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Abstract. This paper is devoted to the convergence analysis of stochastic θ-methods for non-
linear neutral stochastic differential delay equations (NSDDEs) in Itô sense. The basic idea is to
reformulate the original problem eliminating the dependence on the differentiation of the solution
in the past values, which leads to a stochastic differential algebraic system. Drift-implicit stochas-
tic θ-methods are proposed for the coupled system. It is shown that the stochastic θ-methods are
mean-square convergent with order 1

2
for Lipschitz continuous coefficients of underlying NSDDEs.

A nonlinear numerical example illustrates the theoretical results.
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1. Introduction

Neutral delay differential equations (NDDEs) have found diverse applications
in many fields such as control theory, oscillation theory, electrodynamics, bio-
mathematics, and medical sciences. NDDEs arise in two formulations, explicit
and implicit. Explicit NDDEs share the form of

x′(t) = F (t, x(t), x(t − τ(t)), x′(t− τ(t))), t ∈ [t0, T ],(1)

x(t) = φ0(t), x
′(t) = φ1(t), t ≤ t0,(2)

where τ(t) ≥ 0. Implicit NDDEs share the form of

(x(t) −D(t, x(t), x(t − τ(t)))′ = F (t, x(t), x(t − τ(t))), t ∈ [t0, T ],(3)

x(t) = φ0(t), x
′(t) = φ1(t), t ≤ t0,(4)

which is also called ”Hale’s form”. (3) can be formally rewritten as (1). However,
under careful scrutiny, one may find that equation (3) is not necessarily equivalent
to (1) even if D and τ are differentiable, noting that a non-differentiable function is
probably a solution of (3). Therefore, the study of the explicit and implicit forms,
and their available numerical methods differ. A stability analysis of both the exact
solutions and the numerical approximations for explicit NDDEs has been presented
in [3]. For the case of implicit NDDEs, Vermiglio and Torelli [23] investigated the
stability of analytical solutions and the numerical approximations. The idea, which
is to reformulate the original problem eliminating the dependence on the derivative
of the solution in the last value, was presented both in [3] and [23]. There is an
extensive literature on numerical schemes for NDDEs (see, for example, [2, 4, 8, 14]).

Many physical phenomena can be modelled by stochastic dynamical systems
whose evolution in time is governed by random forces as well as intrinsic depen-
dence of the state on a finite part of its past history. Such models may be identified
as stochastic functional differential equations (SFDEs). The theory of SFDEs has
been well developed and there is an extensive literature (see, for example, [18, 15]).
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The numerical methods on SFDEs have also been well established. Buckwar [6]
discussed the strong convergence of drift-implicit one-step schemes to the solution
of SFDEs. Fan, Liu and Cao [7] obtained sufficient conditions for the existence
and uniqueness of solutions of stochastic pantograph equations and investigated
the convergence of semi-implicit Euler method for the stochastic pantograph equa-
tions. There are other papers on numerical methods for SFDEs (see, for exam-
ple, [5, 9, 16]). However, they are not on numerical methods for neutral SFDEs. A
comprehensive introduction to numerical stochastic ordinary differential equations
is given in the books by Allen [1], Kloeden and Platen [10], Kloeden et al [11], and
Milstein and Tretyakov [17], and the surveys of Schurz [19], [20], [21] and Talay [22].

Motivated by chemical engineering systems and the theory of aeroelasticity, Kol-
manovskii et al [12, 13] introduced a class of neutral stochastic functional differential
equations. Mao [15] investigated existence and uniqueness, moment and pathwise
estimates, exponential stability of neutral stochastic functional differential equation

(5) d[x(t) −D(xt)] = F (t, xt)dt+G(t, xt)dW (t).

and a special case of (5), that is, neutral stochastic differential delay equation

(6) d[x(t)−D(x(t − τ))] = F (t, x(t), x(t − τ))dt +G(t, x(t), x(t − τ))dW (t).

To our best knowledge, no results on convergence of numerical methods for (5)
and (6) have been presented in the literature. This paper is devoted to the conver-
gence analysis of the stochastic θ-methods for nonlinear neutral stochastic differen-
tial delay equations (6). The basic idea is to transfer the system (6) into a stochastic
ordinary differential system plus a functional recursion and then eliminate the de-
pendence on the differentiation of the solution in the past values, which leads to
a stochastic differential algebraic system. A drift-implicit stochastic θ-method is
proposed for the coupled system. It is shown that these stochastic θ-methods are
mean-square convergent with order 1

2
under the usual smoothness assumptions. A

nonlinear numerical example illustrates the theoretical results.

