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Abstract. In this paper, we propose a domain decomposition method with La-

grange multipliers for three-dimensional linear elasticity, based on geometrically

non-conforming subdomain partitions. Some appropriate multiplier spaces are

presented to deal with the geometrically non-conforming partitions, resulting

in a discrete saddle-point system. An augmented technique is introduced, such

that the resulting new saddle-point system can be solved by the existing it-

erative methods. Two simple inexact preconditioners are constructed for the

saddle-point system, one for the displacement variable, and the other for the

Schur complement associated with the multiplier variable. It is shown that the

global preconditioned system has a nearly optimal condition number, which is

independent of the large variations of the material parameters across the local

interfaces.
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1. Introduction

In recent years, there has been a fast growing interest in the domain decom-
position methods (DDMs) with Lagrange multipliers, which were studied early in
[6], [7], and [22]. Such DDMs have many advantages over the traditional DDMs in
applications (cf. [1], [5], [21]). In this paper, we will develop a domain decompo-
sition method with Lagrange multipliers to solve compressible elasticity problems
in three dimensions. We consider certain geometrically non-conforming subdomain
partitions with meshes that are nonmatching across the subdomain interfaces.

The Lagrange multiplier DDM has been developed as a non-conforming dis-
cretization method, such that the resulting approximation possesses the optimal
accuracy, see [4], [20], [26]. For this purpose, the jumps of the solutions across the
subdomain interfaces would be orthogonal to a certain Lagrange multiplier space,
which should be appropriately chosen. This weak continuity condition leads to a
saddle-point system for the displacement variable and the multiplier variable. It is
known that the displacement variable corresponds to a singular problem on each
floating subdomain. There exist many techniques to deal with such singularity,
for example, the FETI-type methods [7, 8, 9, 19], regularized method [12] and
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augmented method [15]. After handling the singularity, we can eliminate the dis-
placement variable to build an interface equation, or solve the saddle-point system
directly by some preconditioned iterative methods.

A domain decomposition with Lagrange multipliers for solving linear elastic-
ity problems in two dimensions was introduced in [19], in which inexact solvers
were considered. A recent work on mortar discretization with geometrically non-
conforming partitions for solving linear elasticity problems is a FETI-DP algorithm
designed in [18]. To resolve the singularity associated with the displacement vari-
able, a certain set of primal constraints was selected in [18] from the subdomain
faces by some rules. After building the saddle-point system, Schur complement
system was first got by eliminating the interior displacement variables in every
subdomain, then an interface equation of the Lagrange multiplier was obtained by
eliminating the primal constraint unknowns. Similar to other FETI-DP algorithms,
a Neumann-Dirichlet preconditioner was constructed for the interface equation.

In the present paper, we study DDM with Lagrange multipliers for solving three-
dimensional linear elasticity problems with jump coefficients. As in [15] (for Laplace
equations), we propose a special augmented method to handle the singularity of the
floating subdomains without introducing any additional constraints. But, we here
introduce a different augmented term from the one considered in [15], since the
original augmented term seems inefficient to elasticity problems. Since no inter-
face equation needs to be built in the method, inexact solvers can be applied to
both the primal operator and the Schur complement operator. For our method,
we design a small coarse problem with the degree of freedoms equaling six times
the number of the floating subdomains. We notice that the elasticity operator is
spectrally equivalent to Laplace operator in every subdomain, then any existing
preconditioner for the vector Laplace operator can be used directly as an inexact
solver for the underlying operator. We show that the global preconditioned system
has a nearly optimal condition number, which is independent of the large variations
of the material parameters across the local interfaces.

The outline of the reminder of the paper is as follows. We introduce a new aug-
mented saddle-point problem in section 2. In section 3, we construct two precon-
ditioners for the saddle-point system and give a convergence of the preconditioned
system. The main results of the paper will be shown in section 4. In section 5, we
describe a class of cheap local solvers. Finally, we report some numerical results in
section 6.

2. Linear elasticity and domain decomposition

In this section, we introduce a variational problem arising from the displacement
formulation of compressible linear elasticity, and describe a discretization based on
geometrically non-conforming domain decompositions.

2.1. The model problem. The unknown in the equations of linear elasticity
is the displacement of a linear elastic material under the actions of external and
internal forces. We denote the elastic body by Ω ⊂ R

3, and its boundary by ∂Ω.
We assume that one part of the boundary Γ0, is clamped, i.e. with homogeneous
Dirichlet boundary conditions, and that the rest, Γ1 := ∂Ω\Γ0, is subject to a
surface force g, i.e. a natural boundary condition. We can also introduce an
internal volume force f, e.g. gravity. The differential formulation is as follows (i=1,
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2, 3):

(2.1)























−
3
∑

j=1

∂σij

∂xj
(u) = fi in Ω,

u = 0 on Γ0,
3
∑

j=1

σij(u)(n̂j) = gi on Γ1.

The subspace H1
Γ0
(Ω) ⊂ H1(Ω) is the set of functions having the zero trace

on Γ0. We introduce the vector valued Sobolev spaces [H1
Γ0
(Ω)]3 and [H1(Ω)]3,

equipped with the usual product norm as follows:

‖ u ‖1,Ω:= (| u |2H1(Ω) + ‖ u ‖2L2(Ω))
1/2

with ‖ u ‖2L2(Ω):=
∫

Ω | u |2 dx and | u |2H1(Ω):=‖ ∇u ‖2L2(Ω).

The linear elasticity problem is: find the displacement u ∈ [H1
Γ0
(Ω)]3 of the

elastic body Ω, such that
(2.2)

∫

Ω

G(x) ε(u) : ε(v)dx +

∫

Ω

G(x)β(x) divu divvdx = 〈F,v〉 ∀v ∈ [H1
Γ0
(Ω)]3.

Here, G(x) = E(x)/(1+ν(x)), β(x) = 1/(1−2ν(x)) are material parameters which
depend on the Young’s modulus E(x) > 0 and the Poisson ratio ν(x) ∈ (0, 1/2]. We
assume that ν(x) is bounded away from 1/2, excluding the case of incompressible
elasticity problem. Then, we have β(x) = O(1). The linearized strain tensor is
defined by

εij(u) :=
1

2
(
∂ui
∂xj

+
∂uj
∂xi

), i, j = 1, 2, 3.

