
INTERNATIONAL JOURNAL OF c© 2011 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 8, Number 2, Pages 214–225

CONVERGENCE AND STABILITY OF THE SEMI-IMPLICIT

EULER METHOD WITH VARIABLE STEPSIZE FOR A LINEAR

STOCHASTIC PANTOGRAPH DIFFERENTIAL EQUATION

YU XIAO, MINGHUI SONG AND MINGZHU LIU

Abstract. The paper deals with convergence and stability of the semi-

implicit Euler method with variable stepsize for a linear stochastic pantograph

differential equation(SPDE). It is proved that the semi-implicit Euler method

with variable stepsize is convergent with strong order p = 1
2
. The conditions

under which the method is mean square stability are determined and the

numerical experiments are given.
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1. Introduction

The importance of stochastic differential delay equations (SDDEs) derives
from the fact that many of the phenomena witnessed around us do not have an
immediate effect from the moment of their occurrence. A patient, for example,
shows symptoms of an illness days (or even weeks) after the day in which he or
she was infected. In general, we can find many ”systems”, in almost any area
of science (medicine, physics, ecology, economics, etc.), for which the principle of
causality, i.e., the future state of a system is independent of the past states and
is determined solely by the present, does not apply. In order to incorporate this
time lag (between the moment an action takes place and the moment its effect is
observed) to our models, it is necessary to include an extra term which is called
time delay. The SDDEs can be regarded as a generalization of stochastic differential
equations (SDEs) and delay differential equations (DDEs). During the last few
decades, many authors have studied SDDEs. some important results are given, for
example, conditions which guarantee the existence and uniqueness of an analytical
solution [13, 14, 15] and stability conditions for both exact solutions and numerical
solutions, etc. [2, 6, 11, 16].

It is well known that in the deterministic situation there is a very special delay
differential equation: the pantograph equation

(1.1)
y′(t) = āy(t) + b̄y(qt), 0 6 t 6 tf ,

y(0) = y0.

where q ∈ (0, 1). It arises in quite different fields of pure and applied mathematics
such as number theory, dynamical systems, probability, quantum mechanics and
electrodynamics. In particular, it is used by Ockendon and Taylor[17] to study
how the electric current is collected by the pantograph of an electric locomotive,
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from where it gets its name. In [17] the coefficients ā, b̄ of Eq.(1.1) are constants.
If we take into account the estimation error for system parameters as well as the
environmental noise, it is better to estimate parameters ā, b̄ as point estimator plus
an error. By the central limit theorem, the error may be described by a normally
distributed random variable. Then, Eq.(1.1) becomes the differential form

(1.2)
dX(t) = [aX(t) + bX(qt)]dt+ [cX(t) + dX(qt)]dW (t), t > 0,

X(0) = x0,

which is a linear stochastic pantograph differential equation. In Eq.(1.2), a, b, c,
d ∈ R, q ∈ (0, 1), W (t) is a one-dimensional standard wiener process. The initial
value x0 is a real -valued random variable. The first term on the right hand side
of Eq.(1.2) is usually called the drift function and the second term is called the
diffusion function. The integral version of equation (1.2) is given by

X(t) = x0 +

∫ t

0

[aX(s) + bX(qs)]ds

+

∫ t

0

[cX(s) + dX(qs)]dW (s),

(1.3)

for t > 0. The second integral in Eq.(1.3) is a stochastic integral which is to be
interpreted as the Itô sense [5].

The study for stochastic pantograph equation has just begun. Baker and Buck-
war [3] give the necessary analytical theory for existence and uniqueness of a strong
solution of the linear stochastic pantograph equation

(1.4)
dX(t) = [aX(t) + bX(qt)]dt+ [σ1 + σ2X(t) + σ3X(qt)]dW (t),

X(0) = X0.

