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DOMAIN DECOMPOSITION METHODS WITH GRAPH CUTS

ALGORITHMS FOR IMAGE SEGMENTATION

XUE-CHENG TAI AND YUPING DUAN

Abstract. Recently, it is shown that graph cuts algorithms can be used to solve some variational

image restoration problems, especially connected with noise removal and segmentation. For very
large size images, the usage for memory and computation increases dramatically. We propose a

domain decomposition method with graph cuts algorithms. We show that the new approach costs

effective both for memory and computation. Experiments with large size 2D and 3D data are
supplied to show the efficiency of the algorithms.

Key words. Multiphase Mumford-Shah, Graph cuts, Image segmentation, Domain decomposi-

tion

1. Introduction

Segmentation is one of the fundamental problems in image processing and com-
puter vision tasks. The result of image segmentation is a set of contours extracted
from the image, or a set of regions that collectively cover the entire image. Mum-
ford and Shah model [26] is an effective tool for region based image segmentation.
This model is robust to noise and can segment objects without edges. However,
the minimization problem is difficult to solve numerically.

The level set method [13, 27] was first introduced to solve the Mumford-Shah
functional by Chan and Vese in [7, 33]. Chan and Vese model achieves great success
in image segmentation due to its advantages in obtaining large convergence range
and handling the topological changes. A lot further works of Chan and Vese model
were done in [23, 28]. Some variants of the level set method, so-called ”Piecewise
Constant Level Set Method” (PCLSM), were proposed in [24, 25, 29]. This PCLSM
can identify several interfaces by one single level set function, which makes it easier
to solve the Mumford-Shah model.

Traditionally, methods based on gradient descent are often used for solving the
Mumford-Shah models, see [24, 25, 29]. These methods are normally slow and
difficult to find global minimizers. Recently, many works have been done on ap-
plying graph cuts algorithms for image segmentation [5, 3, 21, 12, 34]. They are
proven to be more efficient for solving this kind of energy minimization problems.
The connection between graph cuts and variational problems has been established
in [2, 18, 10, 4]. For Mumford-Shah segmentation, some work using graph cuts
optimization for two-phase model has been done in [9] and [14]. For multiphase
Mumford-Shah model, the methods of [5, 22, 18] can be adopted for solving the
corresponding energy problems. In this work, we shall follow the approach given in
[1]. In [1], the authors used the level set formulation of Mumford-Shah model [27]
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and adopted the graph construction method in [18, 19] to multiphase Mumford-
Shah model. However, when the images become large and the number of phases
increases, especially for 3D segmentation cases, both computational cost and mem-
ory usage increase greatly. In this work we try to find some remedies for these
difficulties and show that we could get some algorithms which have quite high effi-
ciency as well as low memory usage. We propose a method combining the domain
decomposition method with graph cuts algorithms.

The paper is organized as follows. In section 2, we review the PCLSM and its
applications to the Mumford-Shah model. In section 3, we review the graph cuts
algorithm of [1] to the multiphase Mumford-Shah model. In Section 4, we combine
the domain decomposition methods with the graph cuts idea to solve the Mumford-
Shah model. Some implementation details are supplied in Section 5. Finally, in
Section 6, we carry out some experiments by our algorithms and compare the results
with the original graph cuts algorithm.

2. Mumford-Shah model with PCLSM

2.1. Mumford-Shah model. The Mumford-Shah model is a well known model
for image segmentation problem [26]. In the model, Ω is a bounded domain and
u0(x) is the input image. We search for n interfaces Γi and an approximation image
u by minimizing the following energy functional

(1) E(u,Γi) =

∫
Ω

(u− u0)2dx+ µ

∫
Ω\

⋃
i Γi

|∇u|2dx+

n∑
i=1

γ

∫
Γi

ds.

where µ and γ are nonnegative constants and
∫

Γi
ds is the length of the boundary of

interfaces Γi. The most popular way to solve this minimization problem is applying
the level set method [7], especially the piecewise constant level set Mumford-Shah
model. For such case, the second term vanishes in the minimization functional.

2.2. Piecewise constant level set method. In [24, 25, 29], the piecewise con-
stant level set method (PCLSM) was proposed and applied to the Mumford-Shah
model. The main idea of PCLSM is to seek a partition of the domain Ω into n
subdomains Ωi, i = 1, 2, · · · , n. The essential idea is to use a piecewise constant
level set function φ to identify the subdomains

(2) φ = i in Ωi.

Once the function φ is identified, we can construct the corresponding characteristic
functions for each subdomain Ωi as

(3) ψi =
1

αi

n∏
j=1,j 6=i

(φ− j), with αi =

n∏
k=1,k 6=i

(i− k).

If φ is defined as in (2), we have ψi(x) = 1 for x ∈ Ωi, otherwise we have ψi(x) = 0.
Based on these characteristic functions, we can extract the geometrical information
of the boundaries of the subdomains {Ωi}ni=1. For example, the length of the
interfaces surrounding each subdomain Ωi, i = 1, 2, · · · , n, should be

(4) Length(∂Ωi) =

∫
Ω

|∇(ψi)|dx.

