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Abstract. We consider the optimal H2 model reduction for large scale multi-

input multi-output systems via tangential interpolation. Specifically, we prove

that for general multi-input multi-output systems, the tangential interpolation-

based optimality conditions and the gramian-based optimality conditions are

equivalent. Based on the tangential interpolation, a fast algorithm is proposed

for the optimal H2 model reduction. Numerical examples are presented to

demonstrate the approximation accuracy and computational efficiency of the

proposed algorithm.
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1. Introduction

Model reduction is to approximate a high-order dynamic system by a low-order
one. It is a fundamental tool in reducing the computational complexity of control
and numerical simulation of large scale dynamical systems. It has been widely
used in many applications, such as the design of very large scale integration chips,
the simulation and control of microelectromechanical system devices and weather
predictions. For an overview of model reduction, we refer to [1]. See also [5, 23] for
more approximation problems related to control.

A commonly used method for model reduction constructs the reduced order sys-
tem via tangential interpolation [11]. Interpolation-based model reduction methods
produce reduced-order systems whose transfer function interpolates the transfer
function of the full-order system at selected interpolation points. This class of
methods is suitable for the reduction of large scale dynamical systems. However,
selection of optimal interpolation points remains a challenging issue.

In this paper, we study selection of interpolation points and tangential inter-
polation directions that can produce the optimal H2 reduced-order models. The
optimalH2 model reduction problem has been studied extensively, (see, for instance
[9, 10, 12, 14, 18, 21, 22] and the references cited therein). Most researchers used
first-order optimality conditions in constructing numerical algorithms. Because of
the popularity of interpolation-based model reduction methods, many authors con-
sider the problem of characterizing the optimality conditions via interpolation for
the optimal H2 model reduction. The optimality conditions for single-input single-
output (SISO) systems via interpolation were given in [12, 15]. For the multi-input
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multi-output (MIMO) systems with simple poles, the stationary conditions of the
cost function were characterized via interpolation in [9]. It was shown in [8] that the
stationary points of the cost function for MIMO systems (without the assumption
that they have only first-order poles), can be characterized via tangential interpo-
lation. In the literature, there is another kind of first-order optimality conditions
for the optimal H2 model reduction problem: the gramian-based conditions. The
Wilson conditions [20] and Hyland-Bernstein conditions [14] are gramian-based con-
ditions, which use gramians of the systems.

It is important to study the connections between the two different kinds of first-
order optimality conditions for better understanding existing algorithms and con-
structing new algorithms. In [12], the Wilson conditions and the Hyland-Bernstein
conditions were proved to be equivalent. Also in [12], the interpolation-based nec-
essary conditions for SISO systems with simple poles was proved to be equivalent to
the Wilson conditions and the Hyland-Bernstein conditions. For the discrete MIMO
dynamical system with simple poles, the equivalence between gramian-based con-
ditions and interpolation-based conditions was established in [6].

Interpolation-based algorithms for the optimal H2 model reduction were pro-
posed in [2, 3, 4, 12]. Algorithms were proposed in [3, 12] for SISO systems and
in [2, 4] for MIMO systems. Since all these algorithms were based on the assump-
tion that the target systems have simple poles, the ill-conditioned behavior can be
expected when the target systems has multiple poles or with nearly multiple poles
(cf. [8]).

In this paper, for general MIMO systems which are allowed to have multiple
poles, we prove that the tangential interpolation-based optimality conditions are
equivalent to the gramian-based optimality conditions. The proof of the equivalence
between first-order optimality conditions for SISO systems with simple poles in [12]
is based on the fact that the set of all proper rational functions with specified simple
poles constitute a subspace of H2. However, this is not the case when the transfer
functions have multiple poles. Furthermore, the transfer function of MIMO systems
is a rational matrix function, which will also increase the difficulties. In this paper,
we accomplish the proof by finding the relationship between the gradients of the
cost function and utilizing the partial expansion of the transfer function via Jordan
decomposition. Moreover, the equivalence of the first-order optimality conditions
leads to the proposed tangential interpolation-based minimization algorithm. The
proposed algorithm is based on solving two Sylvester equations, and then construct-
ing the reduced order system by projection. Since the proposed algorithm does not
assume that the target system has simple poles, it remains robust when the target
system has multiple poles. Unlike many of existing H2 model reduction methods,
the proposed algorithm is numerical efficient. As a result, it is suitable for very
large scale dynamical systems.

The paper is organized in six sections. In Section 2, we introduce the H2 optimal
model reduction problem and the first-order optimality conditions. In Section 3,
we prove the equivalence between the two first-order optimality conditions. We
propose in Section 4 a numerical algorithm based on tangential interpolation. In
Section 5, numerical examples are presented to demonstrate the efficiency of the
algorithm. Finally, we draw our conclusions.