They also prove that the numerical solution produced by the continuous θ-method
converges to the true solution with order 1/2. Liu et al. [12] give stability con-
ditions of the analytical solution of the nonlinear stochastic pantograph equation
and provide results concerning convergence and stability of the semi-implicit Euler
method with constant stepsize. Fan [4] give the sufficient conditions that guarantee
the existence and uniqueness of a strong solution to the nonlinear stochastic pan-
tograph equation and proved that the semi-implicit Euler method with constant
stepsize applied to the nonlinear equation has strong order 1/2.

When the numerical method with a constant stepsize is applied to the pantograph
equation, the most difficult problem is the limited computer memory as shown
in [9, 10]. In this paper, we use the semi-implicit Euler method with variable
stepsize for a scalar test equation (1.2) to avoid the storage problem and discuss the
convergence and stability properties of the method. The other reason of applying a
numerical method with a variable stepsize is that when using the numerical method
with a constant stepsize to Eq. (1.2), the resulting difference equation is not of fixed
order.

The paper is organized as follows. In Section 2, we will introduce some notations
and recall some properties of its analytical solution. In Section 3, we will prove that
the semi-implicit Euler method with a variable stepsize is convergent to the true

solution with order 1
2 and mean-square stability if θ ∈

( |a|+|b|
2|a| , 1

]

. We will provide

some numerical examples in Section 4.
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2. Analysis of exact solution

Let (Ω,F , P ) be a probability space with a filtration {Ft}t>0, which sat-
isfies the usual conditions, i.e. the filtration {Ft}t>0 is right-continuous and each
{Ft}, t > 0, contains all P-null sets in F . LetW (t), t > 0 in Eq. (1.2) be Ft-adapted
and independent of F0. | · | is the Euclidean norm in R. Moreover, we assume x0

to be F0-measurable and E| x0 |2 < ∞. In this paper, Eq.(1.2) is interpreted in
the Itô sense.

Definition 2.1. An R-valued stochastic process X(t) : [0, T ] × Ω → R is called
a strong solution of Eq.(1.2), if it is a measurable, sample-continuous process such
that X |[0,T ] is (Ft)06t6T -adapted, and X satisfies Eq. (1.2), almost surely, and
satisfies the initial condition X(0) = x0. A solution X(t) is said to be path-wise

unique if any other solution X̂(t) is stochastically indistinguishable from it, i.e.

P
{

X(t) = X̂(t), for all 0 6 t 6 T
}

= 1.

Theorem 2.2. [3, 7]If 0 < q < 1 and E| x0 |2 < ∞, then there exists a pathwise
unique strong solution to problem (1.2).

Lemma 2.3. [12]If the coefficients of Eq.(1.2) are satisfied

a < −|b| − 1

2

(

|c|+ |d|
)2
.(2.1)

Then, the solution is mean square stable, that is

lim
t→∞

E|X(t)|2 = 0.(2.2)

In a similar way as [3], we can get the following two lemmas. The detailed proofs
are omitted here.

Lemma 2.4. The solution of Eq.(1.2) has the property

(2.3) E
(

sup
06t6T

|X(t)|2
)

6 C1(T ),

with

C1(T ) :=
(1

2
+ 3E|X(0)|2

)

exp
(

6K(T + 4)T
)

,

K := max{|a|, |b|, |c|, |d|}.
Moreover, for any 0 < s < t < T with t− s < 1,

(2.4) E|X(t)−X(s)|2 6 C2(T )(t− s),

where C2(T ) = 16KC1(T ).

Lemma 2.5. The solution of Eq.(1.2) has the following estimate for all t ∈ [0, T ],

(2.5) E|aX(t) + bX(qt)| 6
√

2LC1(T ),

with

L = 2max{|a|, |b|}.
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3. The semi-implicit Euler method with the variable step-size

In this paper, the semi-implicit Euler method with variable step-size is defined
as follows:

The mesh H = {m; t0, t1, · · · , tn, · · · .} is introduced as follows. Let T0 > 0 be
given, t0 = T0 and tm = q−1T0. We choose m− 1 grid points t1 < t2 < · · · < tm−1

in (t0, tm) and define other mesh points by

tkm+i = q−kti, for k = 1, 2, · · · , i = 0, 1, · · · ,m− 1.

