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A FINITE ELEMENT METHOD FOR ELASTICITY INTERFACE

PROBLEMS WITH LOCALLY MODIFIED TRIANGULATIONS

HUI XIE, ZHILIN LI, AND ZHONGHUA QIAO

Abstract. A finite element method for elasticity systems with discontinuities

in the coefficients and the flux across an arbitrary interface is proposed in this

paper. The method is based on a Cartesian mesh with local modifications

to the mesh. The total degrees of the freedom of the finite element method

remains the same as that of the Cartesian mesh. The local modifications lead

to a quasi-uniform body-fitted mesh from the original Cartesian mesh. The

standard finite element theory and implementation are applicable. Numerical

examples that involve discontinuous material coefficients and non-homogeneous

jump in the flux across the interface demonstrate the efficiency of the proposed

method.
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1. Introduction

In this paper, we propose a finite element method for plane elasticity problems
with interfaces in which the physical parameters and solutions may be discontinuous
across an arbitrary interface. Elasticity interface problems have wide applications
in continuum mechanics, particularly for problems that involve stresses and strains,
see for example, [4, 13, 20].

We first introduce the problem of our interest. Let x = (x, y) be a point in space
and u = (u1(x, y), u2(x, y)) be the displacement of a plate which is composed of
different materials. The relation between strains and displacements of the plate is
given by

(1) ε11 =
∂u1

∂x
, ε22 =

∂u2

∂y
, ε12 = ε21 =

1

2

(

∂u1

∂y
+

∂u2

∂x

)

.

Assuming that the material is linearly elastic and isotropic; and that the displace-
ments are small, we have the following relation between stresses and strains, or the
constitutive relation from the Hooke’s law,

(2) σij = λ (∇ · u) δij + 2µεij(u), i, j = 1, 2,
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where λ and µ are the Lamé coefficients, and

δij =

{

1, i = j,
0, i 6= j,

∇ · u =
∂u1

∂x
+

∂u2

∂y
.

Let σ = (σij) be the stress tensor, f(x) = (f1, f2) be the applied body forces,
then the stress tensor satisfies the following partial differential equations,

(3) −∇ · σ = f ,

i.e.,

(4)















−
∂σ11

∂x
−

∂σ12

∂y
= f1,

−
∂σ21

∂x
−

∂σ22

∂y
= f2.

From (2)-(4), we can re-write the above system as the system of plane elasticity
equations of the following,

(5)

−

{

(λ+ 2µ)
∂2u1

∂x2
+ (λ + µ)

∂2u2

∂x∂y
+ µ

∂2u1

∂y2

}

= f1,

−

{

(λ+ 2µ)
∂2u2

∂y2
+ (λ + µ)

∂2u1

∂x∂y
+ µ

∂2u2

∂x2

}

= f2.

In the vector form, it is

(6) −µ△u− (λ+ µ)∇ ∇ · u = f .

Note that, in practice, it is common to use the Young’s modulus E and Poisson’s
ratio ν instead of the Lamé coefficients λ and µ in the expression (2). The relations
between λ and µ, and E and ν, are given by

µ =
E

2(1 + ν)
,(7)

λ =
νE

(1 + ν)(1 − 2ν)
(plane strain), λ =

νE

1− ν2
(plane stress).(8)

We want to obtain the numerical solution of the elasticity system that has an
interface Γ in the solution domain. Across the interface Γ, the material coefficients
may have finite jumps; so does the flux σn, see Fig. 1 for an illustration. Now the
problem can be written as follows:

−∇ · σ = f in Ω+ ∪ Ω−(9)

[u]Γ = 0,(10)

[σn]Γ = q,(11)

u|∂Ω = u0,(12)

where f = (f1, f2), q = (q1, q2), u0 = (u01 , u02) are known vector functions, and
Γ ∈ C2 is a closed interface between the subdomains Ω+ and Ω−. The jump [ · ]Γ is
defined as the difference of the limiting values from the outside of the interface to
the inside, and n is the unit normal direction of the interface Γ pointing outward.
We refer the reader to [15, 16] for more information of the elasticity problems.

It is always challenging to solve the interface problems. Several different ap-
proaches have been developed based on different formulations. A common and
simple approach is to use a body-fitted mesh and a finite element method. This
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Figure 1. A rectangular domain Ω with an immersed interface Γ.

approach may be prohibitively expensive if the interface Γ is moving with time.
Many Cartesian grid methods have been developed recently to avoid the cost in
the grid generation. Among them, the finite difference method [18, 19], which is
second order accurate but the linear system of equations is not symmetric and
ill-conditioned for the case when ν is close to 1/2; the first order finite element
method [12] with modified basis functions, which requires homogeneous flux jump
condition; and the new second order conforming finite element methods [5, 6, 7],
which allow both the solution and the flux to have non-homogeneous jumps. But
these methods are somewhat complicated.