The tensor product and the force term are given by

ε(u) : ε(v) :=

3
∑

i,j=1

εij(u)εij(v), 〈F,v〉 :=
3

∑

i=1

∫

Ω

fividx+

3
∑

i=1

∫

Γ1

gividσ.

The associated bilinear form of linear elasticity is

a(u,v) =

∫

Ω

G(x) ε(u) : ε(v)dx +

∫

Ω

G(x)β(x) divu divvdx, u,v ∈ [H1
Γ0
(Ω)]3.

Let A : [H1
Γ0
(Ω)]3 → [H1

Γ0
(Ω)]3 be the operator defined by

(2.3) (Au,v) = a(u,v), u ∈ [H1
Γ0
(Ω)]3, ∀v ∈ [H1

Γ0
(Ω)]3.

It is obvious that the bilinear form a(·, ·) is continuous with respect to
‖ · ‖1,Ω. The ellipticity of the bilinear form can be established by the following
Korn’s first inequality.

Lemma 2.1. Let Ω ⊂ R
3 be a Lipschitz domain. Then there exists a positive

constant c = c(Ω,Γ0), such that
∫

Ω

ε(u) : ε(u)dx ≥ c|u|2H1(Ω), ∀u ∈ [H1
Γ0
(Ω)]3.

And the problem (2.2) possesses a unique solution u ∈ [H1
Γ0
(Ω)]3.
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2.2. The discrete problem based on domain decomposition. Since we only
consider compressible elastic materials, it follows from Lemma 2.1 that the bilinear
form a(·, ·) is uniformly elliptic. We can therefore successfully discretize the system
(2.2) with low-order, conforming finite elements.

From the Korn’s inequalities, we notice that the operator A defined in (2.3) is
spectrally equivalent to Laplace operator. The ratio of the two spectrally equiv-
alent constants depends on the variations of the material parameters G(x) and
β(x). When the parameters G(x) and β(x) have large variations in the domain
Ω, the ratio is large, and we can not use a preconditioner for Laplace operator
to precondition the global operator A. In that case, we should adopt the geo-
metrically non-conforming subdomain partitions, such that the ratio of the two
spectrally equivalent constants is not large in each subdomain. Then, we can use a
preconditioner for Laplace operator to precondition the local operator of A in each
subdomain.

Let the domain Ω be decomposed into the union of non-overlapping polyhedral
subdomains Ω1, · · · ,ΩN . Let dk denote the size of the subdomain Ωk. The union
of the subdomain boundaries is defined by

Γ = (

N
⋃

k=1

∂Ωk)\∂Ω.

As usual, we assume that each Ωk is a polyhedron, and make a quasi-uniform and
regular triangulation Thk

on Ωk, with hk denoting the mesh size. The grids may not
match across the subdomain interfaces. Let Vh(Ωk) denote the linear finite element
space associated with Thk

. Define

Vh(∂Ωk) = Vh(Ωk)|∂Ωk
and Vh(Ω) =

N
∏

k=1

Vh(Ωk).

We denote the interface of two subdomains Ωi and Ωj by Fij , that can be only
part of a face of Ωi and Ωj . Among the subdomain faces, we select multiplier faces
Γl such that

(2.4)
⋃

l

Γ̄l =
⋃

ij

F̄ij , Γl ∩ Γk = ∅, l 6= k.

Here, each Γl is a full face of a subdomain. In order to understand the definition of
the multiplier faces more clearly, we give a figure (Figure 1) to explain the definition
for the case in two dimensions. In Figure 1, the subdomain partition is geometrically
non-conforming, and the dotted lines denote the multiplier edges which satisfy the
condition (2.4), and each multiplier edge Γl is a full edge of a subdomain.

Since a multiplier face Γl ⊂ ∂Ωi may intersect several subdomain boundaries
∂Ωj, we should use the restriction of some triangulation Thi on Γl to generate the
local multiplier space on Γl. For example, in Figure 1, the multiplier edge Γl ⊂ ∂Ω2

intersects the subdomain boundaries ∂Ω4 and ∂Ω5, then we choose the restriction
of the triangulation Th2

on Γl to generate the local multiplier space on Γl.
For a multiplier face Γl, let Ωil denotes one of the subdomains such that Γl

is a full edge (or face) of Ωil . We define Wh(Γl) as the vector version of the
mortar multiplier space or the dual multiplier space for elliptic problems in three
dimensions. These ”elliptic” multiplier spaces were defined in [4] and [20] for the
case of tetrahedra elements, and were defined, for the case of hexahedra elements,
as the tensor product of two one-dimensional multiplier spaces introduced in [5] and
[26]. As pointed out just before, we require that the multiplier space is associated
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Figure 2.1. a geometrically non-conforming subdomain partition
in two dimensions

with the triangulation Thil
. Define the global multiplier space

Wh(Γ) =
∏

Γl⊂Γ

Wh(Γl).

Let Ql : L2(Γl) −→ Wh(Γl) be the orthogonal projection with respect to the
L2-inner product on Γl. For v ∈ V (Ω), set v|Ωk

= vk. Define

(2.5) Ṽh(Ω) = {v ∈ Vh(Ω) : Ql(vi|Γl
− vj |Γl

) = 0 for each Γl ⊂ Γ}.

Note that we do not require Ṽh(Ω) ⊂ [H1(Ω)]3.
Define the local bilinear form

Ak(u,v) =

∫

Ωk

G(x) ε(u) : ε(v)dx +

∫

Ωk

G(x)β(x) divu divvdx,

u,v ∈ [H1(Ωk)]
3.

The discrete problem of (2.2) is the following: find uh ∈ Ṽh(Ω) such that

(2.6)

N
∑

k=1

Ak(u
k
h,v

k
h) = (F,vh), ∀vh ∈ Ṽh(Ω).

Here, uk
h is the restriction of uh in Ωk. As in the case of elliptic problems, we can

verify the existence and the uniqueness of the solution of (2.6), and can derive the
optimal energy error estimate of the approximate solution (refer to [10]).

2.3. Augmented saddle-point systems. We will transform (2.6) into a stan-
dard saddle-point problem.

Let Ak : Vh(Ωk) −→ Vh(Ωk) be the local operator defined by

(Aku
k
h,v

k
h)Ωk

= Ak(u
k
h,v

k
h), uk

h ∈ Vh(Ωk), ∀vk
h ∈ Vh(Ωk).