It is easy to see that the grid points tn such that qtn = tn−m for n > 0 and the
step-size hn = tn+1 − tn satisfies

(3.1) hn = q−1hn−m, for all n > 1, and lim
n→∞

hn = ∞.

Furthermore, we suppose to have the numerical solution available until T0 which is
called initial data.

The semi-implicit Euler method of Eq.(1.2) with variable step-size has the form

Xn+1 = Xn + [θ(aXn+1 + bXn−m+1) + (1− θ)(aXn

+ bXn−m)]hn + [cXn + dXn−m]∆Wn,
(3.2)

where θ is parameter with 0 6 θ 6 1, Xn is an approximation to X(tn) and
the increments ∆Wn := W (tn+1) − W (tn) are independent N(0, hn)-distributed
Gaussian random variables. Moreover, we assume that Xn is Ftn -measurable at
the mesh-point tn.

In the following, we choose a finite interval [0, T ] with T0 = qsT 6 1, s is
a positive integer. Let h = max

06n6N−1
{hn} with N = sm. It is easy to see that

hn 6 h for all n ∈ [0, N ].

Definition 3.1. 1) The local truncation error for semi-implicit Euler method is
defined as follows

δn+1 =X(tn+1)−
{

X(tn) + θ[aX(tn+1) + bX(tn−m+1)]hn

+ (1 − θ)[aX(tn) + bX(tn−m)]hn + [cX(tn) + dX(tn−m)]∆Wn

}

.
(3.3)

2) The global error for semi-implicit Euler method is defined by

(3.4) εn = X(tn)−Xn.

3) The semi-implicit Euler method is said to be consistent with order p1 in the
mean sense and with order p2 in the mean-square sense if the following estimates
hold with p2 > 1

2 and p1 > p2 +
1
2

max
06n6N

∣

∣E(δn)
∣

∣ 6 Chp1 , as h → 0,

max
06n6N

(

E(δn)
2
)

1
2 6 Chp2 , as h → 0,

where the constant C does not depend on h, but may depend on T and the initial
data.

4) For fixed T < ∞, the approximation Xn are convergent in the mean-square
sense on mesh-points, with order p if

(3.5) max
16n6N

(

E(εn)
2
)

1
2 6 Chp, as h → 0,

where C is a positive constant.
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Lemma 3.2. If 0 < q < 1, the semi-implicit Euler method for Eq.(1.2) is consistent
with order 2 in the mean sense and with order 1 in the mean-square sense, that is

max
06n6N

∣

∣E(δn)
∣

∣ 6 C3(T )h
2, as h → 0,(3.6)

max
06n6N

(

E(δn)
2
)

1
2 6 C4(T )h, as h → 0,(3.7)

where C3(T ), C4(T ) are positive constants and independent of h.

Proof. In view of

δn+1 =a

∫ tn+1

tn

[

X(s)− (θX(tn+1) + (1− θ)X(tn))
]

ds

+ b

∫ tn+1

tn

[

X(qs)− (θX(qtn+1) + (1 − θ)X(qtn))
]

ds

+

∫ tn+1

tn

c[X(s)−X(tn)] + d[X(qs)−X(qtn)]dW (s),

(3.8)

for n = 0, 1, 2, · · · , N − 1, Lemma2.4 and 2.5, we can obtain

max
06n6N

∣

∣E(δn)
∣

∣ 6 C3(T )h
2

and

max
06n6N

(

E(δn)
2
)

1
2 6 C4(T )h,

where C3(T ) := 3
2 (1 + q)L

√

2LC1(T ), C4(T ) :=
√

14C2(T )H(1 + q) and H =

max{|a|2, |b|2, |c|2, |d|2}. �

The detailed process is absent here since that of the proof as well as style of
analysis borrows heavily from theorem 3.2 in [3]. In the following, we state the first
main theorem of this article.

