh%de/K(%%)vdKO,

(A.8) /K(r —7h) - CdK + /K(u —up)V - CdK — (u/—\uh)l/ - ¢ds = 0.

oK
From the property of the special projection we have known that

lg(z,0) = gy (,0)lla = ll(x, 0) — T g(z,0)]lo < CA™*!
and (A.6) becomes

/ (H — Hp)¥dK —|—/ (@ —1I"q) - VIIK — (qu\‘*q) -vdds =0,
K K oK

Taking 9 = P~ H — H}j and summing over K we can get the estimate
|H(z,0) — Hy(z,0)[|o < CA*H!

according to the special projection and fluxes we choose. Now we use (A.7) to
estimate ||r — rp|lq by taking p = (ry — IIr)

r Th

Oz/K(q—qh)-(rh—Hr)dK—/K(é—@) (o — TIP)dEK
~ [ @=an)- (-1

r IIr IIr rh
- /K <§ - a) (rp —r)dK — /K (a - @) - (rp — r)dK.

Here we denote Q, = /1 + |TIr|2. Recalling that
—r, )T —ry, )T
L_ErT T
Q Qn
similarly we denote
. (~TIr, )T
Y= =
Qn

?

then we easily get

(rp —1Ir,0) = ’YNh@vh —YhQh,

and also
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%~(rhﬂr)£2};~(rhﬂr)
(O 1 e LY
= ( @7;@) (rp Hr,0)+( Qh,Qh) (rp —IIr,0)

= _% : (:Y‘;@/h - ’Y}th) TV (%@ - 'Yth)
= —(¥n = 11) - (FaQn — 74 Qn)
= —(Qn+Qu) (1 =574

1 . —
= —§|7h — 7,2 (Qn + Qn)

o (U _orm) 5 (L L
tr S Qh (@71 Qh) Qh (@71 Qh) "

Using (4.1) and (4.2), we have

Consider

r —ru| < Qnlyn = Yal + Qulvn — Yallral.
Thanks to a priori assumption, we have
e —rul? < ClQuIZTR =Yl + I73]) = ClQRIZ L — 7al? @7 < CI — 7l
where C' depends on ||@Q]|c and constant R defined in (4.9). Then we have

1, —~ —
§|7h — Y2 (@Qn + Qn) = |75 —viu? = ClIr — 7y 2.

Now we have
r Th

O/K(qqh)'(rhnr)dK/K<§@) (rp —r)dK
- [ (@= a1y

r Ir L 2(0).
_ /K (@ - a) - (rn 7Hr)dK+/K §|‘Yh =" (Qn + Qn)dK.
Then we have

1 . —
c / T — 72K < / = A P(@n + Qudk
K K 2

r Ir
= _/K(q—qh) - (Th —HT)dK‘f'/K (6 - a) - (ry — r)dK.

Using Cauchy-Schwarz inequality we get the following estimate
|TIr(z,0) — 71 (z,0)||o < CAFFL, |lr(2,0) — rp(z,0)|lo < CREFL.
Now we estimate ||u—up|lq. We use the same technique above by taking n* = u—uy,
(v —up,u —up)kg = (u—up, V- )k
= (u—un, V- (¢" = 1I¢"))k + (u = up, V- 1I¢T) &
=(u—up,V-("—IC"))k— <u—up, v ("—TI¢") >ox + <u—1p,v-C" >ok
—(r=rp, ¢ = r = (r =7, )i
=—(V(u—up), " —TU¢) g+ <u—up,v- (¢ —1¢") >9x
- <u-—up,v (" —1¢") >ox + <u—un,v ¢ >ox
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—(r—rp,1I¢" = ¢ ) — (r — 71, )k
—(V(u = Pu+ Pu—up), ¢ —T¢") g+ < up — up, v - (" —TI¢Y) >ox
+<u—upv-C >ox —(r—rp, ¢ =) — (r —rp, k.

Recalling that uj, = u, we take II¢* = II"¢" and sum over K. By the continuity
of ¢* and the definition of the projection II*™ we obtain

(v — un, u — up)

=— Z (u — Pu),¢* —TI¢") i — Z(T —rp, 1I¢" = ¢ )k — Z(T —7r, ¢k

K K
< Chk“l\(’ e () + CR* 2 1, + CRFFHICT |20
< CRMC ()

< Ch* Y |u — unl| 20,
Finally we got the estimate for the ||u(z,0) — up(z,0)||q < Ch*+L.

