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COMPARISON OF A SPECTRAL COLLOCATION METHOD

AND SYMPLECTIC METHODS FOR HAMILTONIAN SYSTEMS

NAIRAT KANYAMEE AND ZHIMIN ZHANG

Abstract. We conduct a systematic comparison of a spectral collocation

method with some symplectic methods in solving Hamiltonian dynamical sys-

tems. Our main emphasis is on non-linear problems. Numerical evidence has

demonstrated that the proposed spectral collocation method preserves both

energy and symplectic structure up to the machine error in each time (large)

step, and therefore has a better long time behavior.
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1. Introduction

Hamiltonian systems typically arise as models of conservative physical systems
and have many applications in classical mechanics, molecular dynamics, hydrody-
namics, electrodynamics, plasma physics, relativity, astronomy, and other scientific
fields [29, 30]. They are an alternative and equivalent formalism of Newtonian and
Lagrangian formalisms and become one of the most useful tools in the mathemati-
cal theory of physical and engineering sciences. Almost all real physical processes
with negligible dissipation can be described in some way or another by Hamiltonian
formalism [1].

The canonical system

(1)
dpi
dt

= −∂H

∂qi
,

dqi
dt

=
∂H

∂pi
; i = 1, 2, . . . , n

with given Hamiltonian function H(p1, . . . , pn; q1, . . . , qn) was first introduced by
Hamilton in 1824. Since then, many famous scientists, such as Poincaré, Jacobi,
Birkhoff, Weyl, Kolmogorov, and Arnold, studied the subject [1].

In addition to its elegance and symmetry, the Hamiltonian system has some
remarkable properties, most important among which are its symplectic structure
and optimality for energy preservation. Any good numerical scheme should be
able to replicate as many of these physical properties as possible. The symplectic
structure is in nature volume-preserving. Traditional ODE solvers such as Runge-
Kutta, multi-step methods usually do not preserve the symplectic structure and
energy, and as a consequence, numerical trajectories tend to gradually drift away
from the true solution trajectories in a phenomenon called phase shift. The idea
of developing numerical methods that maintain the symplectic structure was first
studied in a general setting by Feng in the 1980’ [10]. This was followed by a
successful systematic study of designing so-called symplectic algorithms [11, 12,

Received by the editors June 1, 2009 and, in revised form, March 22, 2010.
2000 Mathematics Subject Classification. 65N20, 49J40.
This research was supported in part by the National Science Foundation under grant DMS-

0612908.

86



A SPECTRAL COLLOCATION METHOD FOR HAMILTONIAN SYSTEMS 87

13, 14, 15, 16, 17, 26, 33]. But, none of these symplectic algorithms is energy-
preserving in general. Indeed, it was proved that there exists no energy preserving
symplectic algorithm for general non-linear Hamiltonian systems [19, 9]. On the
other hand, Galerkin type methods such as finite element methods are well-known
to preserve energy. Now we face a dilemma and have to choose between preserving
energy and preserving symplectic structure. Some argue that for highly oscillatory
problems, preserving energy may be more important than the symplectic structure
[7, 8, 32, 4, 18].

In this paper, we introduce an algorithm based on spectral collocation to pre-
serve both energy and volume (symplectic structure) up to numerically negligible
error terms. If the error term is so small that it reaches the machine epsilon –
the computer round-off error, then the algorithm is practically energy and volume
preserving. We shall use a series numerical benchmark problems to demonstrate
that our methods are effective and much accurate than symplectic methods with
the similar computational cost.

There have been some recent attempts in using spectral method [35] and spectral
collocation method [22] to solve ODEs. In this work, we carry on a systematic com-
parison between the proposed spectral collocation method and symplectic methods.
For more references regarding spectral and spectral collocation methods, the reader
is referred to [2, 3, 5, 6, 20, 21, 27, 31, 34, 37] and references therein.

2. The algorithm

To simplify the discussion, we use the case n = 1 in (1) to illustrate the idea.
Consider the nonlinear Hamiltonian system

p′ = −∂H

∂q
= f(p, q), q′ =

∂H

∂p
= g(p, q), p(0) = p0, q(0) = q0,

where f and q are nonlinear functions. We use either the Chebyshev-Gauss-Lobatto
or the Legendre-Gauss-Lobatto collocation methods to solve it. We solve the system
on [0, r] first, then use the obtained values (p(r), q(r)) as an initial condition to
repeat the process on [r, 2r], and so on .... Here r could be large, a convenient
choice is r = 2.