2. Optimal H2 model reduction and first-order optimality conditions

In this section, we first describe the optimal H2 model reduction problem, and
then introduce two first-order optimality conditions: gramian-based conditions and
tangential interpolation-based conditions.
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Given matrices A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n, the linear time invariant
system can be described by

(2.1)

{
dx
dt

= Ax+Bu,

y = Cx,

where t ≥ 0 is the time variable, u ∈ Rp is the input, y ∈ Rq is the output and x ∈ Rn

is the state of the system. Here, n is the system order, p and q are the number of
system inputs and outputs, respectively. The triple (A,B,C) is called the system

realization. The transfer function of the system is defined byH(s) := C(sI−A)−1B,
s ∈ C. The transfer function H is called stable if the eigenvalues of A have strictly
negative real parts.

If the system order N is too big, it is not computationally efficient to solve
various control problems. We seek a reduced order system

(2.2)

{
dx̂
dt

= Âx̂+ B̂u,

ŷ = Ĉx̂,

to approximate the full order system, where Â ∈ Rm×m, B̂ ∈ Rm×p, Ĉ ∈ Rq×m.

The transfer function of the reduced order system is Ĥ(s) := Ĉ(sI − Â)−1B̂. The
dimension m satisfies m≪ n.

The error of the two transfer functions is defined by

(2.3) E(s) := H(s)− Ĥ(s), s ∈ C.

For a stable transfer function H , the square of the H2 norm is defined as the trace
of a matrix integral (cf. [24])

‖H‖22 =
1

2π

∫ +∞

−∞

trace{H(iω)∗H(iω)}dω,

where i =
√
−1 is the imaginary unit and H(iω)∗ is the conjugate transpose of the

matrix H(iω). The cost function is defined by

(2.4) J (Â, B̂, Ĉ) := ‖E‖22 = ‖C(sI −A)−1B − Ĉ(sI − Â)−1B̂‖22.
Given a stable system with system realization (A,B,C), the optimal H2 model

reduction is to find a small scale system with system realization (Â, B̂, Ĉ) which
minimizes the H2 norm of the error system

(2.5) min
Â∈Rm×m,B̂∈Rm×p,Ĉ∈Rq×m

J (Â, B̂, Ĉ).

To solve this problem, it is beneficial to have an explicit formula for J (Â, B̂, Ĉ).
Noting that the function E defined in (2.3) can be rewritten as

E(s) = Ce(sI −Ae)
−1Be, s ∈ C,

where

Ae :=

[
A

Â

]
, Be :=

[
B

B̂

]
, Ce =

[
C −Ĉ

]
,

(Ae, Be, Ce) is the system realization of the error system, whose transfer function
is E. The controllability gramian Pe and observability gramian Qe of the error
system can be obtained by solving the following Lyapunov equations,

AePe + PeA
T
e +BeB

T
e = 0,(2.6)

AT
e Qe +QeAe + CT

e Ce = 0.(2.7)
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Partition the controllability gramian Pe and observability gramian Qe, respectively,
into

Pe :=

[
P X

XT P̂

]
, Qe :=

[
Q Y

Y T Q̂

]
.

The Lyapunov equations (2.6) and (2.7) can be written as

PAT +AP +BBT = 0,(2.8)

ATQ+QA+ CTC = 0,(2.9)

P̂ ÂT + ÂP̂ + B̂B̂T = 0,(2.10)

ÂT Q̂+ Q̂Â+ ĈT Ĉ = 0,(2.11)

ATY + Y Â− CT Ĉ = 0,(2.12)

XTAT + ÂXT + B̂BT = 0.(2.13)

It is well-known (cf. [24]) that the cost function J can be expressed in terms of the
observability gramian Qe,

(2.14) J (Â, B̂, Ĉ) = trace
(
BT

e QeBe

)
= trace

(
BTQB + 2BTY B̂ + B̂T Q̂B̂

)
,

or equivalently in terms of controllability gramian Pe,

(2.15) J (Â, B̂, Ĉ) = trace
(
CePeC

T
e

)
= trace

(
CPCT − 2CXĈT + ĈP̂ ĈT

)
.

We describe the first-order optimality conditions in terms of the gradients of

J via Â, B̂ and Ĉ. The gradient of a real-valued function f(Z) of a real matrix
variable Z ∈ Rn1×n2 is the real matrix ∇Zf ∈ Rn1×n2 defined by

[∇Zf ]i,j =
∂

∂Zi,j

f(Z), i = 1, 2, . . . , n1, j = 1, 2, . . . , n2.

Starting from the characterizations (2.6)–(2.15), it is proved in [9, 20] that the
gradients ∇

Â
J , ∇

B̂
J and ∇

Ĉ
J of the cost function J , are given, respectively, by

(2.16) ∇
Â
J = 2(Q̂P̂ + Y TX), ∇

B̂
J = 2(Q̂B̂+ Y TB), ∇

Ĉ
J = 2(ĈP̂ −CX).

The first-order optimality conditions for the optimal H2 model reduction are then
given by

(2.17) ∇
Â
J = 0, ∇

B̂
J = 0 and ∇

Ĉ
J = 0,

that is,

Q̂P̂ + Y TX = 0, Q̂B̂ + Y TB = 0 and ĈP̂ − CX = 0.