A.4. Proof of Lemma 5.6. We consider the (3.4a)-(3.4d) to get the error equa-

tions
/K <% - (g:t> pdK = /K((S —sn) — (v —vp)) - VodK

L —

+ /BK o((s —v) — (sp, —vp)) -vds = 0,
[ (s =800k — [ (Br)p— B, - $d =0,
K

2
/K('v —vp) - YdK — / (—r - %T‘h) -pdK =0,

[ o= ndic+ [ (W W)k~ [ W W vds =0,

K K oK

Choosing the test function ¢ = Pew, ¢ = Iley,, ¢ = —Ilep, n = —(Iles — Iley),
we obtain

(A.9) /K (B(r)p — E(r)py) - epdK = (I) + (IT) + (I11) + (IV),

where

(1= [ (B@p = Eep,) - (0~ Tp)K
n=[ (5 G rewar
(II1) / %< r@rh>~HePdK,
(V) == | ((s = 11s) = (v~ o0)) - VPewdK + /BK ((s — IIs) — (v — IIv)) - vPewds

+ /K(.s —IIs) - Mlepd K — /K('v —IIv) - llepd K — /K(p —IIp) - (les — e, )dK

- / (W — PW)V - (Lles — Iey)dK +/ (W — PW)(Iles — lley) - vds.
K OK

Now, we estimate (I), (IT), (I1I), (IV), separately.
e Estimate (I).
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Adding and subtracting E(ry)p - (p — IIp), we have

(1) = /K (E(r)p - B(ri)py) - (p— Tp)dK

= /K(E(r)p — E(rp)p) - (p —Up)dK —|—/ (E(rp)ep) - (p —p)dK.

K
Using Lemma 4.2 and Cauchy-Schwarz inequality, we derive

1D 1< elleplidy + C(h*+2 4+ Ny(1)
K

with C depending on € and [|p|| gr+1(qy, [Pl
e Estimate (I7).

(H)/K(%(Q:)Pwdfc

1 1 ey,
/K<ut <§@)+Qh)PerK

Employing Cauchy-Schwarz inequadity7 we obtain

(anl < [ Jul

€u, IPewl

Q Qn VQr VQn
1
<2 [ pewparcs S [ (5 ) ax

2 |Peyw|?
+ 6/ t dK + —
4de K (Qh

Recalling Lemma 5.7, we add all the elements K to obtain
e’ 2
2_UnI<ed” / GLAK + CNu() + 1242 + llenry/Qul),
K K 'K

where C' depends on ¢, |[tt||co; [7]loos [[H lloos Wl mr+1()-
e Estimate (I11).

dK

‘|P W|dK+/

dK.

I A
3 [ (G Gp) + Gyt 1) vy

an) < e [ e Parc+0 ([ ehuir + NEw)
K K
where C' depends on € and ||H||s. Summing up all the elements K, we get

|Z I11)| < €||Tep||3 + C(Nu(t) + e/ @Q ||Q

So, we have

e Estimate (IV).

Recalling definition of the projection and fluxes, we obtain

>uv)

K

275



276 L.Y. JI AND Y. XU

;(/ (s —IIs) - Ilepd K — /1;71_[1;) IepdK — /p Ip) - (lles — Hev)dK)

_Z/(W—PW)V (Iles — Ie,) dK+Z/ (W — PW)(Iles — Iley) - vds.
K

K

In one-dimension, because the choice of numerical flues and the definition of the
projection P~ we know PW = P~W, II = P% and PW = PW, then

_ Z/ (W — PW)V - (Tle, —Tle,)dK
__ Z/ (W — P"W)V - (PTe, — Prey)dK

:0,

due to the the property of the projection (2.1)and (2.2).

Z /8K (W/—?W)(Hes —Tle,) - vds

—Z — P W (z, 2)(P+63—P+6v)($;+%)
fz ~ P Wz, ) (Pres — Prey)(s] )
,0,

where the last step is due to the projection (2.2). So we have

Z(IV)Z(/K(sns)-nede/K(vnv)-Hep dK

K K
_ /K (p— IIp) - (Ies — Hev)dK) .