For some given values ci, i = 1, 2, · · ·n, define

(5) u =

n∑
i=1

ciψi.
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We have u = ci in the corresponding subdomain Ωi, if φ satisfies (2). In the next
subsection, we shall use this idea for image segmentation with the Mumford-Shah
model.

2.3. The minimization problem. We assume u is a piecewise constant function
as given in (5) and φ is the corresponding level set function (2). The multiphase
piecewise constant Mumford-Shah model is to solve the following minimization
problem

min
c∈Rn,φ∈{1,2,··· ,n}

E(c, φ), E(c, φ) =

∫
Ω

(u− u0)2dx+ γ

n∑
i=1

∫
Ω

|∇ψi|dx.(6)

We use total variation (TV) of the characteristic function to replace the last
term of the Mumford-Shah functional, measuring the length of the interfaces. Such
an approach has also been used in other segmentation models in [8, 20]. It is easy
to see that

φ =

n∑
i=1

iψi(φ), ∇ψi = ψ′i(φ)∇φ.

Thus, there exist two constants α1(n) > 0, α2(n) > 0, such that

(7) α1(n)

∫
Ω

|∇φ|dx ≤
n∑
i=1

∫
Ω

|ψi(φ)|dx ≤ α2(n)

∫
Ω

|∇φ|dx.

Unless ”symmetry” is a crucial issue for the segmentation problem, we replace the
regularization term in E(c, φ) by an equivalent functional and solve the following
minimization problem

min
c∈Rn,φ∈{1,2,··· ,n}

E(c, φ), E(c, φ) =

∫
Ω

(u− u0)2dx+ γ

∫
Ω

|∇φ|dx.(8)

This functional is the Mumford-Shah model we used in the paper. In [24, 25, 29],
the constrained optimization problem (8) was solved by finding the saddle point
of the corresponding augmented Lagrangian functional. In these methods, some
iterative numerical methods are used to solve the corresponding Euler-Lagrange
equations, such as gradient decent time marching scheme. In the next section, we
shall construct a graph and solve the minimization problem (8) by the graph cuts
algorithms as in [18, 1].

3. Graph cuts for multiphase Mumford-Shah Model

Instead of solving the Euler-Larange equation, graph cuts algorithms have been
proposed to solve the minimization problem (8). We give a review of this algorithm
in the following.

3.1. Background on graph cuts. The graph cuts algorithm is an established
powerful method to minimize certain kinds of energy functionals. A directed ca-
pacitated graph G = (V, E) is a set of vertices V and directed edges E . There are
two special vertices in the graph, i.e., the source s and the sink t. A cut on graph G
partitions the vertices into two disjoint groups S and T such that s ∈ S and t ∈ T .
The cost of the cut is the sum of capacities of all edges that go from S to T

(9) c(S, T ) =
∑

u∈S,v∈T,(u,v)∈E

c(u, v).

We focus on finding a cut with the smallest cost c(S, T ), namely the minimal cut.
To solve the minimal cut problem, there are mainly two groups of algorithms:
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Goldberg-Tarjan style ”push-relabel” methods [17] and Ford-Fulkerson style ”aug-
menting paths” [16]. In our paper, we use the augmenting paths method [3].

3.2. Discretization of energy functional. Assume we want to segment an M×
N image into n(n ≥ 2) phases. Let P denotes the index set of the pixels, i.e. ,

(10) P = {(i, j) | i ∈ 1, . . . ,M, j ∈ 1, . . . , N} .

There are two different ways to discretize the TV term of the functional (8), i.e.,
isotropic and anisotropic. Since the isotropic TV is not graph representable, we
consider anisotropic discretization of the TV term. The anisotropic discretization
depends on the neighbor pixels adopted to represent the TV term. In this paper,
we consider 4 and 8 neighbors for 2D images, c.f. [2, 14, 11]

TV 4(φ) =
∑
i,j

|φi+1,j − φi,j |+ |φi,j+1 − φi,j |,(11)

TV 8(φ) = TV 4(φ) +
1√
2

∑
i,j

(|φi+1,j+1 − φi,j |+ |φi+1,j−1 − φi,j |).(12)

The data fidelity term can be discretized directly. For a given p = (i, j) ∈ P,
define

N4(p) = {(i± 1, j), (i, j ± 1)} ∩ P,(13)

N8(p) = {(i± 1, j), (i, j ± 1), (i± 1, j ± 1)} ∩ P.(14)

Using these notations, the discrete version of (8) can be written as

(15) Ed(c, φ) =
∑
p∈P
|up − u0

p|2 + γ
∑

p∈P,q∈Nk(p)

wpq|φp − φq|.

Above, Nk(p), k = 4, 8, is defined as in (13)-(14) and wpq is the corresponding
weight for the discretized TV-term as in (11) and (12), see also [1]. u0

p is the

intensity value of u0 at p ∈ P and up is related to φp as in (5) and (3). We assume
that the value of ci, i = 1, 2, · · ·n are known. For boundary points p, Nk(p) has less
neighboring points.