Theorem 3.3. Suppose that 0 < q < 1, E(ε20|Ft0) = K̄h. Then the numerical
solution produced by the semi-implicit Euler method (3.2) is convergent to the exact
solution of Eq.(1.2) on the mesh-point in the mean-square sense on [0, T ] with order
1
2 , i.e. there exists a positive constant C0, such that

(3.9) max
16n6N

(

E(εn)
2
)

1
2 6 C0h

1
2 , as h → 0 .

Proof. It is easy to obtain from (3.2), (3.3)and (3.4) that

(3.10) εn+1 = εn + un + δn+1,

where

un := ahnθ(X(tn+1)−Xn+1) + [ahn(1− θ)

+ c∆Wn](X(tn)−Xn) + bhnθ(X(tn−m+1)−Xn−m+1)

+ [bhn(1− θ) + d∆Wn](X(tn−m)−Xn−m).

(3.11)

Thus

E(ε2n+1|Ft0) 6 E(ε2n|Ft0) + E(u2
n|Ft0) + E(δ2n+1|Ft0) + 2|E(δn+1un|Ft0)|

+ 2|E(δn+1εn|Ft0)|+ 2|E(εnun|Ft0)|.
(3.12)
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Using (3.11), Hölder inequality and Lemma 3.2, we can obtain that

E(δ2n+1|Ft0) = E(E(δ2n+1|Ftn)|Ft0) 6 C2
4h

2
n,

E(u2
n|Ft0) 6 Cu1

hn

[

E(ε2n+1|Ft0) + E(ε2n|Ft0)

+ E(ε2n−m+1|Ft0) + E(ε2n−m|Ft0)
]

,

2|Eδn+1un|Ft0 | 6 C2
4h

2
n + C1

uhn

[

E(ε2n+1|Ft0) + E(ε2n|Ft0)

+ E(ε2n−m+1|Ft0) + E(ε2n−m|Ft0)
]

,

2|Eδn+1εn|Ft0 | 6 C2
3h

2
n + hnE(ε2n|Ft0),

2|Eεnun|Ft0 | 6 5Cu2
hnE(ε2n|Ft0) + Cu2

hn

[

E(ε2n+1|Ft0)

+ E(ε2n−m+1|Ft0) + E(ε2n−m|Ft0)
]

,

where Cu1
= max{4(a2+ c2), 4(b2+d2)}, Cu2

= max{|a|, |b|}. Thus (3.12) becomes

[1− hn(2Cu1
+ Cu2

)]E(ε2n+1|Ft0) 6 [1 + hn(2Cu1
+ 5Cu2

+ 1)]E(ε2n|Ft0)

+ hn(2Cu1
+ Cu2

)E(ε2n−m+1|Ft0)

+ hn(2Cu1
+ Cu2

)E(ε2n−m|Ft0)

+ h2
n(2C

2
4 + C2

3 ).

(3.13)

Let C′
5 = 2Cu1

+ 5Cu2
+ 1, C′

6 = 2Cu1
+ Cu2

, C′
7 = (2C2

4 + C2
3 ) and En =

max
06i6n

{E(ε2i |Ft0)}. Then

(3.14) (1− hnC
′
6)En+1 6 (1 + hnC

′
5 + 2hnC

′
6)En + h2

nC
′
7.

Assume 1− C′
6hn > 1

2 (Due to hn → 0, the assumption is reasonable). Then

En+1 6

(

1 + hn

C′
5 + C′

6

1− hnC′
6

+ 4hnC
′
6

)

En + 2h2
nC

′
7

6

n
∏

i=0

(1 + hiC5)E0 +
n
∑

i=1

n
∏

j=i

(1 + hjC5)h
2
i−1C7 + h2

nC7

6 e

n∑

i=0

hiC5

K̄h+ h

n
∑

i=1

e

n∑

j=i

hjC5

hi−1C7 + hTC7

6 h
[

K̄eTC5 + TC7(e
TC5 + 1)

]