We define the operator Bk : Vh(Ωk) −→Wh(Γ) as follows:

(Bku
k
h)|Γl

=

{

σlQl(u
k
h|Γl

), Γl ⊂ ∂Ωk,
0, Γl 6⊂ ∂Ωk.

where σl is the sign function, σl = 1 for the multiplier faces, and σl = −1 for the
other faces.

Define the operators A : Vh(Ω) −→ Vh(Ω) and B : Vh(Ω) −→ Wh(Γ) by

A|Vh(Ωk) = Ak
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and

Bvh =

N
∑

k=1

Bkv
k
h, vh ∈ Vh(Ω),

respectively.
Let 〈·, ·〉 denote the L2-inner product on Γ, and let Bt :Wh(Γ) −→ Vh(Ω) denote

the adjoint of B, which satisfies

〈Btµh,vh〉 = 〈µh, Bvh〉 ∀µh ∈Wh(Γ), vh ∈ Vh(Ω).

It is easy to see that the space Ṽh(Ω) can be written as

Ṽh(Ω) = {vh ∈ Vh(Ω) : Bvh = 0}.

Then (2.6) is equivalent to the following saddle-point problem: find (uh, λh) ∈
Vh(Ω)×Wh(Γ) such that

(2.7)

{

Auh +Btλh = F,
Buh = 0.

Here, the unknown λh is called the Lagrange multiplier for the constraint Buh = 0.
Although the operator A is defined locally, the system (2.7) cannot be solved in

the standard way. The main difficulty is that each local operator Ak corresponding
to some interior subdomain Ωk is singular on Vh(Ωk), so the global operator A
is also singular on Vh(Ω). To resolve the singularity, we introduce an augmented
method, which has been discussed in [15] for the case of elliptic problems, but the
situation here is quite different.

Let r be a positive number. The classical augmented multiplier framework can
be written as

(2.8)

{

(A+ rBtB)uh +Btλh = F,
Buh = 0,

which has the same solution with (2.7). The material parameters G(x) and β(x)
may have large jumps across the interface Γ. To avoid the influence of the jumps,
we consider another augmented Lagrange multiplier formulation instead of (2.8).

Without loss of generality, we assume that

G(x) = Gk (const.) and β(x) = βk (const.), ∀x ∈ Ωk.

For each multiplier face Γl, set

αl = min
∂Ωk∩Γl 6=∅

Gk.

We define the operator B̄k : Vh(Ωk) →Wh(Γ) by

(B̄ku
k
h)|Γl

=

{

σlα
1

2

l Ql(u
k
h|Γl

), Γl ⊂ ∂Ωk,
0, Γl 6⊂ ∂Ωk.

and the operator B̄ : Vh(Ω) →Wh(Γ)

B̄vh =
N
∑

k=1

B̄kv
k
h, vh ∈ Vh(Ω).

It is easy to see that B̄vh = 0 if and only if Bvh = 0. Thus, the system (2.7) has
the same solution with the weighted saddle-point problem

(2.9)

{

(A+ rB̄tB̄)uh +Btλh = F,
Buh = 0.
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Note that the operator A+ rB̄tB̄ is also symmetric and positive definite on Vh(Ω).
For the case of elliptic problems, we can simply choose r = d−1 with d denotes the
size of the subdomains (see [15]). However, this choice will not give the desired
equivalent results for the elasticity problems.

Let M : Wh(Γ) → Wh(Γ) be a symmetric and positive definite operator, which
will be defined exactly in the following section. We introduce a new saddle-point
problem (compare [17])

(2.10)

{

(A+ B̄tM−1B̄)uh +Btλh = F,
Buh = 0.

Define A∗ = A + B̄tM−1B̄. Since the operator A∗ is not yet block diagonal, it
is not practical to eliminate directly the variable uh in (2.10). Fortunately, many
iterative methods have been developed for solving saddle-point problems such as
(2.10), for example, the inexact Uzawa-type methods (see [3]), the preconditioned
CG method based on a positive definite reformulation (see [2]). The efficiency of
these iterative methods strongly depend on two preconditioners Ā and S̄ which are
spectrally equivalent to A∗ and to Schur complement S̃ = BĀ−1Bt, respectively.

3. The construction of the preconditioners

This section is devoted to the construction of the preconditioners Ā and S̄.
For convenience, we will follow [27] to adopt the notations <∼,

>
∼ and =

∼ in the

subsequent analysis of this work. x1 <
∼ y1, x2 >

∼ y2 and x3 =
∼ y3 mean that

x1 ≤ C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C2x3 for some constants C1, c2, c3 and C3

that are independent of dk, hk and possible large jumps of the coefficients G(x) and
β(x) across the interface Γ.

3.1. A preconditioner for A∗. Define the local solver Āk : Vh(Ωk) −→ Vh(Ωk)
by

(3.1)
(Ākv,w)Ωk

= Gk[(∇v,∇w)Ωk
+ d−2

k (v,w)Ωk
],

v ∈ Vh(Ωk), ∀w ∈ Vh(Ωk).

In some applications, one may be more interested in an inexact solver for Āk. Let
Âk be a symmetric and positive definite operator on Vh(Ωk), such that

(3.2) (Ākv,v)Ωk
<
∼ (Âkv,v)Ωk

≤ γk(Ākv,v)Ωk

for any v ∈ Vh(Ωk). Define Â : Vh(Ω) → Vh(Ω) by Â|Vh(Ωk) = Âk for each k,

and set Ŝ = B̄Â−1B̄t. For each multiplier face Γl, let Il : Wh(Γ) −→ Wh(Γl)
denote the natural restriction operator, and let Itl : Wh(Γl) −→ Wh(Γ) denote
the zero extension operator, which is just the adjoint of Il. For ϕ ∈ Wh(Γ), set
ϕl = ϕ|Γl

= Ilϕ. Define M : Wh(Γ) →Wh(Γ) such that

〈Mφ,ψ〉 =∼

∑

Γl

〈ŜItl φl, I
t
lψl〉, φ ∈ Wh(Γ), ∀ψ ∈Wh(Γ).