2. Neutral stochastic differential delay equations

Let | · | be the Euclidean norm in R
d and 〈x, y〉 be the Euclidean inner product

of vectors x, y ∈ R
d. If A is a vector or matrix, its transpose is denoted by AT . If

A is a matrix, its trace norm is denoted by |A| =
√

trace(ATA).
Assume that (Ω,F , {Ft}t≥0,P) is a complete probability space with a filtra-

tion {Ft}t≥0 satisfying the usual conditions (that is, it is increasing and right-
continuous, and F0 contains all P-null sets). W (t) = (W1(t), . . . ,Wm(t))T is sup-
posed to be a standard m-dimensional Wiener process defined on the probability
space (Ω,F , {Ft}t≥0,P) with mutually independent coordinates Wi throughout the
paper.

Furthermore, let 0 ≤ t0 < T < ∞, Bd be the Borel σ-algebra and

F : [t0, T ]× R
d × R

d → R
d G : [t0, T ]× R

d × R
d → R

d×m and D : Rd → R
d

be all Borel measurable real-valued functions. Consider the d-dimensional neutral
stochastic differential delay equations (NSDDEs) in Itô-sense
(7)
d[x(t)−D(x(t− τ))] = F (t, x(t), x(t− τ))dt+G(t, x(t), x(t− τ))dW (t), t ∈ [t0, T ]

with initial data

(8) x(t) = ϕ(t), t ∈ [t0 − τ, t0].
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ϕ(t) is assumed to be continuous, (Ft0 ,Bd)-measurable with E( sup
t0−τ≤t≤t0

|ϕ(t)|2) <
+∞, where τ > 0 is a constant. By the definition of Itô-interpreted stochastic
differential equations, equation (7) means that, for every t0 ≤ t ≤ T , we have

x(t)−D(x(t−τ)) = x(t0)−D(x(t0−τ))

+

∫ t

t0

F (s, x(s), x(s − τ))ds+

∫ t

t0

G(s, x(s), x(s − τ))dW (s).(9)

Throughout this paper, we assume that the functions F,G and D satisfy the
following conditions: there exist positive constants KL, KB such that, for all
x1, x2, y1, y2 ∈ R

d and t ∈ [t0, T ], we have

|F (t, x1, y1)− F (t, x2, y2)|2 ∨ |G(t, x1, y1)− F (t, x2, y2)|2

≤ KL(|x1 − x2|2 + |y1 − y2|2),(10)

and, for all x, y ∈ R
d and t ∈ [t0, T ],

(11) |F (t, x, y)|2 ∨ |G(t, x, y)|2 ≤ KB(1 + |x|2 + |y|2)

and there is a κ ∈ (0, 1) such that for all x, y1, y2 ∈ R
d

(12) |D(y1)−D(y2)| ≤ κ|y1 − y2|,

(13) |D(x)| ≤ κ|x|,

where a ∨ b := max{a, b}.

Proposition 2.1. ([15]) If the conditions (10), (11) and (12) are fulfilled, then
there is a unique solution x(t) to equation (7) with initial data (8). Moreover, the

solution belongs to M2([t0 − τ, T ];Rd), that is, E
∫ T

t0−τ
|x(t)|2dt < ∞.

Proposition 2.2. ([15]) Let p ≥ 2. If the conditions (11) and (13) are fulfilled,
then we have

(14) E

(

sup
t0−τ≤s≤t

|x(t)|p
)

≤ CB

(

1 + E

(

sup
t0−τ≤t≤t0

|ϕ(t)|p
)

)

, t ∈ [t0, T ],

where constant CB depends on KB, κ and T .

Lemma 2.1. Let conditions (11) - (12) hold. Assume that the initial function ϕ(t)
is uniformly Lipschitz L2-continuous, that is there is a positive constant C1 such
that

(15) E|ϕ(u2)− ϕ(u1)|2 ≤ C1(u2 − u1) if t0 − τ ≤ u1 < u2 ≤ t0.

Then

(16) E|x(t) − x(s)|2 ≤ C2(t− s)

for all t0 ≤ s < t ≤ Twith t −mτ ∈ [−τ, 0], s − mτ ∈ [−τ, 0], where constant C2

depends on constants C1, T , initial function ϕ(t) and positive integer m.

Proof. By (9), we have

E|x(t)−x(s)|2 ≤ 3

(

E|D(x(t−τ)) −D(x(s−τ))|2+ E|
∫ t

s

F (u, x(u), x(u−τ))du|2

+E|
∫ t

s

G(u, x(u), x(u − τ))dW (u)|2
)

.(17)
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Using the Hölder inequality, the properties of Itô integral, conditions (11)- (12) and
Proposition 2.2, we can then obtain that

E|x(t) − x(s)|2

≤ 3(κ2
E|x(t− τ) − x(s− τ)|2 + (t− s)E(

∫ t

s

|F (u, x(u), x(u − τ))|2du)

+E(

∫ t

s

|G(u, x(u), x(u − t))|2du))

≤ 3(κ2
E|x(t−τ)−x(s−τ)|2+(t−s+1)KB

∫ t

s

(1+E|x(u)|2+E|x(u−τ)|2)du)

≤ 3(κ2
E|x(t−τ)−x(s−τ)|2+(t−s+1)KB

∫ t

s

(1+2CB(1+E( sup
t0−τ≤t≤t0

|ϕ(t)|2)))du)

≤ 3(κ2
E|x(t−τ)−x(s−τ)|2+(T−t0+1)KB(1+2CB)(1+E( sup

t0−τ≤t≤t0

|ϕ(t)|2))(t−s))

≤ C3(E|x(t − τ) − x(s− τ)|2 + t− s)

≤ C3(C3(E|x(t − 2τ)− x(s− 2τ)|2 + t− s) + t− s)

≤ . . .