By doing so, the minimization problem is transformed into discrete form which
is graph representable. We can get the minimizer of (15) using the max-flow /
min-cut algorithm.

It is easy to extend the model to 3D problems. For example, we can use the
neighborhood involved 6 neighbors for 3D cases and use the following term as the
regularization term

TV 3D,6(φ) =
∑
i,j,k

(|φi+1,j,k − φi,j,k|+ |φi,j+1,k − φi,j,k|+ |φi,j,k+1 − φi,j,k|).

Later, we shall also test on 3D segmentation problems and this regularization term
has been used there. We can also add more neighboring points to approximate the
length better.

3.3. Graph construction. Recently, a special graph has been constructed in
[18, 1] to solve the multiphase Mumford-Shah model. In this subsection, we briefly
review the essential ideas followed the instruction in [1].

To use graph cuts algorithm for the multiphase segmentation problems, we have
to introduce an extra dimension, i.e., we construct graph with one dimension higher
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(a) (b)

Figure 1. (a) The graph corresponds to 1D signal of 6 grid
points. We construct a 3 level grids for this 4 phase segmentation
problem. The gray curve denotes the cut. (b) shows the values of
the level set function φ at each grid point corresponding to the cut
in (a).

than the original image. For a 2D image of size M × N , we construct a graph in
3D containing M ×N × (n− 1) vertices. Specifically, we have G = (V, E) and

V =
{
vp,l | (p, l) ∈ R2 × R| p ∈ P, l ∈ {1, . . . , n− 1}

}
.(16)

The edges E are divided into two groups: ED coresponds to the data fidelity term
in (15) and ER corresponds to the TV term in (15). They are defined, respectively,
as

ED = ∪p∈P
{

(s, vp,1) ∪n−2
l=1 (vp,l, vp,l+1) ∪ (vp,n−1, t)

}
,(17)

ER = {(vp,l, vq,l)|p ∈ P, q ∈ Nk(p), l ∈ 1, . . . , n− 1} .(18)

In Fig.1, the graph for a 1D signal with 4-phase segmentation is shown. The
edges in ED are illustrated as the vertical arrows while the edges in ER are illustrated
as the horizontal arrows in Fig.1. A cut is called admissible if it only serves one
vertical edge for each p ∈ P, c.f., [1]. In order to exclude non-adimissible cut, we
introduce an artificial constant σ > 0 and define the capacity of the edges as

c(s, vp,1) = |u0
p − c1|2 +

σ

MN
, ∀p ∈ P,(19)

c(vp,l, vp,l+1) = |u0
p − cl+1|2 +

σ

MN
,∀p ∈ P, ∀l ∈ 1, . . . n− 2,(20)

c(vp,n, t) = |u0
p − cn|2 +

σ

MN
, ∀p ∈ P,(21)

c(vp,l, vq,l) = γ · wpq, ∀p ∈ P,∀q ∈ Nk(p),∀l ∈ 1, . . . n− 1.(22)

In the above, γ is the regularization parameter, wpq is the weight for the discretiza-
tion of the TV-norm and Nk(p) is the set containing the neighbors of p ∈ P used
in the discretization.

After adding all edges to the graph, we can solve the minimization problem (15)
by using the max-flow / min-cut algorithm. We emphasize that the segmentation
problem is transferred from the size of M ×N to the size of M ×N × (n− 1).

3.4. An iterative segmentation scheme. In the last section, we show that
graph cuts algorithms can be used to solve the Mumford-Shah minimization prob-
lem when the value of c is known. For minimization problem (8), we also need to
estimate the c value and the following algorithm – Algorithm 1, is rather robust
and converges fast.
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Algorithm 1 (Graph cuts segmentation algorithm)
Choose initial values for c0, set l = 0.
while (‖cl − cl−1‖ > tol)

(1) Use graph cuts to estimate φl+1 from

φl+1 = argmin
φ̃
Ed(c

l, φ̃),(23)

(2) Compute the characteristic functions {ψl+1
k }nk=1 from φl+1, c.f., (3).

(3) Update cl+1 by

ck
l+1 =

∑
p∈P u

0
pψk,p∑

p∈P ψk,p
, k = 1, . . . , n.(24)

(4) Update l← l + 1.

The initial values c0 are computed very efficiently by the isodata algorithm, see
[32]. For segmentation problems, the above iterative procedure normally converges
in about 5-6 iterations. Compared with traditional gradient decent methods, it
is normally 500 times faster for relatively large size 2D images we have tested,
see [1]. However, when the image size is very large, the memory requirement and
computational cost become a challenge problem.

4. Graph cuts algorithms with domain decomposition

As we discussed, when the images become large, the computational and memory
cost of the multiphase graph cuts algorithm increases greatly. This causes problems
for some data set with very large size, especially for 3D applications. Therefore, we
consider to use a domain decomposition method to overcome these difficulties.

Domain decomposition method is an efficient tool in large-scale computation and
has been used to solve PDE problems [6, 15, 30, 31]. In [31], it is proven domain
decomposition can be applied to general convex minimization problems.