The above conditions are called the Wilson conditions [20]. The Wilson conditions

are gramian-based conditions since they are related to gramians P̂ , Q̂, X and
Y . The Hyland-Bernstein conditions [14] are another gramian-based first-order
optimality conditions, which were shown to be equivalent to the Wilson conditions
(cf. [12]).

It was showed in [8] that the stationary point of the cost function J can also be
characterized by the tangential interpolation conditions for MIMO systems. In the
remaining part of this section, we will give a brief introduction of the tangential
interpolation-based optimality conditions proposed in [8].

We introduce the partial expansion of the transfer function via the Jordan canon-
ical form. For each i, let Si and T

∗
i be the matrices whose columns span the (com-

plex) left and right eigenspaces of the real matrix Â corresponding to the eigenvalue

λ̂i, respectively. The Jordan block Âi associated with the eigenvalue λ̂i is a ki × ki
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matrix whose entries are equal to λ̂i on the diagonal, equal to −1 on the superdiag-
onal, and equal to 0 elsewhere. Then we have

(2.18) ÂSi = SiÂi, Ĉi := ĈSi, T ∗
i Â = ÂiT

∗
i , B̂∗

i := T ∗
i B̂, T ∗

i Si = Iki
,

where Âi ∈ Cki×ki , B̂∗
i ∈ Cki×p, Ĉi ∈ Cq×ki . Accordingly, the transfer function Ĥ

has the following representation

(2.19) Ĥ(s) =

ℓ∑

i=1

Ĥi(s), Ĥi(s) := Ĉi(sI − Âi)
−1B̂∗

i .

When there are more than one Jordan blocks associated with the same eigenvalue

λ̂i, we associate matrices Si, Ti with each individual Jordan block Ai. For more
discussions about the partial expansion (2.19), see [8].

Next, we describe the characterization of the stationary points via tangential
interpolation. To this end, we define two vector functions

ψ
λ̂i
(s) :=

[
(s+ λ̂i)

ki−1 . . . (s+ λ̂i) 1
]
,

φ
λ̂i
(s) :=

[
1 (s+ λ̂i) . . . (s+ λ̂i)

ki−1
]T
, i = 1, 2, . . . , ℓ.

If the Taylor expansion of a rational matrix function R about the point λ can be
written as

R(s) =
∞∑

i=k

Ri(s− λ)i,

then we write R(s) = O(s − λ)k, where k ∈ Z and Ri are constant matrices.
Exploiting the Jordan canonical form, we obtain that

(2.20) −1

2
(∇

B̂
J )TSiφλ̂i

(s) = [HT (s)− ĤT (s)]Ĉiφλ̂i
(s) +O(s+ λ̂i)

ki ,

(2.21) −1

2
ψ
λ̂i
(s)T ∗

i (∇Ĉ
J )T = ψ

λ̂i
(s)B̂∗

i [H
T (s)− ĤT (s)] +O(s+ λ̂i)

ki .

Furthermore, if the cost function J satisfies the Wilson conditions, ∇
Â
J = 0,

∇
B̂
J = 0 and ∇

Ĉ
J = 0, then the following tangential interpolation-based opti-

mality conditions (cf. [8]) are satisfied for i = 1, 2, . . . , ℓ:

[HT (s)− ĤT (s)]ĉi(s) = O(s+ λ̂i)
ki ,(2.22)

b̂i(s)
∗[HT (s)− ĤT (s)] = O(s+ λ̂i)

ki ,(2.23)

b̂i(s)
∗[HT (s)− ĤT (s)]ĉi(s) = O(s+ λ̂i)

2ki ,(2.24)

where b̂∗i (s) := ψ
λ̂i
(s)B̂∗

i and ĉi(s) := Ĉiφλ̂i
(s).

The equivalence between the tangential interpolation-based optimality condi-
tions and the Wilson conditions will be proved in the next section.

3. Equivalence between the first-order optimality conditions

In this section, we will show that the tangential interpolation-based optimality
conditions are equivalent to the gramian-based conditions.

The following theorem shows that if the the transfer functions H and Ĥ satisfy
the optimal tangential interpolation conditions (2.22) and (2.23), then the cost
function J satisfies ∇

B̂
J = 0 and ∇

Ĉ
J = 0.
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Theorem 3.1. Suppose that −λ̂i, i = 1, 2, . . . , ℓ, are not a pole of H. If for all

λ̂i, i = 1, . . . , ℓ, the transfer functions H and Ĥ satisfy the conditions (2.22) and

(2.23), then the cost function J satisfies

(3.1) ∇
B̂
J = 0 and ∇

Ĉ
J = 0.

Proof. First, we show that ∇
B̂
J = 0. From equations (2.20) and (2.22), we have

that

(3.2) −1

2
(∇

B̂
J )TSiφλ̂i

(s) = O(s+ λ̂i)
ki , i = 1, 2, . . . , ℓ.

Differentiating both sides of equation (3.2), we obtain that

(∇
B̂
J )TSiφ

(α)

λ̂i

(−λ̂i) = 0, i = 1, 2, . . . , ℓ, α = 0, 1, . . . , ki − 1.