To handle the nonlocal operator B̄tM−1B̄ in A∗, we need to introduce a coarse
solver. Set V0 = ker(A), note that V0 is spanned by the rigid body motions, i.e.,
three translations and three rotations in each subdomain. The natural choice of
the coarse solver is the restriction of A∗ on V0. Define the coarse solver A0 by

(3.3) (A0v0,v0) = (A∗v0,v0) = 〈M−1B̄v0, B̄v0〉, ∀v0 ∈ V0.
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Theorem 3.1. Let Q0 : Vh(Ω) −→ V0 denote the L2- orthogonal projector. Define

Ā−1 = Â−1 +A−1
0 Q0, then

(3.4) cond(Ā−1A∗) <∼ γ̂.

where γ̂ = max
1≤k≤N

γk.

Remark 3.1. The inexact solver Âk can be chosen as any preconditioner for
Laplace-type operator Āk. The implementation of such inexact local solver is much
cheaper than that of the exact local solver corresponding to Āk.

3.2. A preconditioner for Schur complement. Define S = B(A∗)−1Bt and

S̃ = BĀ−1Bt. In the following, we construct a preconditioner for Schur complement
S̃ or S.

We first define a discrete dual norm ‖ · ‖−∗,Γl
on a multiplier face Γl, and give

some assumptions.
For a multiplier face Γl, let Ωil be the subdomain satisfying Γl ⊂ ∂Ωil (see

Subsection 2.2), and let Ωjl denote any other subdomain with its boundary inter-
secting Γl. Throughout this paper, we define Vi(Γl) = Vh(∂Ωil)|Γl

, and Vj(Γl) =
V (∂Ωjl)|Γl

. As before, we assume that the local multiplier space Wh(Γl) is asso-
ciated with the local trace space Vi(Γl). Then, the space Wh(Γl) has the same
dimension with V 0

i (Γl), where V
0
i (Γl) = Vi(Γl) ∩H1

0 (Γl).

Let ‖ · ‖1/2,Γ0

l
denotes the norm on the space H

1/2
00 (Γl) (namely, the norm ‖

· ‖
H

1/2
00

(Γl)
defined in [27]). Define the discrete dual norm ‖ · ‖−∗,Γl

by

‖ µh ‖−∗,Γl
= sup

vh∈V 0

i (Γl)

〈µh,vh〉Γl

‖ vh ‖ 1

2
,Γ0

l

, µh ∈Wh(Γl).

For a multiplier face Γl, let Λl be a symmetric and positive definite operator
defined on Wh(Γl). We assume that Λl has the following spectral equivalence with
the norm ‖ · ‖−∗,Γl

(3.5) 〈Λlφl, φl〉Γl
=
∼ α−1

l ‖ φl ‖
2
−∗,Γl

, ∀φl ∈Wh(Γl).

Now we define the preconditioner S̄ by

S̄−1 =
∑

Γl

ItlΛl
−1Il.

In section 5, we will derive the concrete form of the local solvers Λl
−1.

For ease of notation, set Φ( dh ) = max
1≤k≤N

[1 + log(dk/hk)]
2.

Theorem 3.2. For the preconditioner S̄, we have

(3.6) cond(S̄−1S̃) <∼ Cγ̂Φ(
d

h
)

and

(3.7) cond(S̄−1S) <∼ CΦ(
d

h
),

where the constant C in (3.6) and (3.7) is independent of the large variations of the
coefficients across the local interfaces Γl.

4. Analysis

This section is devoted to prove the results given in the last section.



164 X. CHEN AND Q. HU

4.1. The proof of Theorem 3.1. To prove Theorem 3.1, we need several Lem-
mas.

We will use repeatedly weighted norms on subdomains Ωk. For ease of notation,

let Ω̂ ⊂ Ω denote a generic subdomain with the “size” d̂. Define the weighted norm

‖v‖1,Ω̂ = (|v|2
1,Ω̂

+ d̂−2‖v‖2
0,Ω̂

)
1

2 , v ∈ [H1(Ω̂)]3.

The following result can be derived by Korn’s second inequality (cf., [23]) and
the standard scaling argument.

Lemma 4.1. There exists a positive constant c such that
∫

Ω̂

ε(u) : ε(u) + d̂−2 ‖ u ‖2
0,Ω̂

≥ c ‖ u ‖2
1,Ω̂
, ∀u ∈ [H1(Ω̂)]3.

We can now derive a Korn’s inequality on the space

{u ∈ [H1(Ω̂)]3 : u ⊥ ker(ε)}.

The null space ker(ε) is the space of rigid body motions. In three dimensions, the
corresponding space is spanned by three translations

r1 :=





1
0
0



 , r2 :=





0
1
0



 , r3 :=





0
0
1



 ,

and three rotations

r4 :=





0
x3
−x2



 , r5 :=





−x3
0
x1



 , r6 :=





x2
−x1
0



 .

Define norms

‖v‖E1,Ω̂
:= ‖ε(v)‖2

0,Ω̂
+ d̂−2‖v‖2

0,Ω̂
, v ∈ [H1(Ω̂)]3

and

‖v‖E2,Ω̂
:= ‖ε(v)‖2

0,Ω̂
+ d̂−2

6
∑

i=1

|

∫

Ω̂

(ri)
tvdx|2, v ∈ [H1(Ω̂)]3.

The following result can be found in [19] and Nećas [24]

Lemma 4.2. There exist constants 0 < c ≤ C <∞, such that

c ‖ u ‖E1,Ω̂
≤‖ u ‖E2,Ω̂

≤ C ‖ u ‖E1,Ω̂
, ∀u ∈ [H1(Ω)]3.

We obviously have

(4.1) ‖ ε(u) ‖0,Ω̂≤‖ ∇u ‖0,Ω̂, ∀u ∈ [H1(Ω)]3.

Using (4.1), Lemma 4.1 and Lemma 4.2, we obtain

Lemma 4.3. There exist constants 0 < c ≤ C <∞, such that

c ‖ ∇u ‖0,Ω̂≤‖ ε(u) ‖0,Ω̂≤ C ‖ ∇u ‖0,Ω̂, ∀u ∈ [H1(Ω̂)]3,u ⊥ ker(ε).