As was done in [31], we decompose the image domain into four kinds of regions.
There is an example of domain decomposition shown in Fig.2. Then we use similar
iterative segmentation scheme to solve subproblems over the subdomains of each
region.

Figure 2. An example of domain decomposition with 25 subdomains

4.1. Non-overlapping domain decomposition. First, we consider the non-
overlapping domain decomposition method. We assume Ω has been decomposed
into 4 kinds of non-overlapping subdomains. The subdomains intersect only on
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their interfaces, see Fig.2. We denote Pi ⊂ P, i = 1, 2, 3, 4, the index sets for the
grid points of the subdomains, c.f. (10). Corresponding to each subdomain, we
define the energy functional

Eid(c, φ) =
∑
p∈Pi

|up − u0
p|2 + γ

∑
p∈Pi,q∈Nk(p)∩Pi

wp,q|φp − φq|.(25)

The non-overlapping algorithm can be written as follows:

Algorithm 2(Non-overlapping domain decomposition)
Choose initial values for c0, set l = 0.
While (‖cl − cl−1‖ > tol)

(1) For i = 1, 2, 3, 4, use a graph cuts algorithm to estimate φl+1
|Ωi

from

(26) φl+1
|Ωi

= argmin
φ̃
Eid(c

l, φ̃).

(2) Compute the characteristic functions {ψl+1
k }nk=1 from φl+1, c.f., (3).

(3) Update cl+1 according to the following discrete formula for c

(27) cl+1
k =

∑
p∈P u

0
pψ

l+1
k,p∑

p∈P ψ
l+1
k,p

, k = 1, . . . , n.

(4) Update l← l + 1.

Here and later, we denote φ|Ωi
be the value of φ in Ωi. For minimization problem

(26), we only need to use graph cuts algorithms to find the values of φl+1 in Ωi.
Each Ωi contains many disjoint subdomains, i.e., Ωi = ∩jΩi,j . As the subproblems
over Ωi,j are independent of each other, we can use the graph cuts algorithms to
solve the subdomain problems simultaneously. If we have parallel computers, these
subdomain problems can be solved in parallel. In our implementations, we just
solve the subproblems one by one. Even so, the computational cost is reduced
compared to solving by the graph cuts algorithm in the whole domain.

For a given p ∈ Pi on the boundary ∂Ωi of Ωi, the subdomain energy functional
Eid only includes regularization terms related to q ∈ Nk(p)∩Pi, i.e., the subdomain
problems only regularize with points inside the subdomain. Thus, this will cause
some errors compared with Algorithm 1. Due to the reason that the ci, i = 1, 2, · · ·n
are computed globally, it shows that the non-overlapping algorithm has always been
able to find a good segmentation despite this error.

4.2. Overlapping domain decomposition. In overlapping domain decomposi-
tion, the subdomains overlap with each other. Fig.3 dispatches the subdomains
in our overlapping domain decomposition approach corresponding to the domain
decomposition method presented in Fig.2. The dashed line denotes the boundary
of the subdomains. In overlapping domain decomposition, we use the overlapping
parts to influence the cuts of the interior parts in each subdomain. Therefore,
the subdomains are no longer independent and have intimate relation with their
neighbor subdomains in the segmentation. The overlapping size influences the con-
vergence rate of the iterate process as analysed in [31]. Large overlapping size gives
faster convergence for the iteration. However, it also leads to increased cost in
solving the subdomain problems. A proper choice of the overlapping size is needed
in order to get the best convergence.

As the subdomains have overlaps now, the corresponding index sets Pi also have
overlaps. To explain the algorithm clearly, we need to introduce some notations.
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Figure 3. Four kinds of subdomains in the overlapping domain decomposition

We use Ω0
i to denote the interior grid points of Ωi and ∂Ωi to denote the boundary

grid points of Ωi. Correspondingly, P0
i is the index set for Ω0

i and ∂Pi is the index
set for ∂Ωi. Let

(28) Eid(c, φ) =
∑
p∈P0

i

|up − u0
p|2 + γ

∑
p∈P0

i ,q∈Nk(p)

wp,q|φp − φq|.

The corresponding overlapping domain decomposition algorithm is applied in
the following:

Algorithm 3 (Overlapping domain decomposition)
Choose initial values for c0 and φ0. Set l = 0.
While (‖cl − cl−1‖ > tol)

(1) For i = 1, 2, 3, 4, let φl+
i
4 = φl+

i−1
4 in Ω\Ω0

i and use a graph cuts

algorithm to estimate φ
l+ i

4

|Ω0
i

from

(29) φ
l+ i

4

|Ω0
i

= argmin
φ̃
Eid(c

l, φ̃).

(2) Compute the characteristic functions {ψl+1
k }nk=1 from φl+1, c.f., (3).

(3) Update cl+1 according to the following discrete formula for c

(30) cl+1
k =

∑
p∈P u

0
pψ

l+1
k,p∑

p∈P ψ
l+1
k,p

, k = 1, . . . , n.

(4) Update l← l + 1.