Let t0 < t1 < · · · tN be collocation points where t0 = 0 and tN = r. We
interpolate p and q as

pN(t) =
N
∑

j=0

p(tj)ℓj(t), qN (t) =
N
∑

j=0

q(tj)ℓj(t),

where ℓj is the Lagrange nodal basis function satisfying ℓj(ti) = δij .
We are seeking numerical approximations of (p(tj), q(tj)), denoted as (pj , qj). In

the literature of the spectral method, the explicit form of the differentiation matrix
D = (dij)

N
i,j=0 is known [2, 3, 5, 6, 21, 34] with dij = ℓ′j(ti). Note that the rank of

the (N + 1)× (N + 1) matrix D is N . Therefore, we may solve the system

d11p1 + d12p2 + · · · d1NpN = f(p1, q1)− d10p0
...

dN1p1 + dN2p2 + · · · dNNpN = f(pN , qN )− dN0p0

d11q1 + d12q2 + · · · d1NqN = g(p1, q1)− d10q0
...

dN1q1 + dN2q2 + · · · dNNqN = g(pN , qN )− dN0q0
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to obtain ppp = (p1, p2, . . . , pN )T and qqq = (q1, q2, . . . , qN )T , and use the rest two
equations

d01p1 + d02p2 + · · · d0NpN = g(p0, q0)− d00p0,

d01q1 + d02q2 + · · · d0N qN = g(p0, q0)− d00q0

to estimate the error.
If we denote

fff(ppp,qqq) =











f(p1, q1)− d10p0
f(p2, q2)− d20p0

...
f(pN , qN )− dN0p0











, ggg(ppp,qqq) =











g(p1, q1)− d10q0
g(p2, q2)− d20q0

...
g(pN , qN)− dN0q0











Then we design a numerical iteration in the matrix form
(

D̃ 0

0 D̃

)(

pppnew

qqqnew

)

=

(

fff(pppold, qqqold)
ggg(pppold, qqqold)

)

,

where D̃ is a N ×N matrix by eliminating the first row and the first column of D.
This format is valid for any n in (1). In the process, we may use Gauss-Seidal type
iteration to update the information as soon as possible.

3. Conservation properties

Theoretical study shows that the solution of a Hamiltonian system can be de-
scribed by an evolution semigroup which is a symplectic mapping for any fixed t.
Furthermore, the Hamiltonian is conserved along trajectories.

H(pN (tN ), qN (tN )) = H(pN (t0), qN (t0)) = H(p0, q0),

i.e., the collocation method preserves the energy up to numerical integration error.
In many practical problems, due to the analytic nature of H(p, q) and spectral
accuracy, we are able to control the numerical quadrature error to the machine
epsilon, i.e., 10−15 with a reasonable N , say, N ≤ 20. In this case, the spectral
collocation we introduced preserves the energy in practice.

Another important feature or property of the Hamiltonian system is the sym-
plectic structure, namely, the Jacobi matrix of the transformation

(

∂zzzN
∂zzz0

)

, zzz =

(

ppp

qqq

)

satisfies
(

∂zzzN
∂zzz0

)

J

(

∂zzzN
∂zzz0

)T

= J, J =

(

0 IN
−IN 0

)

.

Note that with the above notation, the Hamiltonian system can be written as

zzzt = J−1Hz.

Based on the high accuracy of the spectral Galerkin and spectral collocation meth-
ods, it is reasonable to expect that

(

∂zzzN
∂zzz0

)

J

(

∂zzzN
∂zzz0

)T

= J +O(e−σN ).

This has a significant meaning in practice. When the error reaches the machine
epsilon somewhere around 10−15, the scheme is in practice volume preserving (i.e.,
preserves the symplectic structure)! The reader is referred to [36] for more conser-
vation properties of numerical methods.
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4. Numerical tests

In this numerical study, we are interested in long-time behavior of the Hamil-
tonian system, which many science and engineering problems need to predict, see,
e.g., [23, 24, 25, 18]. Traditional finite difference, finite element, and Runge-Kutta
methods fail when time runs sufficiently large, even those symplectic structure pre-
serving algorithms. Our numerical tests on Hamiltonian systems demonstrate that
the spectral collocation methods preserve both energy and volume very well even
at for large t. The numerical solution follows the trajectory nicely without a phase
shift.

In coding, we install D̃−1 since it will be used repeatedly - in some cases, billions
of times. It is well known that the condition number of D̃ is O(N2). For relatively

large values of N , it would be ideal to develop an explicit formula for D̃−1 instead
of inverting the explicit form of D̃.