In multi-dimension, recalling Lemma 2.1, both cases we have estimates as follows
by using Cauchy-Schwarz inequality.

IZ (IV)] < e(lleplld + lles|? + llea]|Z) + Ch2*+2,

with C depending on € and ||ul| gr+4(q). And € > 0 is any positive constant. Using
Lemma 5.4 and Lemma 5.5, we obtain

ISV < cllepllf + € (th sy ethdﬂ> .
K Q

where C' depends on e, ||ul| gr+a(ay, [[7]loo; [[H oo
Collecting (I), (II), (III), (IV), we obtain

IZ((I) + D) + (I + (IV))|

<e||epHQ+eZ/ “tdK+c (Np(t )+h2k+2+/ﬂe§QOdQ).

with C' depending on €, [[ul| gr+aqys [7]loo, [H |loos [[%t]]co-
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Next, we try to use the left hand of (A.9) to get control of ||ep|3. Adding and
subtracting E(ry)p - ep, we have

[ ®@p - Brip,) - epr
K

(A.10) = /K(E(r) —E(ry))p - epdK + /K E(rp)ep - epdK.

We estimate the first term of the right hand of (A.10). In view of the definition of
E(r)

()~ B e =p-er (G- 5 )~ (07 (g~ ) ) e

Th

LetzfQ,zth’

By Lemma 4.1, we have

|2 = 2n| < v =l
Using the triangle inequality, we get
TRT TRLRTE Q2 Q2

Q3 Q  Q  Qu
:(Z—Zh)®2
Q

+ (2, ® 2) (%—é) +W.

So we obtain

rer L QTH

- <3y =l
Qg Q‘;),L | h|
With the help of above estimate, we get
| (B() = B@)p- epik]

< / plleplly K
K

|ep| 3
= [ 4[p| Y =Yl Qn dK
/K Var®

2
Se/ |e”|3 dK+C/ vy — v, ?Q}dK,
K Qn K

where C' depends on ¢, ||p|l«. Recalling Lemma 4.2 and the definition of N/ (¢),
we get,

|/ E(rp))p - epdK| < e/ E(rp)ep - ede—i—CNh (t)

with C' depending on ¢, ||p|loo and |7 co-
Taking € = 1 , we get

1
/K(E(r) — E(ry))p - epdK > —3 /K E(rp)ep - epdK — CNE(1).
Finally, we obtain
1
/K(E(T)p — E(ry)py,) - epdK > 3 /KE(rh)ep -epdK — CN(1).

Summing up all the elements K and using the bound of (I) — (IV') and Lemma 4.2
yields the result.
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A.5. Proof of Lemma 5.9. Using (A.1) and the definition of @ and @Q},, we have

| |2 1 1 2+ r Th 2
Y=Yl =/ A =T A
4 Q Qn Q Qn
142 N 1+ |rnl? 2 2r -7,
Q? 2 QQn  QQn
_g_olfrTh
QQn
Clearly, we get
1 1+7r-7ry
A1l — |y — 21—
(A11) 517 =7l Qo

Now, we use (A.1) to realize that

1 1 .
§3t(|’7 —uI°Qn) = & <<1 - %) Qh>

STIRTHRAES

_In é(:h)t + Tégt (14+r-7rp) — %(T “(rr)e + 7R T

r r r r r 1+7r-rpr
<__h).(rt(rh)t)rt.<__h+_h7h_

QR Qn
= <% — %) “(re = (rn)e) — (I1I).

Q Qn Q Q?

Here,

g (T _Tn ﬁ_wz)
Ui = (Q & QT T @& q

o om\ (L 1 r( lirem,
=T (Q Qh) (Qh Q)Q”” Q2 (1 Q0n )Q’“

By Lemma 4.1 and equation (A.11), we get

/K (ITD)AK > — || NE(2).