¿From the definition of φ
λ̂i
, it can be shown that φ

(α)

λ̂i

(−λ̂i) is nonzero only at its

(α+ 1)-th component, that is,

φ
(α)

λ̂i

(−λ̂i) = [0, . . . , α!, . . . , 0]T , i = 1, 2, . . . , ℓ, α = 0, 1, . . . , ki − 1.

It is easy to show that

(∇
B̂
J )TSi = 0, i = 1, 2, . . . , ℓ.

Denoting S := [S1, S2, . . . , Sℓ], we conclude that (∇B̂
J )TS = 0. From the definition

of Si, we know that Si are linear independent. This implies that S is a nonsingular
matrix. Then we conclude that the first equation of (3.1) holds. Likewise, we can
show the second equation of (3.1). �

The following lemma shows the relationship among ∇
Â
J , ∇

B̂
J and ∇

Ĉ
J . This

is important for derivation of the equivalence of the first-order optimality conditions.

Lemma 3.2. For all i, j = 1, 2, . . . , ℓ, there holds

(3.3) −ÂiT
∗
i (∇Â

J )TSj + T ∗
i (∇Â

J )TSjÂj = T ∗
i B̂(∇

B̂
J )TSj − T ∗

i (∇Ĉ
J )T ĈSj .

Proof. The proof of this lemma is based on exploiting the Jordan canonical form
and expressing for ∇

Â
J , ∇

B̂
J and ∇

B̂
J .

Recalling that ∇
B̂
J = 2(Q̂B̂ + Y TB), we find that

1

2
B̂(∇

B̂
J )T = B̂B̂T Q̂T + B̂BTY.

Combining this formula with (2.12) and (2.13) leads to

(3.4)
1

2
B̂(∇

B̂
J )T = −P̂ ÂT Q̂T − ÂP̂ Q̂T −XTATY − ÂXTY.

Likewise, we obtain that

(3.5)
1

2
(∇

Ĉ
J )T Ĉ = −P̂ ÂT Q̂T − P̂ Q̂T Â−XTATY −XTY Â.

Subtracting (3.4) from (3.5) yields that

(3.6)
1

2
B̂(∇

B̂
J )T − 1

2
(∇

Ĉ
J )T Ĉ = −ÂP̂ Q̂T − ÂXTY + P̂ Q̂Â+XTY Â.
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From the first and third formulas of (2.18), we have that

1

2
T ∗
i B̂(∇

B̂
J )TSj −

1

2
T ∗
i (∇Ĉ

J )T ĈSj

= −T ∗
i AP̂ Q̂Sj − T ∗

i ÂX
TY Sj + T ∗

i P̂ Q̂ÂSj + T ∗
i X

TY ÂSj

= −ÂiT
∗
i P̂ Q̂Sj − ÂiT

∗
i X

TY Sj + T ∗
i P̂ Q̂SjÂj + T ∗

i X
TY SjÂj

= −1

2
ÂiT

∗
i (∇Â

J )TSj +
1

2
T ∗
i (∇Â

J )TSjÂj .

The last step uses the fact that ∇
Â
J = 2(Q̂P̂ + Y TX). Finally, we conclude (3.3)

for all i, j = 1, 2, . . . , ℓ. �

The next lemma useful for deriving of the main theorem was established in [8].

Lemma 3.3. Let F be a k × k matrix whose entries are equal to λ̂i on the diag-

onal, equal to −1 on the superdiagonal, and equal to 0 elsewhere. If −λ is not an

eigenvalue of A, then the following statements hold:

(1) The solution of the matrix equation

ATY + Y F − CTL = 0,

with L :=
[
l0 l1 . . . lk−1

]
, is given by

Y =
[
(AT + λI)−1CT , . . . , (AT + λI)−kCT

]




l0 l1 . . . lk−1

l0
. . .

...

. . . l1
l0



,

(2) The solution of the matrix equation

X∗AT + FX∗ −R∗BT = 0

with R :=
[
rk−1 rk−2 . . . r0

]
, is given by

X∗ =




r∗0 r∗1 . . . r∗k−1

r∗0
. . .

...

. . . r∗1
r∗0







BT (AT + λI)−k

...

BT (AT + λI)−2

BT (AT + λI)−1


 .

The following is a main result of the paper. It points out that the equivalence
of the two optimality conditions.

Theorem 3.4. The Wilson conditions (2.17) are equivalent to the tangential interpolation-

based optimality conditions (2.22)–(2.24).

Proof. Since [8] has proved that theWilson conditions imply the tangential interpolation-
based optimality conditions, it remains to show the reverse. By Theorem 3.1, it
suffices to prove the first equation of (2.17). To this end, we show that

(3.7) T ∗(∇
Â
J )TS = 0,

where T = [T1, T2, . . . , Tℓ] and S = [S1, S2, . . . , Sℓ].
For notation convenience, for i, j = 1, 2, . . . , ℓ, we let Jij := T ∗

i (∇Â
J )TSj . We

first show that Jii = 0, i = 1, 2, . . . , ℓ. Conditions (2.22)–(2.24) can be expressed
in terms of the Taylor expansion of the error function. Let

E(s) :=

∞∑

j=0

Ei(s+ λ̂i)
j
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be the Taylor expansion of the functions E about the point −λ̂i. For k ≥ 1, using
the coefficient of the Taylor expansion of the error function, we define the following
Toeplitz matrix

ẼT
k :=



ET

k . . . ET
2k−1

...
. . .