6 hC8,

(3.15)

where C5 = 2C′
5+6C′

6, C7 = 2C′
7 and C8 =

{

K̄eTC5 +TC7e
TC5 + 1

}

. This implies

(En+1)
1
2 6 C0h

1
2 ,

i.e.,

max
16n6N

(

E(εn)
2
)

1
2 6 C0h

1
2 ,

with C0 =
√
C8. The theorem is completed. �

In the following, we state the second main theorem of this article. To be precise,
we state the definition of mean-square stability from [1] at first:

Definition 3.4. A numerical method is said to be mean-square stable (with respect
to a given SPDE) if

(3.16) lim
n→∞

E|Xn|2 = 0.
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Theorem 3.5. Under the condition (2.1), if θ ∈
( |a|+|b|

2|a| , 1
]

, then the semi-implicit

Euler method of Eq.(1.2) is mean-square stable, that is

lim
n→∞

E|Xn|2 = 0.

Proof. From (3.2), we can have

(1 − ahnθ)Xn+1 = [1 + ahn(1− θ) + c∆Wn]Xn

+ bhnθXn−m+1 + [bhn(1− θ) + d∆Wn]Xn−m.

Squaring both side of the above equality, we get

(1− ahnθ)
2X2

n+1 6 [1 + ahn(1− θ) + c∆Wn]
2X2

n

+ (bhnθ)
2X2

n−m+1 + [bhn(1 − θ) + d∆Wn]
2X2

n−m

+ 2[1 + ahn(1− θ) + c∆Wn]bhnθXnXn−m+1

+ 2[1 + ahn(1− θ) + c∆Wn][bhn(1− θ) + d∆Wn]XnXn−m

+ 2[bhn(1− θ) + d∆Wn]bhnθXn−m+1Xn−m.

It follows from 2βγxy 6 |βγ|(x2 + y2), where β, γ ∈ R, that

(1 − ahnθ)
2X2

n+1 6 [1 + ahn(1− θ) + c∆Wn]
2X2

n

+ (bhnθ)
2X2

n−m+1 + [bhn(1− θ) + d∆Wn]
2X2

n−m

+ |1 + ahn(1− θ)||bhnθ|(X2
n +X2

n−m+1)

+
[

|1 + ahn(1 − θ)||bhn(1− θ)|+ |cd|(∆Wn)
2
]

(X2
n +X2

n−m)

+ b2h2
nθ(1− θ)(X2

n−m+1 +X2
n−m)

+ 2∆Wn

[

d(1 + ahn(1− θ)) + bchn(1 − θ)
]

XnXn−m

+ 2bchnθ∆WnXnXn−m+1 + 2bdhnθ∆WnXn−m+1Xn−m.

(3.17)

Note that E(∆Wn) = 0, E[(∆Wn)
2] = hn and Xn, Xn−m+1, Xn−m are Ftn -

measurable, hence

(3.18)
E(∆WnXiXj) = E

[

XiXjE(∆Wn|Ftn)
]

= 0,

E[(∆Wn)
2X2

i ] = E
[

X2
i E((∆Wn)

2|Ftn)
]

= hnE(Xi)
2,

where i, j ∈ {n, n−m+ 1, n−m}.
Let Yn = E|Xn|2, using (3.18), it is follows from (3.17) that

(1− ahnθ)
2Yn+1 6 P (a, b, c, d, hn, θ)Yn +Q(a, b, hn, θ)Yn−m+1

+R(a, b, c, d, hn, θ)Yn−m,

where

(3.19)

P (a, b, c, d, hn, θ) = [1 + ahn(1− θ)]2 + |1 + ahn(1− θ)||bhn|
+ |cdhn|+ c2hn,

Q(a, b, hn, θ) = b2h2
nθ

2 + |bhnθ|[|1 + ahn(1− θ)| + |bh|θ(1− θ)],

R(a, b, c, d, hn, θ) = b2h2
n(1− θ)2 + d2hn + |cdhn|

|bhn(1− θ)|[|1 + ahn(1− θ)|+ |bhnθ|].
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Note that (2.1) implies 1− ahnθ 6= 0, then

Yn+1 6
1

(1− ahnθ)2
[

P (a, b, c, d, hn, θ) +Q(a, b, hn, θ)

+R(a, b, c, d, hn, θ)
]

max
{

Yn, Yn−m+1, Yn−m

}

.