Lemma 4.4. The following inequality holds:

(4.2) (B̄tM−1B̄vh,vh) <∼ (Âvh,vh), ∀vh ∈ Vh(Ω).
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PROOF. It is clear that

(B̄tM−1B̄vh,vh) = (Â− 1

2 B̄tM−1B̄vh, Â
1

2vh)

≤ ‖Â− 1

2 B̄tM−1B̄vh‖0,Ω · ‖Â
1

2vh‖0,Ω.(4.3)

It suffices to estimate ‖Â− 1

2 B̄tM−1B̄vh‖0,Ω. In fact, we have

‖Â− 1

2 B̄tM−1B̄vh‖
2
0,Ω = (B̄Â−1B̄t(M−1B̄vh),M

−1B̄vh)

= (Ŝ(M−1B̄vh),M
−1B̄vh).(4.4)

Set φ =M−1B̄vh. Then, φ =
∑

Γl

Itl φl with φl = φ|Γl
. Therefore,

(Ŝ(M−1B̄vh),M
−1B̄vh) = (Ŝ(

∑

Γl

Itl φl),
∑

Γl

Itl φl) <∼

∑

Γl

(ŜItl φl, I
t
l φl).

By the definition of M , we further deduce

(Ŝ(M−1B̄vh),M
−1B̄vh) <∼ (Mφ,φ) = (B̄tM−1B̄vh,vh).

Plugging this in (4.4) leads to

‖Â− 1

2 B̄tM−1B̄vh‖
2
0,Ω

<
∼ (B̄tM−1B̄vh,vh).

Combining the above inequality with (4.3) yields

(B̄tM−1B̄vh,vh)
1

2 <
∼ ‖Â

1

2vh‖0,Ω,

which gives (4.2).

Proof of Theorem 3.1. The inequality (3.4) can be derived by

γ̂−1(vh, A
∗vh) <∼ ((Â−1 +A−1

0 Q0)A
∗vh, A

∗vh) <∼ (vh, A
∗vh), ∀vh ∈ Vh(Ω).

Consider the space decomposition Vh(Ω) = V0 + V̄ , with V0 = ker(A) and V̄ ⊂
Vh(Ω). By the abstract Schwarz theory, we need only to prove that

(a) for any ϕ0 ∈ V0 and ϕ̄ ∈ V̄ , we have

(4.5) (A∗(ϕ0 + ϕ̄), ϕ0 + ϕ̄) <∼ (A0ϕ0, ϕ0) + (Âϕ̄, ϕ̄);

(b) for any vh ∈ Vh(Ω), there is a decomposition vh = v0 + v̄ with v0 ∈ V0 and
v̄ ∈ V̄ such that

(4.6) (A0v0,v0) + (Âv̄, v̄) <∼ γ̂(A∗vh,vh).

We first consider (a). By the triangle inequality and (3.3), we deduce

(4.7)

(A∗(ϕ0 + ϕ̄), ϕ0 + ϕ̄) ≤ 2[(A∗ϕ0, ϕ0) + (A∗ϕ̄, ϕ̄)]
<
∼ (A0ϕ0, ϕ0) + (Aϕ̄, ϕ̄)

+ (B̄tM−1B̄ϕ̄, ϕ̄).

From the definitions of A and Āk, we have

(Aϕ̄, ϕ̄) =

∫

Ω

G(x) ε(ϕ̄) : ε(ϕ̄)dx+

∫

Ω

G(x)β(x)|div ϕ̄|2dx

<
∼

N
∑

k=1

Gk‖ϕ̄‖
2
1,Ωk

<
∼

N
∑

k=1

(Āk(ϕ̄|Ωk
), ϕ̄|Ωk

)Ωk
.
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Here, we have used the assumption βk = O(1). Then, it follows from (3.2) that

(Aϕ̄, ϕ̄) <∼

N
∑

k=1

(Âk(ϕ̄|Ωk
), ϕ̄|Ωk

)Ωk
= (Âϕ̄, ϕ̄).

Substituting this inequality into (4.7) and using (4.2) yield (4.5).
Now, we consider (b). For vh ∈ Vh(Ω), define v0 ∈ V0 as follows: for the interior

subdomains Ωk, define v0|Ωk
∈ ker(Ak) by (vh − v0, ri)Ωk

= 0 (i = 1, 2, · · ·, 6);
otherwise, v0|Ωk

= 0. In other words, v0 is just the L2 projection of vh into the
null space V0. Moreover, we define v̄ = vh − v0. Then, we have v̄⊥ker(ε) and
vh = v0 + v̄. At first, we prove

(4.8) (Âv̄, v̄) <∼ γ̂(A∗vh,vh), v̄ = vh − v0.

For convenience, set v̄|Ωk
= v̄k and vh|Ωk

= vk. Then, we get by (3.2) and Lemma
4.1 (or Lemma 4.3)

(4.9)
(Âv̄, v̄) =

∑N
k=1(Âkv̄k, v̄k)Ωk

≤
∑N

k=1 γk(Ākv̄k, v̄k)Ωk

<
∼

∑N
k=1 γkGk(‖ε(v̄k)‖20,Ωk

+ d−2
k ‖v̄k‖20,Ωk

).

For the interior subdomains Ωk, we have by Lemma 4.2 and the definition of v0

(4.10)

‖ε(v̄k)‖20,Ωk
+ d−2

k ‖v̄k‖20,Ωk
<
∼ ‖ε(v̄k)‖20,Ωk

+ d−2
k

6
∑

i=1

(v̄k, ri)
2
0,Ωk

= ‖ε(vk − v0|Ωk
)‖20,Ωk

+ d−2
k

6
∑

i=1

(vk − v0|Ωk
, ri)

2
Ωk

= ‖ ε(vk) ‖20,Ωk
≤ (Akvk,vk).

For the subdomains Ωk closing ∂Ω, we have v̄k = vk = 0 on ∂Ωk ∩ ∂Ω. By
Friedrich’s inequality and Lemma 2.1, we deduce

(4.11)
‖ε(v̄k)‖20,Ωk

+ d−2
k ‖v̄k‖20,Ωk

= ‖ε(vk)‖20,Ωk
+ d−2

k ‖vk‖20,Ωk

<
∼ ‖ε(vk)‖20,Ωk

≤ (Akvk,vk).

Substituting (4.10) and (4.11) into (4.9), yields (4.8).
On the other hand, we have

(4.12)
(A0v0,v0) =

∼ (A∗v0,v0) = (A∗(vh − v̄),vh − v̄)

≤ 2[(A∗vh,vh) + (A∗v̄, v̄)].