...
ET

1 . . . ET
k


 .

Recalling that Ef+g−1 is the coefficient of the Taylor Expansion of error function
E, we have that

ET
f+g−1 = B̂T (ÂT + λ̂iI)

−f (ÂT + λ̂iI)
−gĈT −BT (AT + λ̂iI)

−f (AT + λ̂iI)
−gCT .

Define the matrices

Ψ
ki,λ̂i

:=




BT (AT + λ̂iI)
−ki

BT (AT + λ̂iI)
−ki+1

...

BT (AT + λ̂iI)
−1



, Ψ̂

ki,λ̂i
:=




B̂T (ÂT + λ̂iI)
−ki

B̂T (ÂT + λ̂iI)
−ki+1

...

B̂T (ÂT + λ̂iI)
−1



,

Φ
ki,λ̂i

:=
[
(AT + λ̂iI)

−1CT , . . . , (AT + λ̂iI)
−kiCT

]
,

Φ̂
ki,λ̂i

:=
[
(ÂT + λ̂iI)

−1ĈT , . . . , (ÂT + λ̂iI)
−kiĈT

]
.

Then we have the following identity

(3.8) ẼT
ki

= Ψ̂
ki,λ̂i

Φ̂
ki,λ̂i

−Ψ
ki,λ̂i

Φ
ki,λ̂i

.

On the other hand, let

ĉi(s) :=

ki∑

j=0

lj(s+ λ̂i)
j and b̂∗i (s) :=

ki∑

j=0

r∗j (s+ λ̂i)
j

be the Taylor expansions of the functions ĉi and b̂
∗
i about the point −λ̂i. For k ≥ 1,

we define the block upper triangular matrices

ET
k :=



ET

0 . . . ET
k−1

. . .
...
ET

0


 , Lk :=



l0 . . . lk−1

. . .
...
l0


 , R∗

k :=



r∗0 . . . r∗k−1

. . .
...
r∗0


 .

Then conditions (2.22), (2.23), (2.24) are respectively equivalent to

(3.9) ET
ki
Lki

= 0,

(3.10) R∗
ki
ET

ki
= 0,

(3.11) R∗
2ki

ET
2ki

L2ki
= 0.

Define Yi := Y Si, Q̂i := −Q̂Si, X
∗
i := −T ∗

i X
T , P̂ ∗

i := −T ∗
i P̂ . Using equa-

tion (2.16), we find that Jii = P̂ ∗
i Q̂i − X∗

i Yi. It is easy to see from Lemma 3.3
that

Jii = R∗
ki
Ψ̂

ki,λ̂i
Φ̂

ki,λ̂i
Lki

−R∗
ki
Ψ

ki,λ̂i
Φ

ki,λ̂i
Lki

.

Combining this formula with (3.8) leads to

(3.12) Jii = R∗
ki
ẼT

ki
Lki

.

Since the identities (3.9) and (3.10) hold, we observe that

R∗
2ki

ET
2ki

L2ki
=

[
0 R∗

ki
ẼT

ki
Lki

0 0

]
.
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From the identity (3.12), we have that

(3.13) R∗
2ki

ET
2ki

L2ki
=

[
0 Jii
0 0

]
.

Using the identity (3.11) and (3.13), we conclue that Jii = 0, i = 1, 2, . . . , ℓ. Simi-

larly, we can prove that Jij = 0 if λ̂i = λ̂j , for some i 6= j.

Next, we show that for the case λ̂i 6= λ̂j , we also have that Jij = 0, where i 6= j.
By Lemma 3.2, for any i, j = 1, 2, . . . , ℓ, the following identity holds

(3.14) −ÂiJij + JijÂj = T ∗
i B̂(∇

B̂
J )TSj − T ∗

i (∇Ĉ
J )T ĈSj .

Using the second and third formulas of (2.17), we observe that

(3.15) −ÂiJij + JijÂj = 0.

Since λ̂i 6= λ̂j , and by Lemma 3.3, we see that Jij = 0. This ensures that (3.7)
holds. Since T and S are nonsingular, we have that ∇

Â
J = 0. �

Because of the equivalence of the gramian-based Wilson conditions and the
Hyland-Bernstein conditions (cf. [12]), according to the last theorem, interpolation-
based conditions and the gramian-based conditions are equivalent for general multi-
input multi-output (MIMO) systems which may have multiple poles.

In the special case of first order poles, we have the following result.

Corollary 3.5. Suppose that for each i = 1, 2, . . . , ℓ, the size ki of Jordan block Âi

is equal to 1. Then the gradients of the cost function J satisfy (2.17) if and only

if for all λ̂i, i = 1, 2, . . . , n, the transfer functions H and Ĥ satisfy the following

tangential interpolation-based optimality conditions:

[HT (−λ̂i)− ĤT (−λ̂i)]ĉi = 0,

b̂∗i [H
T (−λ̂i)− ĤT (−λ̂i)] = 0,

b̂∗i
d

ds
[HT (s)− ĤT (s)]

∣∣∣
s=−λ̂i

ĉi = 0.