However, as the subdomains overlap with each other, solving (29) is quite dif-

ferent from solving (26). The value of φl+
i
4 is equal to φl+

i−1
4 in Ω\Ω0

i and thus

has no need for computation. The value of φl+
i
4 in Ω0

i needs to be solved through
(29). For a point p ∈ P0

i , Nk(p) may be outside Ω0
i . However, this does not cause

any problem for solving (29) as the value outside Ω0
i is already known. This will

take care of the regularization between the subdomains. We shall comment on the
details for the implementation for (29) in Section 5.

For this algorithm, we have, c.f. [31]

Ed(c
l+1, φl+1) ≤ Ed(cl, φl+1) ≤ Ed(cl, φl+3/4) ≤ Ed(c

l, φl+1/2)

≤ Ed(c
l, φl+1/4) ≤ Ed(cl, φl).

This guarantees the monotonicity of the cost functional and thus gives a robust
algorithm.
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5. Implementation of the algorithms

For the implementation of Algorithm 1, we just need to construct the graph
defined in (16) and (17)-(18) and then add the capacity (costs) as given in (19)-
(22). Theoretically, any σ > 0 is enough to guarantee that any minimum cuts is
admissible, see [1]. Once the graph is constructed, we use the augmenting path
algorithm to find the minimum cut.

The implementation of Algorithm 2 is also easy. For each subproblem, we con-
struct the graph as we have done for Algorithm 1 and use the augmenting path
algorithm to solve (26). Nearly the same codes used for Algorithm 1 can be used
for Algorithm 2. The only difference is that we need to construct and solve the
graph cuts problem over each subdomain instead of on the whole domain Ω.

For Algorithm 3, due to the overlapping of the subdomains, some extra care need
to be given in solving subdomain problem (29). For a given p ∈ P0

i , Nk(p) may be
outside Ω0

i and these values are known and needed for Eid in (28). If we take k = 4
or k = 6 for Nk, then Nk(p) is always within Pi = P0

i ∪ ∂Pi for any p ∈ P0
i . Each

Ωi contains many disjoint subdomains, i.e., Ωi = ∩jΩi,j . As the subproblems over
Ωi,j are independent of each other, we can use graph cuts algorithms to solve the
subdomain problems simultaneously or one by one. For each subdomain problem,
we construct the graph for the subdomain Ωi,j to include the interior and boundary
grid points, i.e., the subdomain graph is

Vi,j = {vp,l | (p, l) ∈ R2 × R| p ∈ Pi,j , l ∈ {1, . . . , n− 1}},

E i,j = E i,jD ∪ E
i,j
R ,

E i,jD = ∪p∈Pi,j
{(s, vp,1) ∪n−2

l=1 (vp,l, vp,l+1) ∪ (vp,n−1, t)},

E i,jR = {(vp,l, vq,l)|p ∈ P0
i,j , q ∈ Nk(p), l ∈ 1, . . . , n− 1}.

In the above, notations Pi,j and P0
i,j are self explainable. The capacity of the

edges for the interior grid points are defined as in (19)-(22). The boundary value

of φl+
i
4 is known as φl+

i
4 = φl+

i−1
4 in Ω\Ω0

i . We only need to compute the value of

φl+
i
4 in the interior of Ωi which can be computed in parallel over the subdomains

Ωi,j . To keep the boundary values unchanged, the capacity of the edges in E i,jD for
any p ∈ ∂Pi,j should be defined as ∞ except one that indicates the value of the
point p and the capacity for this edge should be given as 0. Compared with the
implementation of Algorithms 1-2, we only need to set the capacity of the ”vertical
edges” to be ∞ or 0 for the grid points on the boundary of Ωi. This is the only
extra ”care” that we need to take for the implementation of Algorithm 3.

In our implementations, we take tol = 0.1, the phase number n = 4 and σ =
k(n − 1)γ. The neighborhood k adopted is either k = 4 or k = 8 for 2D examples
and k = 6 or k = 26 for 3D examples. The value of γ varies with the examples.
For Algorithm 3, we alway take φ0 = 0 and use ISODATA algorithm of [32] to get
the initial values for c. Besides, the size of overlapping is one pixel unless specified
otherwise.

6. Numerical experiments

In the following, we implement our domain decomposition algorithms on 2D
synthetic and real data and 3D real data respectively. We develop our codes in C++
using the augmenting path algorithm proposed in [3]. All 2D numerical experiments
were performed on a HP xw4600 Workstation with an Intel(R) Core(TM) 2 Duo
CPU E6750 @ 2.66 GHz, 2.67 GHz and 2.00 GB of RAM and 3D experiments were
developed in LINUX environment.
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Figure 4. The comparison results of lena, lake, tree and clock
with 16 × 16 subdomains. From left to right: given image, re-
stored image by Algorithm 1, restored image by non-overlapping
Algorithm 2 and restored image by overlapping Algorithm 3.