≤ Cm
3 (E|x(t −mτ)− x(s−mτ)|2) + C3(1 + C3 + . . .+ Cm−1

3 )(t− s)

≤ Cm
3 C1(t− s) + C3(1 + C3 + . . .+ Cm−1

3 )(t− s)

≤ C2(t− s),

where

C3 = 3max{κ2, (T − t0 + 1)KB(1 + 2CB)(1 + E( sup
t0−τ≤t≤t0

|ϕ(t)|2))},

C2 = Cm
3 C1 + C3(1 + C3 + . . .+ Cm−1

3 ).

Therefore, this lemma is proved. �

3. Stochastic θ-methods

By defining the function

(18) y(t) = x(t)−D(x(t − τ)), t ∈ [t0, T ],

equation (7) can be rewritten to as

dy(t) = f(t, y(t), x(t− τ))dt + g(t, y(t), x(t− τ))dW (t), t ∈ [t0, T ],(19)

x(t) = y(t) +D(x(t − τ)), t ∈ [t0, T ](20)

with initial value

(21) y(t0) = x(t0)−D(x(t0 − τ)),

where

(22) f(t, y, z) = F (t, y +D(z), z), g(t, y, z) = G(t, y +D(z), z).

Let h > 0 be a given step size satisfying

hNτ = τ for some positive integer Nτ > τ.

For convenience we can assumeNτ ≥ 2. We define a family of meshes with a uniform
step size h on the interval [t0, T ] by tn = t0 + nh, n = 0, 1, . . . , N, t0 + Nh ≤ T .
Consider a stochastic θ-method for initial value problems (19)- (22)

yn+1 = yn + h((1 − θ)f(tn, yn, xn−Nτ
) + θf(tn+1, yn+1, xn+1−Nτ

))

+g(tn, yn, xn−Nτ
)∆Wn, n = 0, 1, . . . , N − 1,(23)

xn = yn +D(xn−Nτ
), n = 0, 1, . . . , N,(24)
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where yn, xn are strong approximations to y(tn) and x(tn), respectively, ∆Wn =
Wn+1 −Wn, and the initial values are given by y0 = y(t0), xn−Nτ

= ϕ(t0 + tn − τ)
for n−Nτ ≤ 0.

We will provide estimates of the local error, which is defined as the defect that is
obtained when the exact solution values are inserted into the numerical scheme (23),
that is,

δh(tn) = y(tn+1)− y(tn)− h(1− θ)f(tn, y(tn), x(tn − τ))

−hθf(tn+1, y(tn+1), x(tn+1 − τ))− g(tn, y(tn), x(tn − τ))∆Wn.(25)

Definition 3.1. The method (23)-(24) is said to be mean-square consistent with
order p (p > 0) if the following estimates hold:

(26) max
0≤n≤N−1

‖E(δh(tn)|Ftn)‖L2
≤ C̄hp+1 as h =

τ

Nτ
→ 0,

and

(27) max
0≤n≤N−1

‖δh(tn)‖L2
≤ C̄hp+ 1

2 as h =
τ

Nτ
→ 0,

where the constant C̄ does not depend on h, but may depend on T and the initial
data. Here ‖z‖L2

:= (E|z|2)1/2.

Definition 3.2. The method (23)-(24) is said to be mean-square convergent, with
order p (p > 0), on the mesh-points, when

(28) max
0≤n≤N

‖x(tn)− xn‖L2
≤ C̃hp as h =

τ

Nτ
→ 0,

where the constant C̃ does not depend on h, but may depend on T and the initial
data.

Theorem 3.1. Assume that the conditions (10)- (13) and (15) hold and there
exists a positive constant K̄ such that for any s, t ∈ [t0, T ], x, y ∈ Rd

(29) |F (s, x, y)− F (t, x, y)|2 ∨ |G(s, x, y)−G(t, x, y)|2 ≤ K̄(1 + |x|2 + |y|2)|s− t|,

then the method (23) is mean-square consistent with order p = 1
2
.