We proceed as follows with the help of the above equality.

r Th
/K(é-ert—@-ert)df(
_ r_Ty.
/K<Q Qh> e, dK

/K <% - %) (re — (rp)e)dK

o2
o /K (7 — 74 PQu)dEs + /K (IT1)dEK

1d
> s— | (Il = lPQudK — |7l Ny ().
2dt [y

N | =

(5.14) follows by taking C' = ||7¢]|co-

Q

)
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A.6. Proof of Lemma 5.10. Differentiating (3.4h) with respect to time and
combining with (3.4f)-(3.4g), we have

/ HhﬂdKJr/ qh-VﬂdKf/ q, - vids =0,
K K oK

| an-pirc~ [ T par =0,
K K Qn

e car+ [ v car — [ G- cs=o.

Choosing ¥ = Pe,,, p = —Ile,,, { = Ileq, we obtain the error equations
/ Pey Pe,, dK + / lle, - VPe,,dK — | Pe,,Ileg - vds
K K 0K
+ / (H — Hy)Pe,,dK + / (q—1Ilg) - VPe,,dK — | Peu,(q—Iq)-vds =0
K K oK
T Th
— He-etdK—i—/ (———)-HetdKzo
/K o K \Q@ Qn "
/ Ile,, - lleqdK +/ Pe,,V -lleqdK — ch:tﬂeq -vds
K K 0K
+ / (ry —ry) - MleqdK + / (ug — Puy)V - llegd K — (uti?ut)ﬂeq -vds = 0.
K K oK
In view of,

e, =1 —Ilr +Ile,,

we derive

T Th
——— | -e,dK
Q Qh)

L (6 — @) . (’f‘t - ]._.[T't)dK
/ PepPe,,dK — / (H - PH)Pe,,dK — / ry —IIry) - lleqdK

/ q—1q)-VPe,,dK + Peu,,((I—Hq)-Vds
K OK

=

- / (up — Puy)V - llegdK —|—/ (ut/—?ut)ﬂeq -vds,
K oK

We firstly sum up all the elements K. Then we obtain the result by recalling the
projection we choose and using Lemma 2.1, Lemma 5.9.

A.7. Proof of Lemma 5.12. Consider the nonlinear term
(E(r)re — E(rp)(rn)e) - llep — (E(r)p — E(r1)py,) - Lley,
= (E(r)r, — E(IIr)Ilr,) - llep, — (E(r)p — E(IIr)IIp) - Ile,,
+ (E(Ilr)lIry — E(rp)(rp):) - lep — (E(Ilr)llp — E(ry)p),) - ler, )
=(V)+(VI)+ (VII).

In view of the Lemma 4.2, obviously we have

I3 [ V)ax < elmieg | + on*2
K
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where C' depends on € and ||7¢| gr+1(q)-

(VI) = —(E(r)p — E(llr)IIp) - ey,

=~ ((Brp — BAW)TIp) Tie,) + 2 (B(r)p ~ E(IIr)llp) - Tle,
>~ 2By - BOII) - Tie,) — c|Tep 3 — C12+2,

where C' depends on ¢, ||p|| gr+1, ||7]gr+1-

Next, we estimate (VII). This term is the same as the paper of the Decklnick

[12]. So we just cite their result

> /K (VII)dK

Qh —~ ]. Qh,v 2~ T
>__ “ho_ 4 ) — = [ 22—, (TIp, 0)Td
> ((Qh )(7; Tn) 2<Qh|7h 7}|7h>> (Ilp, 0)

— C|[Tey||?, — e[| Tlep |3,
where C' depends on €, ||7||oo, ||P||co. And denote

—~ — —IIr, )T
Qn = V1+|HT|27 ’Yh:( —~ ) :

Qh
Combining (V), (VI), (VII) gives the results.
A.8. Proof of Lemma 5.13. We consider
1 (H?  H}
Z1+ 29 = (QH — QhHh)Pth + = —=r——7rp -Hert.
2\ Q Qn

In view of Pep, = (Hy — (Hp):) — (Hy — PH;), We rewrite Z; as follows
= (QH — QnHp)Pep,
= ((H — Hn)@n + (@ — @n)H)((H; — (Hn):) — (Hy — PHy))
= (H — Hp)(Hy — (Hp))Qn — (H — Hp)(Hy — PHy)Qn