This paper is motivated by the locally modified triangulations proposed in [2,
17] for Poisson equations on irregular domains. The main contribution of this
paper is that we use such meshes to solve the elasticity problem with interfaces
using the Galerkin finite element method. We want to take advantage of Cartesian
meshes and the finite element method using body-fitted meshes. The Cartesian
meshes have several benefits over non-structured meshes. In the literature several
finite element methods have been proposed using Cartesian meshes for elasticity
interface problems. The non-conforming finite element method proposed in [11]
is simple and enforces the homogeneous jump condition but it is not fully second
order accurate because the basis functions are non-conforming. The conforming
finite element method proposed in [6, 11] is second order accurate but it is not
easy to implement as the basis functions have wider support in the neighborhood
of the interface. The finite element method proposed in this paper is an alternative
approach based on body-fitted meshes with modification to the Cartesian mesh only
in the neighborhood of the interface. Thus, the coefficient matrix is altered only
in the elements that are near the interface. This nature is fully taken into account
in developing an efficient algebraic solver in [9] using sparse subspace iterative
method. In [17], the finite element method using the locally modified mesh was
also compared with the finite element method based on a locally enriched mesh
in which the intersections between the grid lines and the interface are added as
additional nodal points. Both methods can lead to second order accurate solution
for elliptic interface problems. But the efficient iterative solver proposed in [9] in
general can not be applied for the locally enriched mesh because the structure of
the matrix has been changed. Other numerical simulations based on the locally
modified mesh can be found in [8, 10].
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The paper is organized as follows. In the next section, we discuss the weak
formulation. In Section 3, we discuss the most important part of our method: the
mesh generation. Numerical results are presented in Section 4. We conclude in
Section 5.

2. The weak formulation

First we apply the standard Galerkin finite element method [3, 21] to a homo-
geneous Dirichlet boundary value problem to derive the weak form. We multiply
both sides of the equation (9) by a test vector function v = (v1, v2), v1, v2 ∈ H1

0 (Ω)
and integrate over the domain Ω+ and Ω− to obtain

(13)

−

∫∫

Ω+

{(

∂σ11

∂x
+

∂σ12

∂y

)

v1 +

(

∂σ21

∂x
+

∂σ22

∂y

)

v2

}

dxdy

=

∫∫

Ω+

(f1v1 + f2v2)dxdy.

(14)

−

∫∫

Ω−

{(

∂σ11

∂x
+

∂σ12

∂y

)

v1 +

(

∂σ21

∂x
+

∂σ22

∂y

)

v2

}

dxdy

=

∫∫

Ω−

(f1v1 + f2v2)dxdy.

Then integrating each term by parts and rearranging on the above equations and
using v1|∂Ω = 0, v2|∂Ω = 0, we get

(15)

∫

Γ

{

(σ11n1 + σ12n2)v1 + (σ12n1 + σ22n2)v2

}

ds

+

∫∫

Ω+

{

σ11

∂v1
∂x

+ σ12

(

∂v2
∂x

+
∂v1
∂y

)

+ σ22

∂v2
∂y

}

dxdy

=

∫∫

Ω+

(f1v1 + f2v2)dxdy,

and

(16)

−

∫

Γ

{

(σ11n1 + σ12n2)v1 + (σ12n1 + σ22n2)v2

}

ds

+

∫∫

Ω−

{

σ11

∂v1
∂x

+ σ12

(

∂v2
∂x

+
∂v1
∂y

)

+ σ22

∂v2
∂y

}

dxdy

=

∫∫

Ω−

(f1v1 + f2v2)dxdy,

where n = (n1, n2) is the unit normal direction of the interface Γ pointing outward.
Adding (15) to (16), we obtain
(17)

∫

Γ

{

q1v1 + q2v2

}

ds+

∫∫

Ω

{

σ11

∂v1
∂x

+ σ12

(

∂v2
∂x

+
∂v1
∂y

)

+ σ22

∂v2
∂y

}

dxdy

=

∫∫

Ω

(f1v1 + f2v2)dxdy

using the fact that [u]Γ = 0 and [σn]Γ = q. Thus we have arrived at the weak form:

(18)

∫∫

Ω

{

σ11

∂v1
∂x

+ σ12

(

∂v2
∂x

+
∂v1
∂y

)

+ σ22

∂v2
∂y

}

dxdy

=

∫∫

Ω

(f1v1 + f2v2)dxdy −

∫

Γ

{q1v1 + q2v2} ds.
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The problem then is to find u ∈ H1(Ω)×H1(Ω) such that the weak form above is
true for all v ∈ H1

0 (Ω)×H1
0 (Ω).