For the numerical examples below, we use r = 1 for the spectral collocation. The
reasonable values for r is within the interval [0.75, 2]. In each updating process, we
compare the maximum pointwise errors,

max
1≤j≤N

(‖(pppnew − pppold)(tj)‖L∞ , ‖(qqqnew − qqqold)(tj)‖L∞)

and set the tolerance as 10−15 together with maximum iteration numbers, 1000, to
terminate the iterative process. The initial guesses to start the spectral collocation
are N × 1 vectors (p0, ..., p0)

T and (q0, ..., q0)
T where p0, q0 are the initial values.

We compare numerical results from the spectral collocation method with the
results from symplectic methods provided in the Appendix by using the maximum
pointwise norm, ‖(ppp − pppN )(tj)‖L∞ on the terminal interval. Symplectic schemes
1,2,3 and 4 are second order schemes where scheme 1 is a second order midpoint
Euler scheme and Scheme 3 and 4 are specially designed for the threefold symmetry
and Henon-Heiles systems, respectively. The CPU times (after the graphic outputs)
of both methods is considered by using Lenovo X61, Core 2 Duo 1.8GHz, RAM
3GB.

Example 1: Consider a linear system of ordinary differential equations

p′(t) = −4q(t)

q′(t) = p(t)

with initial condition p(0) = 0, q(0) = 0.6.
The Hamiltonian for this system is given by H(p, q) = 1

2p
2 + 2q2. The ex-

act solutions are p(t) = −1.2 sin(2t) and q(t) = 0.6 cos(2t). The initial energy
H(p0, q0) = H0 = 0.72.

We compare the spectral collocation with Symplectic 1 and Symplectic 2. Figure
1 represents the end behavior of each method. From the graphs, we can barely
see the difference between the exact and numerical solutions from the spectral
collocation (t = 106) while the phase shift is visible for the symplectic methods at
t = 2000.

Tables 1 and 2 provide the maximum errors on the end interval of energy H ,
p(t), q(t), and the CPU times used. The spectral collocation method provides more
nodal data with similar CPU times, or can go further in term of time t than a simple
symplectic method as shown in Table 1. This means that the spectral collocation
method is less expensive in a long run compared with a simple symplectic method.
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Figure 1. Graph of solution p, q versus t by (a) spectral colloca-
tion when N = 20 on [106 − 1, 106] (p:-o-,q:-x-); (b) Symplectic 1,
h=0.01 on [1998,2000] (p:dash,q:dot); (c) Symplectic 2, h=0.01 on
[1998,2000]

Table 2 shows the CPU times used when the end point is fixed as t = 100. With a
low number of collocation points N and small step size h (symplectic), the errors
are almost the same from both methods but the CPU times used for the symplectic
method is much longer than the spectral method.

time(secs) Error in Energy Error in p(t) Error in q(t)

Colloc. N=20,[0, 105] 621 2.294946 × 10−10 2.228963 × 10−10 9.142997 × 10−10

Symp 1,h=0.01 [0,2000] 484 2.884887 × 10−3 7.999879 × 10−2 6.323009 × 10−1

Symp 1,h=0.01,[0,2350] 642 3.391444 × 10−3 9.409463 × 10−2 4.703431 × 10−2

Symp 1,h=0.01,[0, 105] > 6hrs

Symp 2,h=0.01,[0,2000] 445 7.200007 × 10−7 4.001598 × 10−2 3.160331 × 10−1

Symp 2,h=0.01,[0,2250] 603 7.200007 × 10−7 7.090428 × 10−1 3.543846 × 10−1

Symp 2,h=0.01,[0, 105] > 5hrs

Table 1. Comparison of CPU times between the three methods.

time(secs) Error in Energy Error in p(t) Error in q(t)

Colloc.,N=10,[0,100] 1.06 6.185242 × 10−6 5.631718 × 10−6 2.787909 × 10−6

Symp 1,h=0.001,[0,100] 78.29 7.188678 × 10−7 3.958494 × 10−5 1.994939 × 10−5

Symp 1,h=0.0008,[0,100] 191.98 4.600998 × 10−7 2.533450 × 10−5 1.276760 × 10−5

Symp 1,h=0.0001,[0,100] 591.45 1.796755 × 10−7 9.896375 × 10−6 4.987343 × 10−6

Table 2. Comparison of CPU times between the two methods
with the same order of errors.

Figure 2 shows the rate of convergence of the numerical error for p from both
methods. The spectral collocation gives a super-exponential rate [40, 41]. The
convergence rate is of order ( 1

N
)(0.75N) for the spectral collocation and h2 for the

symplectic scheme 1 (second order scheme).

The rest examples are nonlinear Hamiltonian systems.