6.1. Tests of domain decomposition algorithm and 2D experiments. First
of all, we set up a series of experiments to demonstrate the effectiveness of our
domain decomposition (denoted by DD below) based algorithms: Algorithm 2 and
Algorithm 3. These experiemnts are developed on four 1024× 1024 images: Lena,
Lake, Tree and Clock. We apply four phase DD algorithms together with Algorithm
1 to these four images. For all the algorithms, we choose the same neighborhood
involved 4 connectivities and set γ = 500. For DD algorithms, the image domain is
decomposed into 16× 16 subdomains. The segmentation results of each algorithm
are displayed in Fig.4 and the corresponding computation time is tabulated in Table
2.

In the following, we first test the sensitivity of the subdomain size to Algorithm
2 and Algorithm 3. We examine the computation time and approximation error
(i.e., difference between full-domain solution and decomposed solution) of both DD
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(a) (b)

Figure 5. CPU costs of nonoverlapping Algorithm 2 and over-
lapping Algorithm 3 with different subdomain sizes.

algorithms while the subdomain number is increased from 4 to 128 subdomains.
Then we compare the memory consumption and minimal energy between DD al-
gorithms and Algorithm 1 for these four images. For these tests, we fix γ = 500 for
all algorithms.

• Sensitivity to the subdomain size

The subdomain size greatly affects the performance of Algorithm 2 and Algo-
rithm 3. Therefore, we test the computational cost of DD based algorithms with
regard to different subdomain sizes. For this purpose, we decompose the images
into 22, 23, 24, 25, 26 and 27 subdomains respectively and implement DD algorithms
to each case one by one. We plot the computation time of non-overlapping Algo-
rithm 2 in Fig.5(a) and overlapping Algorithm 3 in Fig.5(b). Through the results,
we see that DD algorithms can improve the computational efficiency compared to
Algorithm 1.

Meanwhile, we evaluate an error estimation between DD based algorithms and
Algorithm 1 with different decompositions. Continued the experiment, we let the
images be decomposed into 22, 23, 24, 25, 26 and 27 subdomains and use the same
parameters. The error is computed by comparing the segmention results of Algo-
rithm 2 or Algorithm 3 with the results of Algorithm 1 from the following formula

(31) ε =

∑
p∈P χ(φp, φ

0
p)

M ×N
.

where φ0
p is from Algorithm 1 and φp is either from non-overlapping Algorithm 2 or

from overlapping Algorithm 3. If φp = φ0
p, we have χ(φp, φ

0
p) = 0, otherwise we have

χ(φp, φ
0
p) = 1. We estimate the error between Algorithm 2 and Algorithm 1 and

show the result in Fig.6(a) while we exhibit the similar result between Algorithm
3 and Algorithm 1 in Fig.6(b). From the results, it is clear that the error of non-
overlapping algorithm is always somewhat larger than the corresponding error of
overlapping algorithm. Since the error of overlapping Algorithm 3 keeps less than
or around 0.2% when the images are decomposed from 4 to 128 subdomains, we
can say that overlapping domain decomposition algorithm is quite a stable method
for numerical application.

• Comparison of memory consumption
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(a) (b)

Figure 6. Approximation error of nonoverlapping Algorithm 2
and overlapping Algorithm 3 with different subdomain sizes.

Table 1. The memory consumption of Lena, Lake, Tree and
Clock. In the table, the unit of the number is kiloBytes.

Problem Subdomain Number Algorithm 1 Algorithm 2 Algorithm 3
Lena 16× 16 587,262 28,560 31,960
Lake 16× 16 551,202 28,560 31,404
Tree 16× 16 541,124 28,560 31,888
Clock 16× 16 552,272 29,040 31,904

Next, we analyze the memory consumption of DD algorithms and Algorithm 1.
Like the beginning, the images are decomposed into 16×16 subdomains. We record
the largest memory demanded by each algorithm of each image in the experiment
and tabulate them in Table 1. Therefore, from the table we can see, for a 1024 ×
1024 image, Algorithm 1 requires a memory around 600MB while DD algorithms
only need less than 10% of this amount. It is proved that DD based algorithms
can greatly decrease the memory requirements compared to Algorithm 1. Thus,
nonoverlapping Algorithm 2 and overlapping Algorithm 3 can make segmentation
problem (8) with large data size be solvable on computers with small memory.

• Comparison of minimal energy

Moreover, we try to illustrate that the minimal energy obtained by DD algo-
rithms approximates the minimal energy of Algorithm 1, which is recognized as
the global minimizer over the image domain. We continue to decompose the image
domain into 16 × 16 subdomains as before. The energies of DD algorithms are
calculated using the cut results over the entire domain. For Algorithm 2, we add
all the weights of the cut edges in each subdomain while we add the weights of the
internal cut edges in each subdomain for Algorithm 3. We display the comparision
result of each image in Fig.7. In the figure, the energy of Algorithm 1 is marked
by ”∗” and the energies of non-overlapping and overlapping decomposition are de-
noted by ”+” and ”o” respectively. Through the experiment result, we see that the
energy of DD based algorithms is convergent and the difference between the energy
of DD algorithms and the energy of Algorithm 1 is acceptable to us.

One more 2D experiment, we implement our DD algorithms to a real brain MR
image of high resolution. We use four phase image segmentation approach to extract
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Figure 7. The energy comparision between Algorithm 1 (black
curve), non-overlapping Algorithm 2 (blue curve) and overlapping
Algorithm 3 (red curve).