—(Q = Qn)(Hy — PHy)H + (Q — Qn)(Hy — (Hp)e)H
10

55((11 — Hp)?Qn) — %(H — Hp)?Qne

—(H — Hp)(H; — PH;)Qp — (Q — Qn)(Hy — PHy)H

+ 2 (Q — Qu)H — Hi)H) — (@ — Qu)(H — Hy)Hy — (@ — Qui) (H ~ Hi)H.
So we have
Byt 2y =g o (H — Hy)*Qu) — (H — Hy)(H, ~ PH)@, — (Q — Qu)(H, — PH)H

g((@ Qn)(H — Hp)H) — (Q — Qn)(H — Hy)H; + Zs,
where
2 2
Z5 = % (%7‘ - %T’h) ey, — %(H — Hy)?Qnt — (Q¢ — Que)(H — Hp)H.

Now, we deal with Zs.

1/ H? H? 1
Z3 =~ (—7‘ - —hTh) (Try — (rp)e) — = (H*Que — 2HHR,Qne + HEQne)

2\ Q Qn 2
— (H*Qy — H*Qny — HH,Qy + HH,Qpy)
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1 H? 1 H? 1 H} 1
=3 0" Ur, — 20" (rh)e — §Q_:Th Iry + §H2th — H*Q: + HH,Qy

=851 +S+S3+ 84+ 85 + Ss.
We observe that

1 H?
82 __§_Q T- ( )t
9 ror 1 _ore-rp 1 roTh

A simple calculation yields
1 9 14+7-rp
—|v - =1—-—FF—7-
2| Yl Q0

Consequently, we have

1
rern= (1= gy = 7l)QQn - 1.

So, we get
1 r-ThH T Th
Sy = ——H?) 2
2T ( Q ) 2T
1QnQ¢ .5 2 1
- H — —H ohl=1.
27 Q + 4 |'Y 'th Qn D) t 0
Note that
1 H?
S3=—=-—-L II
3 ) Qhrh Tt
-II
- Yw - w2+ ommH, - g2y
2 Qh
_ 1?"}l IIr; 2 HHhTh -1r, +1H2rh-ﬂrt
2 Qn Qn 2 Qn
and

1
Si+85= §H28t(Qh —2Q).
Collecting 81, Sa, S3, S4, S5, Sg we obtain
S1+8+ 83+ 81+ S5+ S

H?Q, ) Try-Try , ) ror, 1
4Q |'Y 'th Qh 2 Qh + H 't Qh Q Q Q
1_or-Try 1,77 Qth ry,-1r, 1 H?
—H? —H? _ L —HH,—~—— 4+ ——7), - 11 HH,
+5 0 5 0 5 0 "o +5 o e + HHp Q.
1+7r-rp

Using the relation |y —~,[> =1 - 50, %, again, we have

1
Q Q
With the aid of the above equality, we have

S1+85+8S3+81+ 85+ S6

H2Qt ].’f'h ]._.[T't 2

1 1
— = —H?0y(= |y — |2 Z
Y =71 ?Qn 5 On €n+ 5 3t(2|'7 Yul“Qn) + Z4,

1
3170 ) = 3H0G = PQn) - Q.
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where

TeTh 12 Q@

HQT IIr, 1H2
Q 2 Q 2 Q
Th'H’I‘t 1H2

Z

—H?Q; +

- HHhT o0 Try + HHLQ,
= b 1) (@ o) 3 (- ) e
e g) gt
We finally obtain
/K(QH — QuHy)Pey,dK + /K% (%Qr _ g_j’“h) e, di
_ %% e%,QundK + jt/ (Q — Qn)(H — Hp)HdK + /K %HQ& (%Iv B 7h|2Qh) -

f/YH—mmm—PMWMK—/XQ—@Mm—PmﬂMK
K K

3 3 3 % e 3 rp - Iry o2
/K(H Hp)(Q Qh)thK—F/K 10 |Y = Yul"QrdK o0, HdK

_ _ Thllny (U
+LH(Hh H) (Qt Qh >dK+/ -H <Q Qh) (]._.[T't ’f't)dK

Lo (11 H2Q,(Q ~ Qu)’
+/K2H (rn—7) 7 (Q Qh) / 500 ——= = dK.

A simple calculation yields the result.

References

[1] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the nu-
merical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131 (1997),
pPp-267-279.