Example 2: Consider a system with a Hamiltonian H(p, q) = p2 − q2 + q4 [12].
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Figure 2. (a) Collocation method, N=5,6,...,17 on [0,10]; (b)
Symplectic 1,h=0.05,0.1,...,0.5 on [0,10]

The corresponding system of nonlinear ODEs is

p′(t) = −∂H

∂q
= 2q − 4q3

q′(t) =
∂H

∂p
= 2p

with initial condition p(0) = p0, q(0) = q0.
There are three equilibrium points for this system: E1 = (p̄, q̄) = 0, E2 = (0, 1√

2
)

and E3 = (0,− 1√
2
). The zero equilibrium point is a saddle point and the other two

are centers. As a result, we have to be careful when we choose initial values for our
system in order to avoid the neighborhood of (0, 0). The iterative method will not
converge otherwise.

For the spectral collocation, the range of the initial condition for q that can be
used in order for the numerical solution to converge is about 0.625 to 0.88. For
the oscillatory behavior, we choose q0 within 0.625-0.7 and 0.715-0.88. If we choose
a number close to the equilibrium (0, 0.7071067811865475), we will get almost a
straight line. The initial values were chosen as p0 = 0, q0 = 0.73. This gives
H(p0, q0) = H0 = −0.24891758.

Figure 3 represents phase plots of p and q. We can see that with Symplectic 1,
the loop is thicker (there is a phase shift) and with the spectral collocation method,
the loop is thinner and sharper.
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Figure 3. Phase plot q versus p by (a) spectral collocation when
N = 30 on [0, 3000]; (b) Symplectic 1 h=0.0001 on [0,50]; (c)
symplectic sixth order h=0.01 on [0,3000].
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The CPU times for each method is shown in Table 3. We use h = 0.001 for
the symplectic schemes 1, 2 and h = 0.01 for a sixth order symplectic method [39].
Similar to the linear case, the spectral collocation is more effective in a long run.
It takes less CPU times than all three symplectic methods.

time(secs) Error in Energy

Collocation, N=50 on [0,10000] 2898 5.2735593669 × 10−15

Collocation, N=30 on [0,5000] 668 7.6605388699 × 10−15

Symplectic 1 on [0,450] 2849 9.9279222845 × 10−4

Symplectic 1 on [0,500] 3585 1.0088809618 × 10−3

Symplectic 1 on [0,1000] > 2 hrs

Symplectic 2 on [0,460] 3010 3.8086767073 × 10−10

Symplectic 2 on [0,1000] > 2 hrs

Symplectic 6th order on [0,4200] 2602 5.4956039718 × 10−15

Symplectic 6th order on [0,5000] 9833 7.6327832942 × 10−15

Symplectic 6th order on [0,10000] >3hrs

Table 3. Comparison of CPU times between the four methods.

Table 4 compares the CPU times used on the same interval [0,1000] for the sixth
order symplectic method and the spectral collocation method. We can see that
both methods give the same order of error in energy but the symplectic method
takes much longer time.

time(secs) Error in Energy

Collocation, N=18 on [0,1000] 36 5.7176485768 × 10−15

Symplectic 6th order h=0.015 on [0,1000] 12.61 3.6359804056 × 10−14

Symplectic 6th order h=0.01 on [0,1000] 80 4.7739590058 × 10−15

Table 4. Comparison of CPU times between the spectral collo-
cation and the sixth order symplectic method with the same order
of errors.

The convergence rates of the energy H for both methods are shown in Figure 4.
The rate is ( 1

N
)(0.6N) for the spectral collocation, O(h2) for the symplectic scheme

2, and O(h6) for the sixth order symplectic scheme.

4 6 8 10 12 14 16
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

N

er
ro

r 
in

 H

Collocation : N=5,...,16 on [0,10]

 

 
error in H

(1/p)0.6p

Figure 4. Error in H and ( 1
N
)(0.6N) versus N = 5, 6, ..., 16 by

spectral collocation on [0, 10].



A SPECTRAL COLLOCATION METHOD FOR HAMILTONIAN SYSTEMS 93

10
−3

10
−2

10
−1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

h

er
ro

r 
in

 e
ne

rg
y 

H

Symplectic scheme 2 : h=0.005,0.01,0.015,...,0.05 , on [0,10]

 

 
error in H

h2

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

h

er
ro

r 
in

 e
ne

rg
y 

H

symplectic sixth order scheme: ,p
0
=0,q

0
=0.73 on [0,10]

 

 
error in H

h6

Figure 5. (a) Error in H by Symplectic 2 with
h=0.005,0.01,0.015,...,0.05, on [0,10]; (b) Error in H by the
sixth order symplectic scheme.