Figure 8. The comparision results of MR. From left to right:
initial image, restored image by Algorithm 1, restored image by
Algorithm 2 and restored image by Algorithm 3.

the 4 different classes of the brain image. We segment the MR image with TV 8

norm and display the results in the Fig.8 and the computation time in the Table 2.
We can see that our decomposition methods can get almost the same result as by
Algorithm 1 visually. In the meantime, the decomposition methods improve more
than 1

4 of the computation time.

6.2. 3D experiments. In this subsection, we test our nonoverlapping Algorithm
2 and overlapping Algorithm 3 to five 3D real data with name and size as follows:
MRI(250×250×120), Blow(512×512×512), CGQ(512×512×512), Hailuo(500×
500× 150) and Huluo(512× 512× 512).

For a start, we implement our multiphase graph cuts algorithms to a 3D MRI
data. In this test, we apply four phase algorithms to the data and use 1000(10×10×
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Table 2. Compution time in seconds for 2D experiments: Lena,
Lake, Tree, Clock and MR.

Prob Size Neighbor Subdomain No Algorithm 1 Algorithm 2 Algorithm 3

Lena 1024 × 1024 4 16 × 16 51.641 38.797 31.688

Lake 1024 × 1024 4 16 × 16 57.45 44.657 42.875

Tree 1024 × 1024 4 16 × 16 29.859 22.594 25.86
Clock 1024 × 1024 4 16 × 16 74.203 56.438 63.344

MR 670 × 530 8 10 × 10 22.844 15.562 14.813

10) subdomains for both Algorithm 2 and Algorithm 3. For the neighborhood, we
adopt both 6 and 26 connectivities for this 3D data respectively in the experiment.
We display the computation time of each algorithm with two different connectivities
in Table 5. Meantime, for different connectivities, we give the comparision results
of a chosen slice of the data from each algorithm in Fig.9. From the detail of the
results in Fig.9, it is easy to find out that overlapping Algorithm 3 approximates
the result of Algorithm 1 better than nonoverlapping Algorithm 2. During the
experiment, we also increase the subdomain number to be 20× 20× 20 to see the
effect of domain decomposition in improving the computation cost compared to
Algorithm 1. The computation time is also shown in Table 5.

Figure 9. The comparison results of MRI. Row one are compar-
ision results with 6 connectivity of slice nr.: 50. Row two are the
comparision results with 26 connectivity of slice nr.: 50. Each row
from left to right: inital image, restored image by Algorithm 1, re-
stored image by non-overlapping Algorithm 2 and restored image
by overlapping Algorithm 3.

Secondly, we apply six phase algorithms to segment the data CGQ. This CGQ
is a real machine component with noise. Since this data is too large for Algorithm
1 to handle, we extract a 256 × 256 × 256 data from initial data to compare the
computation time between Algorithm 1 and DD algorithms. For DD Algorithm
2 and Algorithm 3, we use 32 × 32 × 32 subdomains for both data of size either
512×512×512 or 256×256×256. We choose one slice from the results of Algorithm
1 and overlapping Algorithm 3 with data size 256×256×256 and show these phase
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Figure 10. The CGQ results of slice nr.: 150. Row one from
left to right is results of phase 1 to phase 6 of Algorithm 1. Row
two from left to right is results of phase 1 to phase 6 of overlapping
Algorithm 3.

Figure 11. The surface results of 6 phase experiment: CGQ
from overlapping Algorithm 3. All the results are from extracted
data with proportion 1:2 to initial image.

results one by one in Fig.10. Meanwhile, we display some surface results from
overlapping Algorithm 3 in Fig.11 and the computation time of each algorithm in
Table 5. For the initial 512× 512× 512 data, we fix the iteration being 11 for both
Algorithm 2 and Algortihm 3 and record the corresponding computation time in
Table 5.

For the data Blow, we implement three phase segmentation algorithms and adopt
the neighborhood with 6 connectivity. Similarly, we extract a 256× 256× 256 data
from initial Blow data for the comparision of computation cost between Algorithm
1 and DD algorithms. For Algorithm 2 and Algorithm 3, we use 32 × 32 × 32
subdomains for Blow data of size either 512 × 512 × 512 or 256 × 256 × 256. The
numerical results of Blow are provided in Fig.12 and the computation time of
different algorithms is shown in Table 5.

Besides, we develop a series of tests on Blow to show the advantages of our
DD based algorithms. Firstly, we give a comparison of the computation time with
different sizes of data extracted from Blow to illustrate the necessity of DD method.
We tabulate the computation time from Algorithm 1 with different sizes of data in
Fig.13(a) and use Fig.13(b) to manifest that DD can greatly reduce the computation
cost when solve the segmentation problem. Then we compute the approximation
error between DD algorithms and Algorithm 1 and list both computation time and
approximation error of nonoverlapping Algorithm 2 and overlapping Algorithm 3
in Table 3. From the numbers in Table 3, it shows our DD algorithms require less
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Figure 12. The surface results of 3 phase experiment: Blow
from overlapping Algorithm 3. All the results are from extracted
data with proportion 1:2 to initial image.