Proof. It follows from (25) that

δh(tn) =

∫ tn+1

tn

(f(s, y(s), x(s− τ))− f(tn, y(tn), x(tn − τ)))ds

+

∫ tn+1

tn

(g(s, y(s), x(s− τ)) − g(tn, y(tn), x(tn − τ)))dW (s)

−θh(f(tn+1, y(tn+1), x(tn+1 − τ)) − f(tn, y(tn), x(tn − τ)))

=

∫ tn+1

tn

(F (s, x(s), x(s − τ)) − F (tn, x(tn), x(tn − τ)))ds

+

∫ tn+1

tn

(G(s, x(s), x(s − τ))−G(tn, x(tn), x(tn − τ)))dW (s)

−θh(F (tn+1, x(tn+1), x(tn+1 − τ))− F (tn, x(tn), x(tn − τ))).(30)
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Using the properties of the Itô integral and conditional expectations, and the Hölder
inequality, we obtain

|E(δh(tn)|Ftn)|2

= |E(
∫ tn+1

tn

(F (s, x(s), x(s − τ)) − F (tn, x(tn), x(tn − τ)))ds|Ftn )

−θhE(F (tn+1, x(tn+1), x(tn+1 − τ)) − F (tn, x(tn), x(tn − τ))|Ftn)|2

≤ 2|E(
∫ tn+1

tn

(F (s, x(s), x(s − τ)) − F (tn, x(tn), x(tn − τ)))ds|Ftn)|2

+2θ2h2|E(F (tn+1, x(tn+1), x(tn+1−τ))−F (tn, x(tn), x(tn−τ))|Ftn)|2

≤ 2E(|
∫ tn+1

tn

F (s, x(s), x(s − τ)) − F (tn, x(tn), x(tn − τ))ds|2|Ftn)

+2θ2h2
E(|F (tn+1, x(tn+1), x(tn+1−τ))−F (tn, x(tn), x(tn−τ))|2|Ftn))

≤ 2hE(

∫ tn+1

tn

|F (s, x(s), x(s − τ)) − F (tn, x(tn), x(tn − τ))|2ds|Ftn)

+2θ2h2
E(|F (tn+1, x(tn+1), x(tn+1−τ))−F (tn, x(tn), x(tn−τ))|2|Ftn))

By condition (10) and (29), we have

|E(δh(tn)|Ftn)|2

≤ 4hE(

∫ tn+1

tn

|F (s, x(s), x(s − τ))− F (tn, x(s), x(s − τ))|2ds|Ftn)

+4hE(

∫ tn+1

tn

|F (tn, x(s), x(s− τ))− F (tn, x(tn), x(tn − τ))|2ds|Ftn)

+4θ2h2
E(|F (tn+1, x(tn+1), x(tn+1−τ))−F (tn, x(tn+1), x(tn+1−τ))|2|Ftn))

+4θ2h2
E(|F (tn, x(tn+1), x(tn+1 − τ)) − F (tn, x(tn), x(tn − τ))|2|Ftn))

≤ 4K̄hE(

∫ tn+1

tn

(1 + |x(s)|2 + |x(s− τ)|2)(s− tn)ds|Ftn)

+4KLhE(

∫ tn+1

tn

(|x(s)− x(tn)|2 + |x(s− τ)− x(tn − τ)|2)ds|Ftn)

+4K̄θ2h3
E(1 + |x(tn+1)|2 + |x(tn+1 − τ)|2)|Ftn))

+4KLθ
2h2

E(|x(tn+1)− x(tn)|2 + |x(tn+1 − τ)− x(tn − τ)|2)|Ftn)).(31)

Using Proposition 2.2 and Lemma 2.1, we arrive at

E|E(δh(tn)|Ftn)|2 ≤ 2K̄(1 + 2CB(1 + E( sup
t0−τ≤t≤t0

|ϕ(t)|2)))h3 + 4C2KLh
3

+4K̄θ2(1 + 2CB(1 + E( sup
t0−τ≤t≤t0

|ϕ(t)|2)))h3 + 8C2KLθ
2h3,

= C4h
3,(32)

where C4 = 2K̄(1 + 2θ2)(1 + 2CB(1 + E( sup
t0−τ≤t≤t0

|ϕ(t)|2))) + 4C2KL(1 + 2θ2).
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Now we estimate ‖δh(tn)‖L2
. Using the properties of the Itô integral, the Hölder

inequality, we get

E|δh(tn)|2 ≤ 3E|
∫ tn+1

tn

(F (s, x(s), x(s − τ)) − F (tn, x(tn), x(tn − τ)))ds|2

+3E|
∫ tn+1

tn

(G(s, x(s), x(s − τ))−G(tn, x(tn), x(tn − τ)))dW (s)|2

+3θ2h2
E|F (tn+1, x(tn+1), x(tn+1 − τ)) − F (tn, x(tn), x(tn − τ))|2

≤ 3hE

∫ tn+1

tn

|F (s, x(s), x(s − τ)) − F (tn, x(tn), x(tn − τ)))|2ds

+3E

∫ tn+1

tn

|G(s, x(s), x(s − τ)) −G(tn, x(tn), x(tn − τ)))|2ds

+3θ2h2
E|F (tn+1, x(tn+1), x(tn+1 − τ)) − F (tn, x(tn), x(tn − τ))|2

(33)