It follows from (4.2) and (4.8) that

(A∗v̄, v̄) <∼ (Âv̄, v̄) <∼ γ̂(A∗vh,vh).

Substituting the above inequality into (4.12) yields

(A0v0,v0) <∼ γ̂(A∗vh,vh).

This, together with (4.8), gives (4.6).

4.2. The proof of Theorem 3.2. In this subsection we prove Theorem 3.2. The
proof is similar to that of Theorem 3.2 in [15]. But, for reader’s convenience, we
still give the outline of the proof. We consider only the inequality (3.6), since the
inequality (3.7) can be proved in the same way. To prove (3.6), we need some
auxiliary results.

Consider the natural space decomposition Wh(Γ) =
∑

Γl
ItlWh(Γl). The follow-

ing result can be derived by Theorem 2.1 of [13]. This result can be regarded as a
variant of the abstract Schwarz theory.
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Lemma 4.5. Assume that the following conditions are satisfied:
(i) for each µh ∈Wh(Γ), we have

(4.13)
∑

Γl

〈ΛlIlµh, Ilµh〉Γl
<
∼ C1γ̂〈S̃µh, µh〉;

(ii) for any φl ∈Wh(Γl), we have

(4.14) 〈S̃(
∑

Γl

Itl φl),
∑

Γl

Itl φl〉 <∼ C2Φ(
d

h
)
∑

Γl

〈Λlφl, φl〉Γl
.

Then the inequality (3.6) holds with C <
∼ C1C2.

The above Lemma gives a convenient way to estimate the condition number of
the preconditioned Schur complement. To estimate the constants C1 and C2 in
Lemma 4.5, we need to study carefully a discrete dual norm on the local boundary
∂Ωk(k = 1, 2, ..., N).

Define

Wh(∂Ωk) = {φh|∂Ωk
: φh ∈Wh(Γ)}.

Let ‖ · ‖−∗,∂Ωk
be the discrete dual norm defined by

‖µh‖−∗,∂Ωk
= sup

vh∈Vh(∂Ωk)

〈µh,vh〉∂Ωk

‖vh‖ 1

2
,∂Ωk

, µh ∈Wh(∂Ωk)

with

‖vh‖ 1

2
,∂Ωk

= (|vh|
2
1

2
,∂Ωk

+ d−1
k ‖vh‖

2
0,∂Ωk

)
1

2 .

For ease of notation, we define ±µh ∈ Wh(Γ) for µh ∈Wh(Γ) as follows:

(±µh)|Γl
= σl(µh|Γl

), for each Γl ⊂ Γ.

Let Āk be the local solver defined in (3.2). Define the operator Rk : Wh(Γ) →
Vh(Ωk) by Rk = Ā−1

k Bt
k. The following result can be derived as in Lemma 4.3 of

[15]

Lemma 4.6. For any index k, we have
(4.15)
G−1

k ‖ ± µh‖
2
−∗,∂Ωk

<
∼ (ĀkRkµh, Rkµh)Ωk

<
∼ G−1

k ‖ ± µh‖
2
−∗,∂Ωk

∀µh ∈ Wh(Γ).

In the following we give several extension results of the discrete dual norm ‖ ·
‖−∗,∂Ωk

, which will be used when estimating the constant C2. For a multiplier face
Γl, we always use Ωil to denote the subdomain which contains Γl as a full face, and
use Vi(Γl) to denote the trace space defining Wh(Γl) (see Subsection 3.2 for the
details).

It is known that the local multiplier space Wh(Γl) satisfies the inverse estimate
and the approximation property (i.e., H1 and H3 in [15]). By these, we can prove
the following two results as in [15].

Lemma 4.7. For each Γl ⊂ Γ, we have

(4.16) sup
vh∈Vi(Γl)

〈µl,vh〉Γl

‖vh‖ 1

2
,Γl

<
∼ [1 + log(dil/hil)]‖µl‖−∗,Γl

, ∀µl ∈Wh(Γl).

Lemma 4.8. For each Γl ⊂ Γ, we have

(4.17) ‖Itlµl‖−∗,∂Ωj
<
∼ [1 + log(dil/hil)]‖µl‖−∗,Γl

, ∀µl ∈Wh(Γl).

Here, Ωj is any subdomain (including Ωil) that intersects Γl.
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The following lemma is a direct consequence of the following relations:

Itl (V
0
i (Γl)) ⊂ Vh(∂Ωil)) and I

t
l (V

0
j (Γl)) ⊂ V (∂Ωj)).

Lemma 4.9. For each face Γl ⊂ Γ we have

(4.18) ‖µh‖−∗,Γl
<
∼ ‖ ± µh‖−∗,∂Ωil

, ∀µh ∈Wh(Γ)

and

(4.19) sup
vh∈V 0

j (Γl)

〈µh,vh〉Γl

‖vh‖ 1

2
,Γ0

l

<
∼ ‖ ± µh‖−∗,∂Ωj , ∀µh ∈ W (Γ).

For ease of notation, define S0 = BA−1
0 Q0B

t.

Lemma 4.10. For µh ∈Wh(Γ), define µl = Ilµh ∈ Wh(Γl). Then

(4.20) 〈S0µh, µh〉 <∼ Φ(
d

h
)
∑

Γl

〈Λlµl, µl〉Γl
.

PROOF. Define u0 = A−1
0 Q0B

tµh(∈ V0). Then

(4.21)
〈S0µh, µh〉 = 〈Bu0, µh〉 = (Q0B

tµh,u0)
= (A0u0,u0) =∼ (B̄tM−1B̄u0,u0).

From the definitions of B and B̄, we know that

(B̄u0)|Γl
= α

1

2

l (Bu0)|Γl

using the relation above and Lemma 4.7, we have

(M−1B̄u0, B̄u0) =∼ 〈µh, Bu0〉 =
∑

Γl

α
− 1

2

l 〈µh, B̄u0〉0,Γl

<
∼

∑

Γl

sup
vh∈Vi(Γl)

|〈µl,vh〉Γl
|

‖vh‖ 1

2
,Γl

· α
− 1

2

l ‖B̄u0‖ 1

2
,Γl

<
∼ Φ

1

2 (
d

h
)(
∑

Γl

α−1
l ‖µl‖

2
−∗,Γl

)
1

2 · (
∑

Γl

‖B̄u0‖
2
1

2
,Γl

)
1

2

By the definitions of M , the restriction M |Wh(Γl) is spectrally equivalent to the
vector version of Sij in [11] (with Γij = Γl). Then, as in Theorem 3.1 of [11], we
can verify that

〈M−1φh, φh〉 =∼

∑

Γl

‖φh‖
2
1

2
,Γl
, ∀φh ∈ Wh(Γ).