(a) (b)

Figure 13. Computation costs in seconds for different resolution.
In (b), numbers on x-coordinate denote the image sizes in table
(a).

time and keep a quite small error compared to Algorithm 1, especially overlapping
Algorithm 3 which always keeps the error under 0.2%. Futhermore, we tabulate the
largest physical memory used in the experiment regarding to these extracted data
from Blow in Table 4. Corresponding to 2D experiment results, both DD algorithms
save considerable quantity of memory and make large size data be solvable for us.

For the test of Hailuo and Huluo, we apply two phase segmentation algorithms
and adopt the neighborhood involved 6 pixels. We use 20 × 20 × 20 subdomains
for Hailuo experiment and 32× 32× 32 subdomains for Huluo experiment when we
implement both non-overlapping Algorithm 2 and overlapping Algorithm 3. The
numerical results of Algorithm 3 of these two data are supplied in Fig.14 and the
computation time of each algorithm to both data is displayed in Table 5. These
two phase experiments also demonstrate that domain decomposition can make large
size data be segmented and save much computation costs in the meantime.
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Table 3. CPU costs and error estimation of Algorithm 2 and
Algorithm 3 for Blow experiment. The corresponding computation
time of Algorithm 1 are listed in Fig.13(a).

Problem Size γ Subdomain Number Algorithm 2 Algorithm 3

time error time error

256 × 256 × 256 250 32 × 32 × 32 143.54 0.25% 202.03 0.053%
128 × 128 × 128 250 16 × 16 × 16 16.01 0.32% 22.84 0.16%

64 × 64 × 64 250 8 × 8 × 8 2.8 0.33% 5.7 0.039%
32 × 32 × 32 250 4 × 4 × 4 0.39 0.41% 0.77 0.042%
16 × 16 × 16 250 2 × 2 × 2 0.05 0.097% 0.06 0%

8 × 8 × 8 250 2 × 2 × 2 0 0.059% 0 0%

Table 4. Memory consumption of Algorithm 1, Algorithm 2 and
Algorithm 3 for Blow experiment. The numbers are physical mem-
ory that a task has used (in kiloBytes) in experiment.

Problem Size γ Subdomain Number Algorithm 1 Algorithm 2 Algorithm 3

512 × 512 × 512 500 32 × 32 × 32 – – 4,723,000 2,847,972
256 × 256 × 256 250 32 × 32 × 32 10,724,676 723,276 391,836
128 × 128 × 128 250 16 × 16 × 16 1,322,256 91,704 50,956

64 × 64 × 64 250 8 × 8 × 8 188,912 15,840 8,504
32 × 32 × 32 250 4 × 4 × 4 21,760 3,500 3,240
16 × 16 × 16 250 2 × 2 × 2 3,676 1,728 1,944

8 × 8 × 8 250 2 × 2 × 2 1,428 1,192 1,376

Figure 14. The surface results of 2 phase experiments: Hailuo
and Huluo from overlapping Algorithm 3. All the results are from
extracted data with proportion 1:2 to initial image.

Table 5. Compution time in seconds for 3D experiments. – de-
notes problem can not be handled by the method.

Prob Size γ Neigh Phase Subdomain No Alg 1 Alg 2 Alg 3

MRI 250 × 250 × 120 500 6 4 10 × 10 × 10 713.28 501.96 674.57

MRI 250 × 250 × 120 300 26 4 10 × 10 × 10 4897.16 2172.37 2629.56

MRI 240 × 240 × 120 500 6 4 20 × 20 × 20 879.07 313.08 317.25
CGQ 256 × 256 × 256 500000 6 6 32 × 32 × 32 6634.12 1793.87 1809.92
CGQ 512 × 512 × 512 300000 6 6 32 × 32 × 32 – – 10277.2 17401.5

Blow 256 × 256 × 256 250 6 3 32 × 32 × 32 621.59 143.54 202.03
Blow 512 × 512 × 512 500 6 3 32 × 32 × 32 – – 934.4 1280.57

Hailuo 500 × 500 × 300 500 6 2 20 × 20 × 20 619.01 102.94 219.04

Huluo 256 × 256 × 256 2000 6 2 32 × 32 × 32 245.09 49.53 98.04
Huluo 512 × 512 × 512 2000 6 2 32 × 32 × 32 – – 400.9 780.29
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7. Conclusion

In this work, we propose a new method to minimize the Mumford-Shah model
with piecewise constant level set representation. We apply the domain decompo-
sition methods to image segmentation and use graph cuts algorithm to minimize
the energy functionals. The proposed method improves the computation efficiency.
Even more, it greatly reduces the memory cost and enables us to solve very large
size images effectively. Due to the monotonicity property of the algorithms, its
numerical performance is very robust. It is remarkable that the algorithm can seg-
ment 3D images with 4× 108(512× 512× 512× 3) voxels in just a few minutes and
the quality is comparable with traditional variational methods.
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