which yields that

E|δh(tn)|2 ≤ 6hE

∫ tn+1

tn

|F (s, x(s), x(s − τ))− F (tn, x(s), x(s − τ))|2ds

+6hE

∫ tn+1

tn

|F (tn, x(s), x(s − τ) − F (tn, x(tn), x(tn − τ))|2ds

+6E

∫ tn+1

tn

|G(s, x(s), x(s − τ))−G(tn, x(s), x(s − τ))|2ds

+6E

∫ tn+1

tn

|G(tn, x(s), x(s − τ)) −G(tn, x(tn), x(tn − τ))|2ds

+6θ2h2
E|F (tn+1, x(tn+1), x(tn+1−τ))−F (tn, x(tn+1), x(tn+1−τ))|2

+6θ2h2
E|F (tn, x(tn+1), x(tn+1 − τ)) − F (tn, x(tn), x(tn − τ))|2.

(34)

By condition (10) and (29), we have

E|δh(tn)|2 ≤ 6(h+ 1)K̄E(

∫ tn+1

tn

(1 + |x(s)|2 + |x(s− τ)|2)(s− tn)ds)

+6(h+ 1)KLE(

∫ tn+1

tn

(|x(s) − x(tn)|2 + |x(s− τ)− x(tn − τ)|2)ds)

+6θ2K̄h3(1 + E|x(tn+1)|2 + E|x(tn+1 − τ)|2)
+6θ2KLh

2(E|x(tn+1)− x(tn)|2 + E|x(tn+1 − τ) − x(tn − τ)|2).(35)

It follows from Proposition 2.2, Lemma 2.1 and inequality (35) that

(36) E|δh(tn)|2 ≤ C7h
2,

where C7 = 6K̄(1+ θ2)(1+ 2CB(1+E( sup
t0−τ≤t≤t0

|ϕ(t)|2)))+ 12C2KL(1+ θ2). Here

we have also used the fact h < 1 as h → 0.
¿From inequalities (32) and (36) we may extract mean square consistency with

rate p = 1
2
while step size h < 1. Thus, the proof of Theorem 3.1 is completed. �

Theorem 3.2. Assume that the conditions (10)-(13), (15) and (29) hold. Then
the method (23)-(24) is mean-square convergent with order p = 1

2
.
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Proof. Define e(tn) := y(tn)− yn. Let Bd be the Borel σ-algebra generated by the
Borel sets of Rd. Note that the error e(tn) is (Ftn ,Bd)-measurable, since both y(tn)
and yn are (Ftn ,Bd)-measurable random variables. By (23) and (25), we have

(37) e(tn+1) = e(tn) + δh(tn) +R(tn),

where

R(tn) = (1− θ)h(f(tn, y(tn), x(tn − τ)) − f(tn, yn, xn−Nτ
))

+θh(f(tn+1, y(tn+1), x(tn+1 − τ))− f(tn+1, yn+1, xn+1−Nτ
))

+(g(tn, y(tn), x(tn − τ)) − g(tn, yn, xn−Nτ
))∆Wn.(38)

In order to estimate the global error e(tn), we will frequently use the Hölder’s
inequality, the inequality (a1 + a2 + · · · + al)

2 ≤ l(a21 + a22 + · · · + a2l ), where
a1, a2, . . . , al are real numbers, and the properties of Itô integral. It follows from (37)
that

E|e(tn+1)|2 = E|e(tn)|2 + E|δh(tn)|2 + E|R(tn)|2

+2E〈e(tn), δh(tn)〉+ 2E〈e(tn), R(tn)〉+ 2E〈δh(tn), R(tn)〉
≤ E|e(tn)|2 + 2E|δh(tn)|2 + 2E|R(tn)|2

+2E〈e(tn), δh(tn)〉+ 2E〈e(tn), R(tn)〉.(39)

By (38), we have

2E|R(tn)|2 ≤ 6(1− θ)2h2
E|f(tn, y(tn), x(tn − τ))− f(tn, yn, xn−Nτ

)|2

+6θ2h2
E|f(tn+1, y(tn+1), x(tn+1 − τ)) − f(tn+1, yn+1, xn+1−Nτ

)|2

+6E(|g(tn, y(tn), x(tn − τ)) − g(tn, yn, xn−Nτ
)|2|∆Wn|2)