Then, we have
∑

Γl

‖ B̄u0 ‖21
2
,Γl

=
∼ (M−1B̄u0, B̄u0).

Thus, we get by (3.5)

(M−1B̄u0, B̄u0) <
∼ Φ(

d

h
)
∑

Γl

α−1
l ‖µl‖

2
−∗,Γl

<
∼ Φ(

d

h
)
∑

Γl

〈Λlµl, µl〉Γl
.

Proof of Theorem 3.2. By Lemma 4.5, we need only to estimate the constants C1

and C2 in (4.13) and (4.14).
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It is easy to see that

(4.22)

〈S̃µh, µh〉 =
N
∑

k=1

〈BkÂ
−1
k Bt

kµh, µh〉∂Ωk
+ 〈BA−1

0 Q0B
tµh, µh〉

=
∼

N
∑

k=1

〈Ā−1
k Bt

kµh, B
t
kµh〉Ωk

+ 〈S0µh, µh〉

=
N
∑

k=1

(ĀkRkµh, Rkµh)Ωk
+ 〈S0µh, µh〉.

We first estimate the constant C1.
By (3.5), Lemma 4.9 and Lemma 4.6, we have

〈ΛlIlµh, Ilµh〉Γl
<
∼ α−1

l ‖Ilµh‖
2
−∗,Γl

<
∼ α−1

l ‖ ± Ilµh‖
2
−∗,∂Ωil

<
∼ α−1

l Gil(ĀilRilµh, Rilµh)Ωil
.

Summing over Γl to the above inequality and using (4.22) yield (4.13) with C1 <∼
max
Γl

(Gil/αl).

We next estimate the constant C2. For ease of notation, define φ =
∑

Γl
Itl φl.

Then, from (4.22), we have

(4.23)

〈S̃(
∑

Γl

Itl φl),
∑

Γl

Itl φl〉 = 〈S̃φ, φ〉

=
∼

N
∑

k=1

(ĀkRkφ,Rkφ)Ωk
+ 〈S0φ, φ〉.

It follows from Lemma 4.6 that

(ĀkRkφ,Rkφ)Ωk
<
∼ G−1

k ‖ ± φ‖2−∗,∂Ωk

<
∼ G−1

k

∑

Γl⊂∂Ωk

‖ ± Itl (φ|Γl
)‖2−∗,∂Ωk

.

Substituting the above inequality into (4.23) and noting that φ|Γl
= φl yield

〈S̃(
∑

Γl

Itl φl),
∑

Γl

Itl φl〉 <∼ 〈S0φ, φ〉

+

N
∑

k=1

∑

Γl⊂∂Ωk

G−1
k ‖Itlφl‖

2
−∗,∂Ωk

.

We notice that G−1
k ≤ α−1

l for Γl ⊂ ∂Ωk. Then, the above inequality, together with
Lemma 4.8, leads to

(4.24) 〈S̃(
∑

Γl

Itl φl),
∑

Γl

Itl φl〉 <∼ 〈S0φ, φ〉 +Φ(
d

h
)
∑

Γl

α−1
l ‖φl‖

2
−∗,Γl

.

Furthermore, Lemma 4.10 and (3.5) yield (4.14) with C2 <∼ 1.

5. Implementations

In this section, we describe the matrix form of the preconditioner Ā, and give
the definition of the local interface operator Λl.
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5.1. On the preconditioner Ā. The preconditioner Ā defined in section 3 has
the form Ā−1 = Â−1+A−1

0 Q0. In the following, we will discuss the implementation
of Ā−1.

We first explain the matrix form of the operator Â−1. From (3.2), the local

operator Âk can be chosen as a preconditioner of Laplace-type operator Āk defined
by (3.1). Let Âk be the matrix form of Âk, i.e., a preconditioner for the stiffness

matrix of Āk. Then, the matrix form Â of Â is block-diagonal

Â = diag(Â1 Â2 · · · ÂN ).

The action of Â can be implemented in parallel.

Let A∗,A0, B̄
t, B̄,M, Ŝ denote the matrix forms of the operators A∗, A0, B̄

t,
B̄,M and Ŝ, respectively. By the definition, the coarse solver A0 is just the natural
restriction of A∗ on the null space V0. Let Ct : Vh(Ω) → V0 be the transformation
matrix, which has non-zero elements only in floating subdomains, and C denotes
its adjoint matrix. Then, the matrix A0 can be written as

A0 = CtA∗C = CtB̄M−1B̄tC.

By the definition of M , M is the block-diagonal matrix

M = diag(M1 M2 · · ·ML),

where L denotes the number of the multiplier faces Γl, and Ml(l = 1, 2, ..., L) is a

preconditioner for the l-th diagonal block of Ŝ = B̄Â−1B̄t. Then,

M−1 = diag(M−1
1 M−1

2 · · ·M−1
L ).

A simple choice of M−1
l is to define M−1

l as the matrix expression of Λ−1
l (see the

next subsection).
It is clear that the transformation matrix C is a block-diagonal matrix. Besides,

the matrix B̄ possesses a block and sparse structure. Then, coarse solver A0, which
is only related to the floating subdomains, is a low order and sparse matrix. The
action of A−1

0 can be implemented in a cheap manner.

5.2. On the preconditioner of Schur complement. It is clear that the pre-
conditioner S̄ is determined by the local solvers Λl (Γl ⊂ Γ), which should satisfy
the assumption (3.5). To define Λl, we need an auxiliary result.