Example 3: Threefold symmetry Hamiltonian system [13].
Consider a k−fold rotational symmetry system in phase plane with Hamiltonian

Hk(p, q) =

k
∑

j=1

cos(p cos(
2πj

k
) + q sin(

2πj

k
)).

For k = 3, the three axis-symmetric Hamiltonian system is,

H(p, q) = cos(p) + cos(−1

2
p+

√
3

2
q) + cos(

1

2
p+

√
3

2
q).

The corresponding system of nonlinear ODE for this H is

p′(t) = −∂H

∂q
=

√
3

2
sin(−1

2
p+

√
3

2
q) +

√
3

2
sin(

1

2
p+

√
3

2
q)

q′(t) =
∂H

∂p
= − sin(p) +

1

2
sin(−1

2
p+

√
3

2
q)− 1

2
sin(

1

2
p+

√
3

2
q)

with initial condition p(0) = π, q(0) = 0. In this case, H0 = −1.

Figure 6 contains the graphs of p, q with respect to time t. The result from
the symplectic method does not make a right corner like the one from the spectral
collocation method. We can see it clearly if we consider the phase plot of the results.
The phase plot from a sympletic method has fuzzy corners compared with sharp-
corner hexagon from the spectral collocation as shown in Figure 7. Note that the
possible solutions for threefold symmetry Hamiltonian system contain equilateral
triangles and hexagons depending on the initial conditions. We consider only a
hexagon case in this example. For the symplectic method, the smaller the h, the
more horizontally stretched the graph is. The graph tends to have the same behavior
as the collocation method when the size of h decreases.

Table 5 shows convergent rates for the energy H and the CPU times. We use
h = 0.001 for the symplectic schemes 3. The spectral collocation method used 45
minutes to obtain data in [0, 10000] but with the same time used, the symplectic
method produces data approximately on [0,450] with much lower accuracy.

The convergence rates for both methods are shown in Figure 8. For the spectral
collocation method, the error drops down to machine error with relatively small N .
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Figure 6. Graph of p (upper) and q (lower) versus t (a) by Col-
location method when N = 20 on [0,170]; (b) by Symplectic 3
h = 0.00005 on [0,80].
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Figure 7. Phase plot q versus p (a) by spectral collocation when
N = 20 on [0, 10000]; (b) by Symplectic 3 when h=0.001 on [0,1000]

time(secs) Error in Energy

Collocation, N=20 on [0,1000] 33 2.5368596112 × 10−13

Collocation, N=20 on [0,10000] 2725(45mins) 2.7539082125 × 10−12

Symplectic 3 on [0,400] 2190 6.425967063916294 × 10−3

Symplectic 3 on [0,600] 5360(89mins) 1.0537382086 × 10−2

Table 5. Comparison of CPU times between the two methods.

Example 4: The Henon-Heiles(HH) system [14, 15].
The Henon-Heiles(HH) Hamiltonian was introduced in the study of galactic dy-

namics to describe the motion of stars around the galactic center.

H(p1, p2, q1, q2) =
1

2
(p21 + p22 + q21 + q22) + q21q2 −

1

3
q32 .

The terms q21 , q
2
2 , form a potential well, which is responsible for the oscillations

of the particle (the first four terms are related to the Kinetic energy). The last two
terms, q21q2,

1
3q

3
2 are responsible for the existence of the exits from the orbit.
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Figure 8. (a) Error in H versus N when N = 5, 6, ..., 21 by
spectral collocation on [0, 500]; (b) Error in H versus h when
h = 0.005, 0.01, ....., 0.05 by the symplectic scheme 3 on [0, 10]
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There are four equilibrium points for this system which are E1 = (p̄1, p̄2, q̄1, q̄1) =

0, a center, E2 = (0, 0, 0, 1), E3 = (0, 0,

√
3

2
,− 1√

2
) and E4 = (0, 0,−

√
3

2
,− 1√

2
),

saddle points. As a result, there are three exits for the energy to escape according

to the three saddle points. The total energy HE = 0 for E1 and HE =
1

6
for

E2, E3, and E4. If the initial energy is far beyond this HE , the particles wander
inside the region for a certain time in the scattering region until they cross one of
the three energy line and escape to infinity. In other words, when the initial H < 1

6 ,

the solution is regular; when H > 1
6 , the solution is chaotic. Note that the time

they spent in bounded region is named “escape time”. The higher the energy, the
shorter escape times are found.