≤ 6(1− θ)2h2
E|F (tn, x(tn), x(tn − τ))− F (tn, xn, xn−Nτ

)|2

+6θ2h2
E|F (tn+1, x(tn+1), x(tn+1−τ))−F (tn+1, xn+1, xn+1−Nτ

)|2

+6mhE|G(tn, x(tn), x(tn − τ)) −G(tn, xn, xn−Nτ
)|2

≤ 6KL(1− θ)2h2
E(|x(tn)− xn|2 + |x(tn − τ)− xn−Nτ

|2)
+6KLθ

2h2
E(|x(tn+1)− xn+1|2 + |x(tn+1 − τ) − xn+1−Nτ

|2)
+6mKLhE(|x(tn)− xn|2 + |x(tn − τ) − xn−Nτ

|2),(40)

where we used the condition (10) and the fact E|∆Wn|2 = mh. A combination
of (40) and the fact that

|x(tn)− xn|2 = |y(tn) +D(x(tn − τ)) − yn −D(xn−Nτ
)|2

≤ 2|y(tn)− yn|2 + 2|D(x(tn − τ))−D(xn−Nτ
)|2

≤ 2|e(tn)|2 + 2κ2|x(tn − τ)− xn−Nτ
|2(41)

leads to the estimate

2E|R(tn)|2

≤ 6KL((1− θ)2h+m)h(2E|e(tn)|2 + (1 + 2κ2)E|x(tn − τ)− xn−Nτ
|2)

+6KLθ
2h2(2E|e(tn+1)|2 + (1 + 2κ2)E|x(tn+1 − τ)− xn+1−Nτ

|2)
≤ C5h(E|e(tn+1)|2 + E|e(tn)|2 + E|x(tn+1 − τ)− xn+1−Nτ

|2

+E|x(tn − τ) − xn−Nτ
|2).(42)

where the constant C5 is equal to the expression

C5=max{12CL, 6CL(1 + 2κ2), 12KLθ
2u, 6KLθ

2u(1 + 2κ2)}|u= τ

2

with CL = KL((1−θ)2u+m). Here we have also used the fact that h = τ
Nτ

≤ τ
2
.
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It is not difficult to obtain the following inequalities

2E〈e(tn), δh(tn)〉 = 2EE(〈e(tn), δh(tn)〉|Ftn)

≤ 2E|E(〈e(tn), δh(tn)〉|Ftn)| = 2E|〈e(tn),E(δh(tn)|Ftn)〉|
≤ 2(hE|e(tn)|2)

1
2 (h−1

E|E(δh(tn)|Ftn)|2)
1
2

≤ hE|e(tn)|2 + h−1
E|E(δh(tn)|Ftn)|2.(43)

It follows from (38), (10) and (41) that

|E(R(tn)|Ftn)|2

= |(1 − θ)hE(f(tn, y(tn), x(tn − τ)) − f(tn, yn, xn−Nτ
)|Ftn)

+θhE(f(tn+1, y(tn+1), x(tn+1 − τ)) − f(tn+1, yn+1, xn+1−Nτ
)|Ftn)|2

≤ 2(1− θ)2h2
E(|F (tn, x(tn), x(tn − τ)) − F (tn, xn, xn−Nτ

)|2|Ftn)

+2θ2h2
E(|F (tn+1, x(tn+1), x(tn+1−τ))−F (tn+1, xn+1, xn+1−Nτ

)|2|Ftn)

≤ 2KL(1− θ)2h2
E(|x(tn)− xn|2 + |x(tn − τ) − xn−Nτ

|2|Ftn)

+2KLθ
2h2

E(|x(tn+1)− xn+1|2 + |x(tn+1 − τ)− xn+1−Nτ
|2|Ftn)

≤ 2KL(1− θ)2h2
E(2|e(tn)|2 + (1 + 2κ2)|x(tn − τ) − xn−Nτ

|2|Ftn)

+2KLθ
2h2

E(2|e(tn+1)|2 + (1 + 2κ2)|x(tn+1 − τ) − xn+1−Nτ
|2|Ftn)

≤ C6h
2(E(|e(tn+1)|2|Ftn) + E|e(tn)|2

+E|x(tn+1 − τ) − xn+1−Nτ
|2 + E|x(tn − τ)− xn−Nτ

|2),(44)

where

C6 = max{4KL(1− θ)2, 2KL(1− θ)2(1 + 2κ2), 4KLθ
2, 2KLθ

2(1 + 2κ2)}.

By (44), we have

2E〈e(tn), R(tn)〉 = 2EE(〈e(tn), R(tn)〉|Ftn)

≤ 2E|E(〈e(tn), R(tn)〉|Ftn)|
= 2E|〈e(tn),E(R(tn)|Ftn)〉|
≤ 2(hE|e(tn)|2)

1
2 (h−1

E|E(R(tn)|Ftn)|2)
1
2

≤ hE|e(tn)|2 + h−1
E|E(R(tn)|Ftn)|2

≤ hE|e(tn)|2 + C6h(E|e(tn+1)|2 + E|e(tn)|2

+E|x(tn+1 − τ) − xn+1−Nτ
|2 + E|x(tn − τ)− xn−Nτ

|2)
≤ C7h(E|e(tn+1)|2 + E|e(tn)|2

+E|x(tn+1 − τ) − xn+1−Nτ
|2 + E|x(tn − τ)− xn−Nτ

|2),(45)

where C7 = 1 + C6. Inserting (42), (43) and (45) into (39) yields that

E|e(tn+1)|2 ≤ (C5 + C7)hE|e(tn+1)|2 + (1 + (1 + C5 + C7)h)E|e(tn)|2

+(C5 + C7)h(E|x(tn+1−τ)− xn+1−Nτ
|2 + E|x(tn−τ)− xn−Nτ

|2)
+2E|δh(tn)|2 + h−1

E|E(δh(tn)|Ftn)|2.(46)