3. The mesh generation processes

The generation of a body-fitted triangulation from a Cartesian grid is an essential
part of our algorithm. For completeness, we excerpt the mesh generation processes
from [17].

The idea of the locally modified mesh is to perturb the triangulation while keep-
ing the number of nodal points, or the degrees of the freedom, unchanged. The
procedure is described in some detail below:

Step 1 Generate a rectangular grid. We denote the grid points (xi, yj), 0 ≤ i ≤ M ,
0 ≤ j ≤ N . For simplicity, we assume the step sizes are the same in both
x and y direction. We denote the step size by h.

Step 2 Find the intersections of rectangular grid lines and the interface Γ. We call
them as interface points below. If the coordinates of an interface point lie
in (xi − h/2, xi + h/2]× (yj − h/2, yj + h/2], then we call such a grid point
(xi, yj) an irregular point. Otherwise a grid point is called a regular one.

We move each irregular point to a new location on the interface as a new
nodal point (replacing the original one). If there is only one interface point
associated with the irregular point, then we simply replace the irregular
point with the intersection as the new nodal point. If there are more than
one interface points associated with the grid point (xi, yj), we choose the
nearest intersection to the grid point as the new nodal point; see Fig. 2 for
an illustration.

P(i,j)B F

P3
P1

P2

C                             D                        P4  E

A                             H                            G

Figure 2. A typical irregular grid point P with coordinates
(xi, yj) and the geometry. There are two interface points P1, P2
lie in the inner domain (xi − h/2, xi + h/2]× (yj − h/2, yj + h/2].
So P is an irregular point. We will move P to its nearest interface
point. Here we move P to P2 since |PP2| < |PP1|, where |PP2|
is the distance between P and P2 and so on.

In Fig. 2, the irregular grid point is P , the interface points are P1 and
P2. Since P is closer to P2 than P1, we move P to P2 as a new nodal
point. In Fig. 2, points C,D, F,H,G, and likely point A (we assume it is
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for simplicity of the discussion), are regular grid points which means that
there is no need to move them. We move the point B to P3, and E to P4,
then we have four quadrilaterals around point P2; see Fig. 3.

B F

P3

P2

C                             D                        P4  E

A                             H                            G

P(i,j)

Figure 3. The geometry near a perturbed nodal point P2. We
assume points P, B, E are irregular points and they are replaced by
the new nodal points P2, P3, P4 respectively. After these pertur-
bations, there are four quadrilaterals around nodal point P2 which
may not be rectangles.

Step 3 Form the triangulation. The emphasis is how to generate triangles at ir-
regular grid points. Now we discuss how to generate the triangles after we
have moved irregular grid points to get new nodal points. We use Fig. 3
to illustrate the idea. Each of the quadrilaterals of the perturbed grid is
divided into two triangles along one of its diagonals. Let K be the number
of irregular points (perturbed nodal points) in a quadrilateral. We divide
the quadrilateral to triangles according to the following rules:

– If K = 0, then the quadrilateral is rectangular. We form the triangles
by connecting two vertices from the lower left corner to the upper right
corner.

– If K = 2 and the two irregular points are the opposite corners, then
we connect the irregular points; see, for example, P2 and P4 in Fig. 3.

– If K = 1, or K = 2 and the two irregular points are not the opposite
corners, then we connect the diagonal which gives better mesh quality.
In Fig. 3, we would connect P2 and C, P3 and H , H and F to form
the triangulation; see Fig. 4. Usually the criterion is to connect the
shorter diagonal.

– The cases K = 3 and K = 4 are special cases that are rarely happens
if the interface Γ is smooth and the mesh is fine enough. We omit this
discussion here but refer the readers to [2, 14] for the detail.

It has been proved in [2] that for Γ ∈ C2 this mesh generation algorithm leads to
a quasi-uniform triangulation, that is, for each triangle the ratio between the length
of the longest side and the length of the shortest side is bounded. Furthermore, the
accuracy of the approximation of the interface Γ is O(h2).
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F

P3

P2

A                             H                            G

C D P4

Figure 4. The triangulation near P2.