Figure 9 shows the phase plots for potential energy H when p1 = 2, p2 = 1 are
fixed, q2 and q1 vary. We can see that the three exits for the energy are at the three
saddle points E2, E3, E4 located at three corners of an equilateral triangle.
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The system of nonlinear ODE for this H is

p′1(t) = −∂H

∂q1
= −q1 − 2q1q2

p′2(t) = −∂H

∂q2
= −q2 − q21 + q22

q′1(t) =
∂H

∂p1
= p1

q′2(t) =
∂H

∂p2
= p2

We select two different sets of initial conditions. The first set represents a regular
case with

p1(0) = 0.011, p2(0) = 0, q1(0) = 0.013, q2(0) = −0.4; H0 = 0.101410733< 1/6.

The second set is a chaotic case with

p1(0) =
√
2× 0.15925, p2(0) = q1(0) = q2(0) = 0.12; H0 = 0.18200200> 1/6.

Figure 10 shows the chaotic solution and the phase plot when the particle wan-
ders in the bounded region until it crosses the energy threshold line and escapes.
Figure 11 represents phase plots of a regular solution from both methods. The
trajectory from symplectic method is denser than the one from collocation method.
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Figure 10. Chaotic solution by spectral collocation N = 15 (a)
on [0, 24]; (b) phase plot q2 versus q1 on [0,232].

The error in energy, H , and the CPU times are presented in the table. We choose
initial conditions from the regular case. We use h = 0.001 for Symplectic scheme 4.

time(secs) Error in Energy

Collocation, N=20 on [0,10000] 2691 1.9004658957 × 10−12

Collocation, N=20 on [0,1000] 25 1.9076407120 × 10−13

Symplectic 4 on [0,65] 21 6.0026862363 × 10−5

Symplectic 4 on [0,200] 970(16mins) 6.0026862363 × 10−5

Symplectic 4 on [0,1000] >2hrs

Table 6. Comparison of CPU times between the two methods.
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Figure 11. Phase plot of a regular case on [0,2000] (a) by the
spectral collocation N = 20; (b) by Symplectic 4 h=0.01.

The rate of convergence in energy using the regular initial values is shown in
Figure 12. Spectral collocation gives the rate in the order of ( 1

N
)(0.85N) and the

symplectic scheme 4 is of order one.
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Figure 12. (a) Error in H and ( 1
N
)(0.85N) versus N when N =

3, 4, ..., 12 by spectral collocation on [0, 10]; (b) Error in H versus
h when h = 0.005, 0.01, ...., 0.05 by Symplectic 4 on [0, 10].

Example 5: A modified Two-body Problem [38].
The Hamiltonian for this system is H = T + V where T = 1

2‖ppp‖2 and V =

− 1

‖qqq‖ − ǫ

2‖qqq‖3 . Thus

H(ppp,qqq) =
1

2
‖ppp‖2 − 1

‖qqq‖ − ǫ

2‖qqq‖3 .

where ǫ is a small perturbation parameter.
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The system of nonlinear ODEs for this energy is

p′1(t) = − q1
√

(q21 + q22)
3
− 3ǫq1

2
√

(q21 + q22)
5

p′2(t) = − q2
√

(q21 + q22)
3
− 3ǫq2

2
√

(q21 + q22)
5

q′1(t) = p1

q′2(t) = p2

with initial conditions p1(0) = p10, p2(0) = p20, q1(0) = q10, q2(0) = q20.

This is a modification of the two-body problem. It is about the system of two
massive bodies that attract each other by the gravitational force. We are seeking
for the positions and velocities of those two bodies. The first body is located at
the origin. The second body is located where its coordinates are (q1, q2) and the
corresponding velocity is (q′1, q

′
2) = (p1, p2). This model describes the motion of a

particle in a plane. A particle in this model is attracted gravitationally by a slightly
oblate sphere instead of a point mass. The attracting body rotates symmetrically
with respect to an axis perpendicular to the plane of the particle. If there is no
perturbation (ǫ), the problem is just a regular two-body problem[15].

Besides the energy H , this system also preserves the angular momentum which

is pTBq , where B = J for this problem, i.e
d(pT Jq)

dt
= 0 ⇒ pTJq = pT0 Jq0. We

use the initial values p1(0) = 0, p2(0) =

√

1 + e

1− e
, q1(0) = 1 − e, q2(0) = 0, where

e is the eccentricity of the orbit. Here if we choose e closer to one, the solution
tends to diverge and does not conserve energy well for both spectral collocation
and symplectic methods. We choose e small enough in order for the solution to
converge to an equilibrium point.

We compare the spectral collocation with a second order symplectic method.
The eccentricity e is 0.001 (almost a circle) for the numerical test. Both methods
preserve the structure. Figures 13 represents phase plots by spectral collocation
with a perturbation value ǫ = 0.005. For all reasonable N and h, the solutions
from both methods are almost the same with a slightly thicker orbit at the left
and right corners for symplectic method (not shown). Note that with a larger
perturbation, the body rotates in an oblique pattern. If we compare the time and
error, the spectral method gives a better result.