Let mT = [T−t0
τ ] + 1, where [a] is the integer with a − 1 < [a] ≤ a. Now to treat

inequality (46) further, repeat the application of recursive form (41) until there is
some positive integer i such that tn+1 − iτ, tn − iτ ∈ [t0 − τ, t0]. Thus, we obtain

E|e(tn+1)|2 ≤ (C5 + C7)hE|e(tn+1)|2 + (1 + (1 + C5 + C7)h)E|e(tn)|2

+4(C5 + C7)h(1 + 2κ2 + . . .+ (2κ2)mT−1) max
0≤j≤n

E|e(tj)|2

+2E|δh(tn)|2 + h−1
E|E(δh(tn)|Ftn)|2,
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which yields that

(1− C8h)E|e(tn+1)|2 ≤ (1 + C9h)E|e(tn)|2 + C10h max
0≤j≤n

E|e(tj)|2

+2h
(

h− 1
2 (E|δh(tn)|2)

1
2 + h−1(E|E(δh(tn)|Ftn)|2)

1
2

)2

,(47)

where C8 = C5+C7, C9 = 1+C5+C7, C10 = 4(1+2κ2+ . . .+(2κ2)mT−1)(C5+C7).
Now, Theorem 3.1 implies that there exists a constant C11 such that

(48) 2h
(

h− 1
2 (E|δh(tn)|2)

1
2 + h−1(E|E(δh(tn)|Ftn)|2)

1
2

)2

≤ C11h
2.

For the y-component, define the total mean square errors

(49) Q0 := 0, Qk := max
0≤j≤k

E|e(tj)|2.

Let h0 < min{ 1
C8

, τ
2
}. Note that

(50)
1 + (C9 + C10)h

1− C8h
= 1 + C12h, if 0 < h =

τ

Nτ
< h0,

where C12 = (C8 + C9 + C10)/(1 − C8h0). It follows from (47), (48) and (50) that
the total mean square errors for the y-component satisfy the estimation

Qn+1 ≤ (1 + C12h)Qn + C13h
2 ≤ . . .

≤ C13h
2(1 + (1 + C12h) + . . .+ (1 + C12h)

n)

= C13h
(1 + C12h)

n+1 − 1

C12

≤ C13

eT−t0 − 1

C12

h,(51)

n = 1, . . . , N − 1, 0 < h =
τ

Nτ
< h0,

where C13 = C11/(1− C8h0). As a consequence, inequality (51) implies that

(52) max
0≤n≤N

‖y(tn)− yn‖L2
≤ C14h

1
2 , 0 < h =

τ

Nτ
< h0,

where C14 =
√

C13(eT−t0 − 1)/C12.
Furthermore, for the x-component, we can estimate the mean square errors by

E|x(tn)− xn|2 = E|y(tn) +D(x(tn − τ)) − yn −D(xn−Nτ
)|2

≤ E(|e(tn)|+ κ|x(tn − τ) − xn−Nτ
|)2

≤ E(|e(tn)|+ |x(tn − τ) − xn−Nτ
|)2

≤ E(|e(tn)|+ |e(tn−Nτ
)|+ |x(tn − 2τ)− xn−2Nτ

|)2

≤ . . .

≤ m2
T max

0≤j≤n
E|e(tj)|2,

which also gives the estimate

(53) max
0≤n≤N

‖x(tn)− xn‖L2
≤ C15h

1
2

with appropriate constant C15. Therefore, Theorem 3.2 is proved. �

4. Numerical example

The purpose of this section is to illustrate our theoretical estimates obtained in
Section 3 by a numerical experiment.



CONVERGENCE OF θ-METHODS FOR SDDES 211

Example 4.1. Consider the following nonlinear neutral stochastic differential delay
equations (SDDEs)

d[x(t)− 1

2
x(t−1)] = sin(x(t) + x(t−1))dt+ cos(x(t) − x(t−1))dW (t), t ∈ [0, 2]

x(t) = cos(t), t ∈ [−1, 0].(54)

It is easy to verify that SDDE (54) satisfies the conditions of Theorem 3.2.
Because it is difficult to find the analytic form of the exact solution x(t) of (54) (in
fact, it is not known to us so far), we need to solve (54) by stochastic θ-methods

yn+1 = yn + h
[

(1− θ) sin(yn +
3

2
xn−Nτ

) + θ sin(yn+1 +
3

2
xn+1−Nτ

)
]