[2] P. Ciarlet, The finite element method for elliptic problem, North Holland, 1975.

[3] B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws IV: the multidimensional case, Math.
Comp., 54 (1990), pp.545-581.

[4] B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws III: one dimensional systems, J. Com-
put. Phys., 84 (1989), pp.90-113.

[5] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin
finite element method for conservation laws II: general framework, Math. Comp., 52 (1989),
pp.411-435.

[6] B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conser-
vation laws V: multidimensional systems, J. Comput. Phys., 141 (1998), pp.199-224.

[7] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent
convection-diffusion systems, STAM J. Numer. Anal., 35 (1998), pp.2440-2463.

[8] B. Cockburn, G. Kanschat, I. Perugia and D. schétzau, Superconvergence of the local discon-
tinuous Galerkin method for elliptic problems on cartesian grids, SIAM J. Numer. Anal., 39
(2001), pp.264-285.

[9] B. Cockburn and C.-W. Shu, Foreword for the special issue on discontinuous Galerkin
method, J. Sci. Comput., 22-23 (2005), pp.1-3.

[10] B. Cockburn and C.-W. Shu, Foreword, J. Sci. Comput., 40 (2009), pp.1-3.

[11] C. Dawson, Foreword for the special issue on discontinuous Galerkin method, Comput. Meth.
Appl. Mech. Engrg., 195 (2006), p.3183.

[12] K. Deckelnick and G. Dziuk, Error analysis of a finite element method for the Willmore flow
of graphs, Interfaces Free Bound., 8 (2006), pp.21-46.



(13]
14]
(15]
[16]
(17]
(18]

(19]

20]

(21]

OPTIMAL ERROR ESTIMATES OF THE LDG METHOD FOR WILLMORE FLOW 283

B. Dong and C.-W. Shu. Analysis of a local discontinuous Galerkin method for fourth-order
time-dependent problems. SIAM J. Numer. Anal., 47 (2009), pp.3240-3268.

J. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods. Algorithms, analy-
sts, and applications. Springer, 2008.

B. Li. Discontinuous finite elements in fluid dynamics and heat transfer. Springer-Verlag
London, 2006.

H. Liu and J. Yan, A local discontinuous Galerkin method for the Korteweg-de Vries equation
with boundary effect, J. Comput. Phys., 215 (2006), pp.197-218.

W.H. Reed and T.R. Hill, Triangular mesh method for the neutron transport equation, Tech-
nical report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.

B. Riviere. Discontinuous Galerkin methods for solving elliptic and parabolic equations. The-
ory and implementation. SIAM, 2008.

C.-W. Shu. Discontinuous Galerkin methods: general approach and stability, Numerical
Solutions of Partial Differential Equations, S. Bertoluzza, S. Falletta, G. Russo and C.-W.
Shu, Advanced Courses in Mathematics CRM Barcelona, Pages 149-201. Birkh&user, Basel,
20009.

Y. Xia, Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for the Cahn-Hilliard
type equations, J. Comput. Phys., 227 (2007), pp. 472-491.

Y. Xia, Y. Xu and C.-W. Shu, Application of the local discontinuous Galerkin method for
the Allen-Cahn/Cahn-Hilliard system, Commun. Comput. Phys., 5 (2009), pp.821-835.

[22] Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for two classes of two dimen-

stonal nonlinear wave equations, Physica D, 208 (2005), pp.21-58.

[23] Y. Xu and C.-W. Shu, Local discontinuous Galerkin method for surface diffusion and Will-

more flow of graphs, Journal of Scientific Computing, 40 (2009), pp.375-390.

[24] Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for high-order time-dependent

partial differential equations, Communications in Computational Physics, 7 (2010), pp. 1-46.

[25] J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV type equations, STAM

J. Numer. Anal., 40 (2002), pp.769-791.

Department of Mathematics, University of Science and Technology of China, Hefei, Anhui

230026, P.R. China.

E-mail: jlyue@mail.ustc.edu.cn

Department of Mathematics, University of Science and Technology of China, Hefei, Anhui

230026, P.R. China.

E-mail: yxu@ustc.edu.cn
URL: http://staff.ustc.edu.cn/~yxu