Table 7 represents the error in energy H , error in the angular momentum, and
the CPU times. For these initial conditions, both errors and CPU times from the
spectral collocation are better than a symplectic method. However, if we change
the initial conditions to p10 = 0.1, p20 = 0.9, q10 = q20 = 1, the errors from both
methods are almost in the same order but the spectral collocation is time efficient
as we can see from Table 8 with the two-body case (ǫ = 0).

The convergence rates for both methods are shown in Figure 14. The convergence
rate for symplectic scheme is of order three and ( 1

N
)(1.1N)for spectral collocation.

Example 6: The Three-body system [28].
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Figure 13. Phase plot of q1 and q2 when ǫ = 0.005 by collocation
method on [500,1000], N = 20;

time(secs) Error in Energy Error in Angular Momentum

Colloc,N=20,[0, 104] 4950 2.15614193 × 10−11 2.09121608 × 10−11

Colloc,N=20,[0,1000] 52 2.15372164 × 10−12 2.08877359 × 10−12

Symp 1,h=0.001,[0,75] 53 6.05561933 × 10−8 5.85881273 × 10−8

Symp 1,h=0.001,[0,80] 72 6.48879968 × 10−8 6.18349377 × 10−8

Table 7. Comparison of CPU times between the two methods.

time(secs) Error in Energy Error in Ang. Momentum

Colloc, N=20 on [0,100] 3 4.28660520 × 10−7 1.3618605 × 10−7

Symp 1,h=0.001,[0,40] 75 3.02104066 × 10−7 1.06633042 × 10−6

Symp 1,h=0.001,[0,50] 166 3.02104066 × 10−7 1.06633042 × 10−7

Table 8. Comparison of CPU times between the two methods
with the same order of errors when ǫ = 0.
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Figure 14. (a) Error in H and the angular momentum with
( 1
N
)(1.1N) versus N = 3, 4, ..., 12 by the spectral collocation

on [0, 100]; (b) Error in H and the angular momentum versus
h=0.005,0.01,0.015,...,0.05, on [0,100] by symplectic 1.

Consider the Hamiltonian of the Earth-Moon-Satellite system given by

H(px, py, x, y) =
p2x + p2y

2
+ (ypx − xpy)− (

(1 − µ)

r1
+

µ

r2
),
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where r21 = (x + µ)2 + y2, r22 = (x+ µ− 1)2 + y2.
This model describes the motion of the satellite around the Earth and Moon.

The Earth and Moon are located on the x-axis where their center of mass is placed
at the origin. The coordinate of the satellite is (x, y). It rotates in the orbit around
the Earth and Moon at the rate one moon month so the Earth and Moon are always
on the x-axis. The mass of the Moon is µ = 0.01215 (the length unit is 384400 km).

The corresponding system is given by

p′x(t) = py −
(1− µ)

r31
(x + µ)− µ

r32
(x + µ− 1)

p′y(t) = −px −
(1 − µ)

r31
y − µ

r32
y

x′(t) = px + y

y′(t) = py − x

We compare the spectral collocation with a second order symplectic method
under a transformation q1 = 1

2 (x+y) , q2 = 1
2 (x−y) , p1 = px+py , p2 = px−py. The

initial conditions for Figure 15 are p1(0) = 1.259185, p2(0) = −1.259185, q1(0) =
−0.25, q2(0) = −0.25 where we can see an orbit (the coordinate plot for this case is
a circle (not shown)) and p1(0) = −0.16, p2(0) = −0.7, q1(0) = 1.3, q2(0) = −0.31
for Figure 16 to observe the orbit of the satellite. Solutions are plotted using the
same frame sizes. In Figure 15, the orbit from a symplectic method is thicker than
the collocation method especially at the left and right corner.
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Figure 15. Phase plot p1 versus q1 of the orbit by (a) spectral
collocation on [850, 1000]; (b) Symplectic 1 h=0.005 on [850,1000].

Table 9 compares the error in energy H and the CPU times by using the first set
of the initial conditions. We use h = 0.005 for the symplectic method. At t = 300,
the spectral collocation method uses much less time (5.4 second vs. 18 second) and
yet, offers much better accuracy in energy (2× 10−7) than the symplectic method
(9× 10−3).