The special case consider in Corollary 3.5 with p = q = 1 and the eigenvalues of

Â being distinct corresponds to the equivalence proved in [12].
The equivalence of the tangential interpolation-based and the gramian-based

first-order optimality conditions leads to an iterated tangential interpolation algo-
rithm, which we will discuss in the next section.

4. Iterated tangential interpolation

In this section, we describe an effective numerical algorithm that generates a
reduced-order model satisfying the tangential interpolation-based optimality con-
ditions (2.22) – (2.24). This algorithm is based on solving two Sylvester equations,
and then constructing the reduced order system by projection.

We now describe the mathematical idea that leads to the algorithm. We recall
that in the optimal tangential interpolation conditions (2.22)–(2.24), the transfer

function Ĥ interpolates H at the mirror images of the poles of Ĥ with the tan-

gential interpolation directions determined by the columns of Ĉ and B̂T (cf. [8]).

Constructing the optimal tangential interpolation Ĥ requires knowing the poles

of Ĥ and its tangential interpolation directions which also depend on Ĥ. This is
a nonlinear problem. As a result, it requires an iterative scheme to solve it. In
the iterative scheme that we describe below, each iterative step requires solving
an interpolation problem. This interpolation problem can be described in terms of



OPTIMAL H2 MODEL REDUCTION VIA TANGENTIAL INTERPOLATION 183

the following Sylvester equations. For given matrices Σ ∈ Rm×m, L ∈ Rq×m and
R ∈ Rm×p, let U ∈ Rn×m and V ∈ Rn×m be the solutions of the equations

AV + V ΣT +BRT = 0,

ATU + UΣ + CTL = 0.

It is shown in [11] that construction of a reduced-order system by

(Ar , Br, Cr) = ((UTV )−1UTAV, (UTV )−1UTB,CV ),

assuming that UTV is non-singular, is equivalent to a tangential interpolation of
the transfer functions H and Hr at −σi, where σi are the eigenvalues of Σ, with
the left and right tangential interpolation directions determined by the columns of
L and R, respectively. The left and right interpolation condition pairs Σ, L and
Σ, R uniquely determine the reduced-order system (Ar, Br, Cr). This observation
will be used to construct the tangential interpolation at each iterative step.

We construct a iterative interpolation algorithm to solve the optimalH2 problem.
Suppose that for k = 0, 1, . . ., the system realization (Ak, Bk, Ck) of the reduced-
order system at the k-th step has been obtained. Next, we describe the construction
of the reduced-order system (Ak+1, Bk+1, Ck+1). Compute Xk and Yk by solving
the Sylvester equations

AXk +XkA
T
k +BBT

k = 0,(4.1)

ATYk + YkAk − CTCk = 0.(4.2)

Construct the projection matrices Wk+1 and Vk+1 by setting Wk+1 = Yk(X
T
k Yk)

−1

and Vk+1 = Xk. Construct the reduced order system via projection Ak+1 =
WT

k+1AVk+1, Bk+1 = WT
k+1B, Ck+1 = CVk+1. Specifically, we present the two-

sided iteration algorithm (TSIA) as follows.

Input: A stable linear time invariant system with system realization
(A,B,C), the size of the reduced order system m, iteration step N .

Output: Reduced model realization (Â, B̂, Ĉ).
Choose matrices W0, V0 ∈ Rn×m such that WT

0 V0 = I;1

Compute A0 =WT
0 AV0, B0 =WT

0 B and C0 = CV0, set k = 0;2

while k ≤ N − 1 do3

Compute Xk and Yk by solving the Sylvester equations (4.1) and (4.2);4

Compute Wk+1 = Yk(X
T
k Yk)

−1, Vk+1 = Xk;5

Compute Ak+1 =WT
k+1AVk+1, Bk+1 =WT

k+1B and Ck+1 = CVk+1;6

Set k = k + 1 ;7

end8

Set Â = AN , B̂ = BN , Ĉ = CN .9

Algorithm 1: Two-sided iteration algorithm (TSIA)

The above algorithm solves a tangential interpolation problem at each iterative
step. Since Xk and Yk are the solutions of Sylvester equations (4.1) and (4.2), the
left and right interpolation condition pairs Ak, Ck and Ak, Bk uniquely determine
the projected system (Ak+1, Bk+1, Ck+1) = (WT

k+1AVk+1,W
T
k+1B,CVk+1). The in-

terpolation points are −λi(Ak) which are the mirror images of eigenvalues of Ak.
The columns of Ck and Bk determine the left and right tangential interpolation
directions, respectively. Upon convergence, the tangential interpolation-based op-
timality conditions (2.22)–(2.24) will be satisfied.

We apply the above algorithm to many different large scale systems. Despite
its simplicity, the proposed algorithm works very effectively in all our numerical
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experiments. It converges within a few steps and produces stable reduced-order
systems.