For the purpose of the illustration, in Fig. 5 we show a locally modified mesh.
In the next section, we will present the errors of the finite element solutions using
the locally modified mesh.

Figure 5. A locally modified mesh.

4. Numerical results

We present numerical experiments for the model problem (9)-(12) using the
proposed locally modified mesh method. We use the standard piecewise linear
Galerkin finite element method. Finite Element Program Generator (FEPG), see
[1], a free trial FE software downloaded from the Internet, is used to generate
the stiffness matrix and the load vector. We use the incomplete LU decomposition
(ILU) along with the conjugate gradient method to solve the resulting linear system
of equations.



196 H. XIE, Z. LI, AND Z. QIAO

Most of computations are done on an Intel Core 2 Duo 2.0GHz processor with
2GB of RAM notebook computer. For a 320×320 mesh, it takes about 0.2 seconds
to generate the mesh. Most of simulations are done within seconds.

We present some examples (Examples 1, 2) with known exact solutions so that
we can validate the computer codes and check the convergence rate. The interface
Γ is the circle x2+y2 = 1/4 within the computational domain Ω = (−1, 1)×(−1, 1).
For a 320× 320 mesh, it takes 53 seconds to solve the resulting linear system using
the ILU. In Example 3, we consider a more realistic problem with a non-convex
general interface. In this example, we do not have an analytic solution. It takes
about 3 minutes to solve the resulting linear system using the ILU.

Let ũ be the finite element solution obtained from our method and

ũ(x, y) =
∑

ij

Uijϕij(x, y)

where ϕij is the piecewise linear basis function centered at point (xi, yj). We define
e∞, e1 as the errors in L∞ and H1 norms, respectively, thus

(19) e∞ = max
i,j

|u(xi, yj)− Uij |,

(20) e1 =

√

∫

Ω

{

(u− ũ)2 + (ux − ũx)2 + (uy − ũy)2
}

dΩ.

We also scale e∞, e1 as follows to get the relative errors,

(21) r∞ =
e∞

max
i,j

|u(xi, yj)|
,

(22) r1 =
e1

max
i,j

|u(xi, yj)|
.

We will use this scaled error measurement only for Example 2.

Example 1. The first example is taken from [5]. The parameters are λ− = µ− = 1,
and λ+ = µ+ = 100. The body force term f = (f1, f2) and the Dirichlet boundary
condition u0 = (u01 , u02) are given from the exact solution u = (u1, u2):

u1 = u2 =







r2, r ≤ R;

r2

100
+ (1−

1

100
)R2, otherwise,

where R = 1
2
and r =

√

x2 + y2.

Note that the solution u is continuous across the interface r = 1/2 and [σn]|Γ = 0,
i.e., the exact solution satisfies the homogeneous jump conditions.

In Table 1 we show the result of a grid refinement analysis of the finite element
solutions using the locally modified meshes. In the table, the first column N is
the number of intervals in x and y directions; the second column is the error in
the maximum norm. The third column is the ratio of the two consecutive errors.
The ratio approaches number four for quadratic convergence and number two for
linear convergence. The fourth column is the error in the H1 norm. The other
columns in this table and other tables have the similar meanings. The finite element
methods are both roughly second order accurate in the maximum norm and first
order accurate in the H1 norm as expected.
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Table 1. A grid refinement analysis in the maximum and H1

norms of the finite element methods using the locally modified
meshes for Example 1.

N e∞ ratio e1 ratio
20 2.4271E-03 1.1957E-02
40 8.8263E-04 2.7498 4.4212E-03 2.7045
80 2.5543E-04 3.4555 1.7337E-03 2.5502
160 5.7255E-05 4.4613 6.3617E-04 2.7252
320 1.4157E-05 4.0443 2.2759E-04 2.7952

Example 2. We set λ− = µ− = 1 and λ+ = µ+ = b for some b > 0. And the
body force term f = (f1, f2) and the Dirichlet boundary condition u0 = (u01 , u02)
are derived from the exact solution u = (u1, u2):

u1 = u2 =











r2 + log(1 + r2), r ≤ R;

r2

b/2
+

(

1−
1

b/2

)

R2 +
log(1 + r2)

b
+

(

1−
1

b

)

log(1 +R2), otherwise.

where again R = 1
2
and r =

√

x2 + y2.

For any b, the solution u is continuous across the interface r = 1/2 and [σn]|Γ =
q = (q1, q2),

q1 =
2(3x2 + 2xy + y2)

√

x2 + y2
, q2 =

2(3y2 + 2xy + x2)
√

x2 + y2
.