+cos(yn − 1

2
xn−Nτ

)∆Wn; n = 0, 1, ..., N − 1,(55)

xn = yn +
1

2
xn−Nτ

; n = 0, 1, ..., N ; Nτ =
1

h

with a sufficiently small mesh size (here h = ∆t = 2−14) and identify their out-
comes as the ”exact solution” x(t) for the error-comparison. The error-analysis
below is based on a comparison to this ”exact solution” as a kind of ”reference
solution”. Note that, due to implicit algebraic equations at each step for θ 6= 0, we
implement the Newton-Raphson method to resolve locally these implicit relations.
For practical convenience, the Newton-Raphson iteration is carried out at least 5
times in order to establish a more practical stopping rule for the local iteration.

To illustrate the convergence of the θ-methods, 6000 sample trajectories are
simulated for the step size h = 16∆t, 32∆t, 64∆t, 128∆t, 256∆t, 512∆t. To con-
struct the confidence intervals for the absolute mean square errors ǫr = ǫ23+r∆t, r =
1, 2, 3, 4, 5, 6, we arrange the simulations into M = 60 batches of N = 100 simu-
lations each and estimate the variance of ǫ̂r in the following way. We denote by
x̃r
T,k,j the value of the kth generated trajectory of related numerical approximation

with h = 23+r∆t, r = 1, 2, 3, 4, 5, 6, in the jth batch at time T = 2 and by xT,k,j

the corresponding value of the ”exact solution” as the ”reference solution”.
The absolute mean square errors

ǫ̂rj =
1

N

N
∑

k=1

|xT,k,j − x̃r
T,k,j |2

of the M batches j = 1, 2, . . . ,M are independent and approximately Gaussian dis-
tributed for large N . We have arranged the errors into batches because we can use
the Student t-distribution to construct confidence intervals by a sum of independent
Gaussian or approximately Gaussian distributed random variables with unknown
variance. In particular, we estimate the mean of the batch averages

ǫ̂r =
1

M

M
∑

j=1

ǫ̂rj =
1

NM

M
∑

j=1

N
∑

k=1

|xT,k,j − x̃r
T,k,j |2

and use the formula

σ̂2
ǫr =

1

M − 1

M
∑

j=1

(ǫ̂rj − ǫ̂r)2

to estimate the variance σ̂2
ǫr of the batch averages. For the Student t-distribution

with M − 1 degrees of freedom an 100(1 − α)% confidence interval for ǫr has the
form

(ǫ̂r −∆ǫ̂r, ǫ̂r +∆ǫ̂r)
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with

∆ǫ̂r = t1−α,M−1

√

σ̂2
ǫr

M
,

where t1−α,M−1 is determined from the Student t-distribution with M − 1 degrees
of freedom. For M = 60 and α = 0.1 we have t1−α,M−1 ≈ 1.672. In this case
the absolute mean square error ǫr will lie in the corresponding confidence interval
(ǫ̂r −∆ǫ̂r, ǫ̂r +∆ǫ̂r) with probability 1− α = 0.9, r = 1, 2, 3, 4, 5, 6, all measured at
the fixed terminal time T = 2.

In Table 1, we list the absolute mean square errors and their 90% confidence
intervals for ǫ̂r = ǫ23+r∆t, r = 1, 2, 3, 4, 5, 6 and θ = 0, 0.5, 1.

Table 1. Absolute errors and 90% confidence intervals for SDDE (54) at
T = 2

θ = 0 θ = 0.5 θ = 1
r ǫ̂r ∆ǫ̂r ǫ̂r ∆ǫ̂r ǫ̂r ∆ǫ̂r

1 1.140e-4 5.533e-6 1.234e-4 9.138e-6 1.195e-4 8.411e-6
2 2.369e-4 1.223e-5 2.583e-4 2.529e-5 2.566e-4 1.524e-5
3 4.915e-4 3.617e-5 5.184e-4 4.144e-5 5.071e-4 3.254e-5
4 1.050e-3 8.306e-5 1.048e-3 7.274e-5 1.051e-3 7.616e-5
5 2.225e-3 1.371e-4 2.111e-3 1.378e-4 2.198e-3 1.578e-4
6 4.893e-3 2.725e-4 4.408e-3 3.192e-4 4.613e-3 3.077e-4

We clearly recognize that the errors and its confidence intervals get smaller with
decreasing step size (i.e. decreasing parameter r). So the predicted convergence of
θ-methods applied to problem (54) is empirically confirmed.

In Fig.1, we plot the results on log2 ǫh versus log2 h, where ǫh =
√
ǫ̂r, h =

23+r∆t, r = 1, 2, 3, 4, 5, 6. We note that all the curves in Fig.1 appear as straight
lines with slope 1. It clearly illustrates the stochastic θ-methods for problem (54)
is mean-square convergent with order 1

2
.
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