In Algorithm 1, at each iterative step, we need to solve two Sylvester equations
(4.1) and (4.2) to compute Xk and Yk. Note that these equations are special type
of Sylvester equations

(4.3) AZ + ZÂ+M = 0,

where A is a n×n sparse matrix, Â ∈ Rm×m, M ∈ Rn×m and m≪ n. This special
kind Sylvester equation (4.3) can be solved efficiently by the method proposed in

[19]. The main idea of the algorithm is to first transform the small matrix Â into
a upper triangular matrix by computing the Schur decomposition, and then obtain
the solution by sequentially solving m sparse linear equations of the type

(4.4) (A− ηI)x = b, η 6∈ σ(A), b ∈ R
n,

where σ(A) denotes the set of all eigenvalues of A. For more details of the imple-
mentation, we refer to [19].

As we can see, the proposed algorithm TSIA does not require to solve any Lya-
punov equations. Note that many of the existing H2 model reduction methods
require to solve a series of large scale Lyapunov equations, which is a severe com-
putational challenge.

The following theorem shows that if the above algorithm TSIA converges, then
the transfer function of the reduced-order system satisfies the tangential interpolation-
based optimality conditions.

Theorem 4.1. Suppose that the algorithm TSIA converges,

(Â, B̂, Ĉ) = lim
k→∞

(Ak, Bk, Ck).

Let P̂ , Q̂, X and Y be the solutions of the equations (2.10)–(2.13), respectively. If

the transfer function Ĥ is stable and XTY is nonsingular, then the transfer function

Ĥ satisfies the tangential interpolation-based optimality conditions (2.22)–(2.24).

Proof. We first show that gradients of J with respect to Â, B̂ and Ĉ satisfy the
Wilson conditions. Then the proof is done by utilizing the equivalence between the
Wilson conditions and the tangential interpolation-based optimality conditions.

¿From equation (2.13), we find that

XTATY (XTY )−1 + Â+ B̂BTY (XTY )−1 = 0.

Since Â = (Y TX)−1Y TAX and B̂ = (Y TX)−1Y TB, we have that

ÂT + Â+ B̂B̂T = 0.

Combining this identity with the fact the Lyapunov equation (2.10) has one unique

solution (cf. [24]), we conclude that P̂ = I. Since Â and Ĉ satisfy equation (2.12)

and Ĉ = CX , it is easy to see that

ÂT (XTY ) + (XTY )Â− ĈT Ĉ = 0.

Combining this formula with equation (2.11) yields that

ÂT (XTY + Q̂) + (XTY + Q̂)Â = 0.

Since the solution of the above equation has one unique solution and Q̂ is symmetry,

we find that Y TX + Q̂ = 0. This identity with the fact that P̂ = I ensures that
the Wilson conditions are satisfied. �
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Next, we turn to analyzing the computational cost of the proposed algorithm
TSIA. The computational cost will be measured by the number of floating point
multiplications. Let N (A) denote the number of nonzero elements of A. Let N
denote the maximum number of iterations for the algorithm TSIA.

Theorem 4.2. Let (A,B,C) be the system realization of the full order system. If

there exists a solver which requires O(rn+N (A)) multiplications to solve the sparse

linear equation (4.4), where r is a fixed integer number, then the computational

complexity of the algorithm TSIA is O(N(nmr +mN (A))).

Proof. For k = 0, 1, . . ., at the k-th step of iterations, the main computational cost
of the algorithm TSIA comes from solving the Sylvester equation (4.1) and (4.2).
Most of the computational cost of solving (4.1) and (4.2) lies in solving the sparse
linear equations of type (4.4). Since solving the sparse linear equation (4.4) requires
O(rn + N (A)) multiplications by assumption, the computational cost for solving
(4.1) and (4.2) will be O(nmr+mN (A)). Therefore, for each iteration the algorithm
TSIA requires O(nmr +mN (A)) number of floating point multiplications. Since
the maximum number of iterations of the algorithm TSIA is N , we obtain the
desired overall computational complexity for the algorithm. �

We remark that the GMRES(r) algorithm proposed in [17] requiresO(rn+N (A))
floating point multiplications to solve the large sparse linear equation (4.4).

In most of practical cases, the order m of the reduced-order system is much
smaller than the order n of the full-order system, m≪ n. If the original full-order
system is sparse, the computational cost of the algorithm TSIA grows linearly as
the order of the full order system for fixed m.

5. Numerical examples

We present in this section numerical experiments to confirm the approximation
accuracy and computational efficiency of the algorithm introduced in Section 4. All
numerical programs are run by using Matlab 7.7.0 (R2008b), on a PC with a 3 GHz
processor and 4 GBytes of RAM.

5.1. CD player model. This is a model of a portable CD player (cf. [7]). It has
120 states, 2 inputs and 2 outputs, that is n = 120, p = 2 and q = 2. As illustrated
in [7], the Hankel singular values of this model do not decay rapidly. Hence this
model is relatively hard to reduce.