(3.20)

Let

An =
1

(1 − ahnθ)2
[

P (a, b, c, d, hn, θ) +Q(a, b, hn, θ) +R(a, b, c, d, hn, θ)
]

,

A =
(|a|+ |b|)(|a|(1 − 2θ) + |b|)

a2θ2
+ 1.

(3.21)

Replacing (3.19), then

An =
1

(1− ahnθ)2
[

a2h2
n + 2ahn(1− ahnθ)

+ 2|1 + ahn(1− θ)||bhn|+ 2|cdhn|+ b2h2
n + (c2 + d2)hn

]

+ 1

6
1

(1− ahnθ)2
[

a2h2
n + 2ahn(1− ahnθ)

+ 2(1 + |a|hn(1 − θ))||bhn|+ 2|cdhn|+ b2h2
n + (c2 + d2)hn

]

+ 1

6
1

(1− ahnθ)2
[

(|a|+ |b|)(|a|(1 − 2θ) + |b|)h2
n

+ (2a+ 2|b|+ (|c|+ |d|)2)hn

]

+ 1

6
(|a|+ |b|)(|a|(1 − 2θ) + |b|)

a2θ2
+ 1

= A.

(3.22)

If |a|+|b|
2|a| < θ 6 1, then

(3.23) (|a|+ |b|)(|a|(1 − 2θ) + |b|) < 0.

It implies An < A < 1 for all n. Therefore

Yn+1 6 Amax{Yn, Yn−m+1, Yn−m},
hence

Yn 6 A
n−2

m
+1 max

−m6i60
{Yi},

i.e.,

lim
n→∞

E|Xn|2 = 0.

�

4. Numerical experiments

In this section, we consider the following equation

(4.1) dX(t) = [aX(t) + bX(qt)]dt+ [cX(t) + dX(qt)]dW (t), t ∈ [0, T ],

with initial value X(0) = 2.

Table 1 Errors of the method

r 1 2 3 4

ǫI 0.0021 0.0049 0.0090 0.0176

ǫII 0.0014 0.0026 0.0058 0.0124
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Figure 1. The influence of parameter θ on the stability of the
numerical method.
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Figure 2. The influence of parameter h on the stability of the
numerical method with fixed θ = 0.45.

In a similar way as [2, 3, 4], we use discrete Brownian path over [0,1] with
△t = 2−11. The solution of (4.1) can be written as a closed-form expression
involving a stochastic integral. For simplicity, we take the numerical solution of
Euler-Maruyama scheme with h = △t as good approximation of explicit solution.
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Figure 3. The influence of parameter h on the stability of the
numerical method with fixed θ = 0.8.
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Figure 4. upper left: θ = 0, upper right θ = 0.3, lower left
θ = 0.8, lower right θ = 1.

One of our tests illustrate the theoretical order of convergence. In this case the
mean-square error ǫ|X(T )−XN |2 at the final time T was estimated in the following
way. A set of 20 blocks each containing 100 outcomes (ωi,j : 1 6 i 6 20, 1 6 j 6

100), are simulated and for each block the estimator ǫi = 1/100
∑100

j=1 |X(T, ωi,j)−
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XN(ωi,j)|2 is formed. In Table 1 above ǫ denotes the mean of this estimator, which

was itself estimated in the usual way: ǫ = 1/20
∑20

i=1 ǫi.
We use the set of parameters I: a = −4, b = 1, c = 0, d = 1, q = 0.5 in (4.1)

and method (3.2) with θ = 0.8, T0 = 1, k = 2(i.e.T = 4), II: a = −2, b = 0.5, c =
0.5, d = 0, q = 0.2 in (4.1) and method (3.2) with θ = 0.8, T0 = 1, k = 1(i.e.T = 5)
and choose stepsize h = 2r∆t, r = 1, 2, 3, 4 on the interval [t0, tm]. It is easy to see,
the figures in the table are compatible with the results give in Theorem 4.3.