In Table 2 we show the result of a grid refinement analysis of our method. We can
see once again that we have first order accuracy in the H1 norm, and second order
accuracy in L∞ norm as we would expect. The results also show that our method
can handle small or large jumps in the physical parameters and in the solution.
The convergence order is almost independent of the jumps in the coefficients for
the relative error. Note that the magnitude of the solution is getting larger as the
parameter b = λ+ = µ+ is getting smaller, or vice versa. Nevertheless, our method
can handle these situations very well.

Example 3. We consider a plate consist of two materials with a non-circle in-
terface in a state of plane strain. The interface is given by r = 0.5 + 0.2 sin θ in
polar coordinates. The plate is 2m× 2m with the bottom fixed and 1e7 N/m force
applied on the top, see Fig. 1. The Young’s modulus and Poisson’s ratio for the
inner and outer materials are E− = 1e9Pa, ν− = 0.3, and E+ = 1e10Pa, ν+ = 0.3
respectively. We wish to compute the displacement distribution of the plate.

The purpose of this example is to show that our method can handle complicated
geometry and large coefficients. Under the pressure, the plate will undergo a com-
pression in y-direction and will react by stretching in the x-direction in order to
reduce the change in the volume.

We set the origin at the center of the plate and use a 320× 320 mesh to do the
simulation. We use

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1 − 2ν)
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Table 2. A grid refinement analysis in the maximum and H1

norms of the finite element methods using the locally modified
meshes for Example 2 with different jump ratio.

λ+ = µ+ = 10

N r∞ ratio r1 ratio
20 3.7083E-3 2.3834E-2
40 1.4063E-3 2.6369 8.6210E-3 2.7646
80 4.1231E-4 3.4108 3.2720E-3 2.6348
160 9.2478E-5 4.4585 1.1867E-3 2.7573
320 2.3622E-5 3.9149 4.2083E-4 2.8198

λ+ = µ+ = 1000

N r∞ ratio r1 ratio
20 9.2119E-3 4.4262E-2
40 3.3598E-3 2.7418 1.6187E-2 2.7344
80 9.8181E-4 3.4220 6.2464E-3 2.5915
160 2.2333E-4 4.3962 2.2636E-3 2.7596
320 5.4229E-5 4.1183 8.0108E-4 2.8257

λ+ = µ+ = 0.1

N r∞ ratio r1 ratio
20 1.8451E-3 1.0097E-2
40 5.3678E-4 3.4373 3.6190E-3 2.7901
80 1.5390E-4 3.4878 1.3593E-3 2.6625
160 4.2369E-5 3.6324 4.1334E-4 3.2885
320 1.1251E-5 3.7658 1.4863E-4 2.7810

λ+ = µ+ = 0.001

N r∞ ratio r1 ratio
20 1.9727E-3 1.0169E-2
40 5.8714E-4 3.3598 3.6591E-3 2.7792
80 1.6904E-4 3.4734 1.3775E-3 2.6564
160 4.6768E-5 3.6144 4.1916E-4 3.2863
320 1.2460E-5 3.7535 1.5067E-4 2.7820

to compute the Lamé coefficients µ−, λ− and µ+, λ+ for this is a plane strain
problem.

In Fig. 7, we show the contour plot for the displacement distribution. The results
are symmetric along y-axis for x-component u of displacement and symmetric along
x-axis for y-component v of displacement. In Fig. 8, we show the position of the
original and deformed plate. Note that, the displacement is very small. To make
it visible, we have rescaled the displacement 50 times larger in the plot. The result
agrees with physical intuition and reasoning.

5. Conclusions

In this paper, we have proposed a finite element method for solving plane elas-
ticity problems with interfaces using locally modified meshes. The locally modified
mesh is easy to generate from a Cartesian grid in which some nodal points near
the interface are moved on the interface. It can be observed from our numerical
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Figure 6. A rectangular plate with a non-circle interface r =
0.5+0.2 sin θ. A uniform force is applied at the top of the boundary.

(a). (b).

Figure 7. Contour plots of the displacement distribution u =
(u, v). (a), the contour plot of u; (b), the contour plot of v.

Figure 8. The original and deformed plate. To make it visible,
we have rescaled the displacement 50 times larger in the plot.

experiments that the conforming finite element discretization based on this mesh
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leads to second order accurate solutions for plane elasticity problems with inter-
faces. With the adaptation the triangles are quasi-uniform and the mesh maintains
the Cartesian structure. Particularly the Cartesian structure is useful when storing
matrices and developing iterative solvers.
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