We compare the proposed algorithm TSIA with the balanced truncation. The
balanced truncation method (BT) in this paper uses the matlab library function
balancmr. Balanced truncation is well-known to give good approximations with
respect to the H2 and H∞ norm (cf. [12]). We reduce the original system to
the order m, which varies from 2 to 40. For each m, we compare the relative H2

error norm of the two algorithms. The relative H2 error is computed by using
‖H−Ĥ‖

2

‖H‖
2

. For the proposed algorithm TSIA, the initial projection matrix W0 and

V0 are constructed by the tangential interpolation algorithm proposed in [11]. We
try two different selections of initial interpolation points. The first one is a random
selection of m interpolation points with real parts in the interval [10−1, 103] and the
imaginary parts in the intervals [−5×103, 5×103]. To make this selection, it shows
in [7] that most of the mirror images of eigenvalues lies in the selected region. The
second one is a selection of the mirror images of the m eigenvalues corresponding to
largest residuals computed by the algorithm proposed in paper [16]. The relative
H2 error for eachm are shown in Figure 1. It shows that both initial point selection
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strategies work quite well. The large residual selection strategy gives better results
than the random selection and outperforms the balanced truncation for almost all
m. It is worth noting that the random selection strategy also gives satisfactory
results.
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Figure 1. Relative H2 error vs. order m
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Figure 2. Relative H2 error vs. the number of iterations

We investigate this example further by reporting the convergence curve form = 8
and m = 36 in Figure 2. At each step of the iteration, we compute the relative
H2 error and plot this error vs the number of iterations. We can see from Figure
2 that the relative H2 error decreases rapidly in both cases. The algorithm TSIA
converges globally after just a few steps.
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Table 1. Heat transfer problem . Comparison.

Relative error CPU time (s) (n,m)
BT 6.08× 10−3 49.6 (900, 3)
TSIA 4.03× 10−3 0.95

Relative error CPU time (s) (n,m)
BT 1.22× 10−2 251.3 (1600, 3)
TSIA 5.88× 10−3 1.6

Relative error CPU time (s) (n,m)
BT 1.17× 10−2 2895.8 (3600, 3)
TSIA 7.10× 10−3 3.7

Relative error CPU time (s) (n,m)
(estimate)

BT (25600, 3)
TSIA 3.51× 10−4 37.6

5.2. A semi-discretized heat transfer problem. This model is from discretiz-
ing the heat transfer equation (cf. [13, 21])

(5.1)
∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2

in the domain Ω = (0, 1)2, with u = u(t, x, y), (x, y) ∈ Ω, t ∈ [0,∞), (cf. [13]). The
differential equation (5.1) is discretized by finite differences using a uniform grid

with d×d grid points. The resulting stiffness matrix A ∈ Rd2×d2

is a sparse matrix
with bandwidth d. The system order is n = d2. Let b1 ∈ Rn be a vector with each
entry equal to 1 and b2 ∈ Rn be a random vector. Let B = [b1, b2] and C = BT .
The resulting system with system realization (A,B,C) has 2 inputs and 2 outputs,
that is, p = 2, q = 2.

We compare the proposed algorithm TSIA with the balanced truncation algo-
rithm (BT). The numerical results are presented in Table 1. The CPU time is the
total computing time for each algorithm measured in seconds. In the last column, n
is the order of the full-order system and m is the order of the reduced-order system.

It can be seen from Table 1 that the proposed algorithm TSIA spends much less
computing time than the balanced truncation, and obtains better results. More-
over, the computational time for the proposed algorithm TSIA grows linearly, while
that for the balanced truncation grows cubically. In the case n = 25600, the bal-
anced truncation method fails to compute the reduced system because of the large
computational costs.

6. Conclusion

In this paper, we consider the optimal H2 model reduction for large scale MIMO
via tangential interpolation. We prove that the tangential interpolation-based op-
timality conditions are equivalent to the gramian-based optimality conditions for
MIMO systems with multiple poles. Furthermore, based on the tangential interpo-
lation, we propose a numerical algorithm which is numerically effective and suitable
for large scale MIMO systems. Numerical examples are presented to demonstrate
the efficiency of the proposed algorithm and its outperformance over the existing
algorithms.



188 Y. XU AND T. ZENG

References

[1] A. C. Antoulas, Approximation of Large-scale Dynamical Systems, Adv. Des. Control 6,
SIAM, Philadelphia, 2005.

[2] A. C. Antoulas, C. A. Beattie and S. Gugercin, Interpolatory model reduction of large-scale

dynamical systems, In Efficient Modeling and Control of Large-Scale Systems (Ed. J. Mo-
hammadpour and K. Grigoriadis), Springer-Verlag, 2009.

[3] C. Beattie and S. Gugercin, Krylov-based minimization for optimal H2 model reduction,
Proc. 46th IEEE Decision and Control (CDC 2007), p. 4385-4390, 2007.

[4] C. Beattie and S. Gugercin, A trust region method for optimal H2 model reduction, Proc.
48th IEEE Conf. Decision and Control (CDC 2009) , p. 5370-5375, 2009.

[5] A. Bultheel and B. D. Moor, Rational approximation in linear systems and control, J. Com-
put. Appl. Math., 121 (2000), 355-378.
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