In the following tests, we use the coefficients a = −10, b = 1, c = 0.5, d = 4
and q = 0.2 (in the case a < −|b| − 1

2 (|c| + |d|)2 and θ ∈ (0.55, 1]) to show the
influence of parameter θ and stepsize h on mean square stability of semi-implicit
Euler method. The data used in all figures are obtained by the mean square of

data by 100 trajectories, that is ωi : 1 6 i 6 100, Xn = 1/100
∑100

i=1 |Xn(ωi)|2. In
all figures tn denotes the mesh-point.

In Fig. 1, we fix the stepsize h1 = 0.1 and vary the parameter θ in order to
observe some stability behavior of the method. Using four parameter: θ = 0(upper
left), θ = 0.4 (upper right), θ = 0.8 (lower left) and θ = 1 (lower right), we observe
that the method is unstable on θ = 0 and θ = 0.4, but it is stable on θ = 0.8 and
θ = 1.

We choose the fixed parameter θ = 0.45 in Fig. 2 and θ = 0.8 in Fig. 3 and
vary the stepsize on interval [t0, tm] to show the influence of the stepsize. Using
the stepsizes: h11 = 0.0005 (upper left), h12 = 0.005 (upper right), h13 = 0.05
(lower left) and h14 = 0.5 (lower right), we observe that the stability behavior do
not change when the stepsize is varied.

In Fig. 4 we choose another set of parameters a = −10, b = 2, c = 0.5, d =
0.5, q = 0.5 and let h = 0.05. It is also shown that the method is mean square

stable for θ ∈
( |a|+|b|

2|a| , 1
]

= (0.6, 1], which is satisfied the condition of theorem.
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[7] K. Itô and M. Nisio,On stationary solutions of a stochastic differential equation, J. Math.

Kyoto Univ., 4 (1964), pp. 1-75
[8] P.E. Kloeden and I. Platen, Numerical Solution of Stochastic Differential Equations, Springer

Berlin, 1992
[9] Y. Liu, On the θ-method for delay differential equations with infinite lag, J. Comput. Appl.

Math., 71 (1996), pp. 177-190
[10] Y. Liu, Numerical investigation of the pantograph equation, Appl. Numer. Math., 24 (1997),

pp. 309-317



CONVERGENCE AND STABILITY OF THE SEMI-IMPLICIT EULER METHOD 225

[11] M.Z. Liu, W.R. Cao and Z.C. Fan, Convergence and stability of the semi-implicit Euler
method for a linear stochastic differential delay equation, J. Com. App. Math., 170 (2004),
pp. 255-268

[12] M.Z. Liu, Z.C. Fan and M. H. Song, The αth moment stability for the stochastic pantograph
equation, submitted for publication

[13] X.R. Mao, Stochastic Differential Equations and Applications, Harwood, New York, 1997
[14] X.R. Mao, Razumikhin-type theorems on exponential stability of stochaseic functional dif-

ferential equations, Stochastic Process. Appl., 65 (1996) pp. 233-250
[15] S.E.A. Mohammed, Stochastic Functional Differential Equations, Res. Notes Math., Pitman,

London, 1984

[16] X.R. Mao and S. Sabanis, Numerical solutions of stochastic functional differential delay equa-
tions under local Lipschitz condition, J. Comput. Appl. Math. 151(2003), pp. 215-227

[17] J.R. Ockendon and A.B. Taylor, The dynamics of a current collection system for an electric
locomotive, Proc. Roy. Soc. A 322(1971), pp. 447-486

Department of mathematics, Harbin Institute of Technology, Harbin, 150001, P.R.China
E-mail : xiaoyhit@126.com, songmh@lsec.cc.ac.cn and mzliu@hit.edu.cn