Let Kl : Wh(Γl) → V 0
i (Γl) denotes the L2 projection on V 0

i (Γl) and Kt
l :

V 0
i (Γl) → Wh(Γl) denotes its adjoint operator with respect to the L2(Γl) inner

product. The following result can be proved as in [15]

Theorem 5.1. Let Λ̂l : V 0
i (Γl) → V 0

i (Γl) be a symmetric and positive definite

operator satisfying 〈Λ̂l·, ·〉Γl
=
∼ ‖·‖21

2
,Γ0

l

. Define Λl = α−1
l Kt

l Λ̂
−1
l Kl, then the operator

satisfies (〈Λl·, ·〉Γl
)1/2 =

∼ α
− 1

2

l ‖ · ‖−∗,Γl
.

Since the space Wh(Γl) has the same dimension with V 0
i (Γl), and satisfies inf −

sup condition, the operator Kl is non-singular. Then,

Λ−1
l = αlK

−1
l Λ̂l(K

t
l )

−1.

The operator Λ̂l can be defined by the discrete H
1

2 -norm on V 0
i (Γl) (refer to [15]).

The matrix form of Λ−1
l can be built just as the second author did in Subsection

5.3 of [15] (the only difference is that a vector field is involved here). Since the
matrix of Kl is sparse, the implementation of action of Λ−1

l is cheap.
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Figure 6.2. the geometrically non-conforming subdomain parti-
tion with 4 / 5, 4, 3, 4 in three dimensions

6. Numerical experiments

In this section, we use DDM developed in this paper to solve the compressible
linear elasticity problem (2.2). Here, the domain Ω is the unit cube: Ω = [0, 1]3,
the Poisson ratio υ = 0.3, and the elasticity module E = 200.

Let Ω be decomposed into N cubes, which are numbered as Ω1,Ω2, · · · ,ΩN .
We use the uniform triangulation Thk

and the standard Q1 finite elements for each
subdomain Ωk. For convenience, we assume that dk/hk are same for every k. In
our numerical experiments, the partition 4 / 5,4,3,4 means that the domain Ω is
well-distributed into 4 parts along Z-axe, and is well-distributed into 5, 4, 3, 4 parts
along the X-axe and Y-axe (see Figure 2). The other partitions have the similar
meanings.

As demonstrated in section 2, our method results in the augmented saddle-point
system (2.10). The corresponding algebraic system will be solved by the Uzawa-type
method described by Algorithm 3.1 in [16]. In the inner iteration of this method,

we use the inexact local solvers Âk and the coarse solver A0 described in section
5.1; in the outer iteration, we use the inexact solvers introduced in subsection 5.2.

The initial guess is chosen as the zero vector, and the termination criterion ε is
defined to be the relative residual norm. The iteration terminates when ε ≤ 1.0e−5.

case(1). the parameter Gk is

Gk =

{

105 k = 1, N,
1 else.

the numerical results are in table 6.1.
case(2). the parameter Gk is

Gk =

{

105 k is odd,
1 k is even.

the numerical results are in table 6.2.
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dk/hk 4 / 5,4,3,4 5 / 6,5,4,5,5 6 / 7,6,5,6,5,7
(N=66) (N=127) (N=220)

4 39 40 39
6 42 43 42
8 44 45 45
12 46 47 47

Table 6.1. Iteration counts for case(1)

dk/hk 4 / 5,4,3,4 5 / 6,5,4,5,5 6 / 7,6,5,6,5,7
(N=66) (N=127) (N=220)

4 41 43 42
6 43 45 44
8 45 46 46
12 47 48 47

Table 6.2. Iteration counts for case(2)

The above numerical results indicate that the iteration counts depend slightly
on the ratio Φ( dh ) and are almost independent of the number of subdomains and
the large variations of the material parameters across the local interfaces. The
numerical results demonstrate the efficiency of our method.

7. Conclusions

In this paper, we have proposed a DDM with Lagrange multipliers based on
geometrically non-conforming subdomain partitions to solve the compressible linear
elasticity problems in three dimensions. In this method, we have defined a new
augmented system to handle the singularity on floating subdomains. Then, we
have constructed two efficient preconditioners for the saddle-point system. Both
the theoretical results and the numerical experiments show that our method is
efficient.
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[11] Qiya Hu, Preconditioning Poincaré-Steklov operators arising from domain decompositions
with mortar multipliers, IMA Journal of Numerical Analysis, 24(2004) 643-669

[12] Qiya Hu, A Regularized Domain Decomposition Method with Lagrange Multiplier, Advances
in Computational Mathematics, No. 4, 26(2007) 367-401

[13] Q. Hu, G. Liang, A general framework to construct interface preconditioners, Chinese J.
Numer. Math. Appl., 21(1999) 83-95

[14] Q. Hu, G. Liang and J. Lui, The construction of preconditioner for domain decomposition
problems, J. Comp. Math., 19(2001) 213-224

[15] Qiya Hu, Zhongci Shi and Dehao Yu, Efficient solvers for saddle-point problems arising from
domain decompositions with Lagrange multipliers, SIAM J. Numer. Anal. Vol 42, Num. 3,
(2004) 905-933

[16] Q. Hu, J. Zou, Two new variants of nonlinear inexact Uzawa algorithms for saddle-point
problems, Numer. Math., 93(2002) 333-359

[17] Q. Hu and J. Zou, Substructuring preconditioners for saddle-point problems arising from
Maxwell’s equations in three dimensions. Math. Comput., 73(2004), No. 245, 35-61

[18] Hyea hyun Kim, A FETI-DP algorithm for elasticity problems with mortar discretization on
geometrically non-conforming partitions, In preprint

[19] A. Klawonn, O. B. Widlund, A domain decomposition method with Lagrange multipliers and
inexact solvers for linear elasticity, SIAM J. Sci. Comput., 22(2000) 1199-1219

[20] C. Kim, R. D. Lazarov, J. E. Pasciak and P.S. Vassilevski, Multiplier spaces for the mortar
finite elemnet method in three dimensions, SIAM J. Numer. Anal., 39(2001) 519-538

[21] Y. Kuznetsov, Efficient iterative solvers for elliptic finite element problems on non-matching
grids, Russian J. Numer. Anal. Math. Modelling, 10(1995) 187-211

[22] G. Liang, J. He, The non-conforming domain decomposition method for elliptic problems
with Lagrange multipliers, Chinese J. Numer. Math. Appl., 15(1993) 187-211

[23] J. A. Nistche, On Korn’s second inequality, RAIRO Anal. Numer., 15 (1981) 237-248.
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