The convergence rates of each method are plotted in Figure 17. The rate for
spectral collocation is of order ( 1

N
)(0.33N) and for Symplectic 1 is of order three.
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Figure 16. Phase plot of the coordinate of the satellite, q2 ver-
sus q1 by (a) spectral collocation on [600, 1000]; (b) Symplectic 1
h=0.005 on [600,1000].

time(secs) Error in Energy

Collocation, N=20 on [0,300] 5.4 1.9090052472 × 10−7

Symplectic 1 on [0,300] 18 9.3757448742 × 10−3

Symplectic 1 on [0,150] 4.6 4.8046166186 × 10−3

Table 9. Comparison of CPU times between the two methods.
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Figure 17. (a) Error in H with ( 1
N
)(0.33N) versus N =

11, 12, ..., 21 by spectral collocation on [0, 100]; (b) Error in H ver-
sus h= 0.0025,0.005,....,0.015 by Symplectic 1 on [0,100].

5. Conclusion remarks

We have compared numerically a spectral collocation method and several sym-
plectic methods in solving Hamiltonian dynamical systems. Our numerical evi-
dences have demonstrated that the spectral collocation method has several advan-
tages.

1) It requires less CPU times in order to reach the same accuracy.
2) It preserves energy and symplectic structure better.
3) It predicts more accurate trajectories for long time.
In addition, the proposed collocation method is systematic and can be applied

to any Hamiltonian system without changing the basic algorithm. On the other
hand, one needs to design different symplectic methods for different problems. A
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theoretical investigation for the stability, convergence, and symplectic preserving
properties of the spectral collocation method is underway.
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Appendix
Scheme 1: Second order midpoint Euler Scheme [10].
This is an implicit method. Let z = (p1, p2, ..., pn, q1, ..., qn),

J =

(

0 In
−In 0

)

so J−1 =

(

0 −In
In 0

)

= −J , Hz = [Hp1 , ..., Hpn , Hq1 , ..., Hqn ]
T

1

h
(zk+1 − z

k) = J
−1

Hz(
1

2
z
k+1 +

1

2
z
k).

Simply written as

p
k+1
i = p

k
i − hHqi(

1

2
(pk+1 + p

k),
1

2
(qk+1 + q

k))

q
k+1
i = q

k
i + hHpi(

1

2
(pk+1 + p

k),
1

2
(qk+1 + q

k)), i = 1, ..., n.

For a linear system, we can replace the right hand side as

1

h
(zk+1 − z

k) = J
−1[

1

2
Hz(z

k+1) +
1

2
Hz(z

k)].

or

p
k+1
i = p

k
i − h

1

2
[Hqi(p

k+1
, q

k+1) +Hqi(p
k
, q

k)]

q
k+1
i = q

k
i + h

1

2
[Hpi(p

k+1
, q

k+1) +Hpi(p
k
, q

k)].

The equivalent scheme is symplectic for the linear system only. It is not symplectic for
nonlinear system.

Scheme 2: Second order scheme [17].

p
k+1
i = p

k
i − hHqi(p

k+1
, q

k)−
h2

2

n
∑

j=1

(HqjHpj )qi(p
k+1

, q
k)

q
k+1
i = q

k
i + hHpi(p

k+1
, q

k) +
h2

2

n
∑

j=1

(HqjHpj )pi(p
k+1

, q
k) , i = 1, ..., n.
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Note:
∑n

j=1
(HqjHpj )qi(p

k+1, qk) =
∑n

j=1
(HqjHpj )qi(p

k+1
1 , ..., pk+1

n , qk1 , ..., q
k
n)

T .
For n=1,

p
k+1 = p

k − hHq(p
k+1

, q
k)−

h2

2
(HqqHp +HpqHq)(p

k+1
, q

k)

q
k+1 = q

k + hHp(p
k+1

, q
k) +

h2

2
(HqpHp +HppHq)(p

k+1
, q

k).

Scheme 3: Second order scheme for the three axis-symmetric Hamiltonian system [16].

P1 = p+

√
3

4
h sin(

1

2
p+

√
3

2
q)

Q1 = q −
1

4
h sin(

1

2
p+

√
3

2
q)

P2 = P1 −

√
3

4
h sin(

1

2
P1 −

√
3

2
Q1)

Q2 = Q1 −
1

4
h sin(

1

2
P1 −

√
3

2
Q1)

P3 = P2 −

√
3

4
h sin(

1

2
P2 −

√
3

2
Q2)

Q3 = Q2 − h sin(P2)

Q4 = Q3 −
1

4
h sin(

1

2
P3 −

√
3

2
Q3)

p̂ = P3 +

√
3

4
h sin(

1

2
P3 +

√
3

2
Q4)

q̂ = Q4 −
1

4
h sin(

1

2
P3 +

√
3

2
Q4)

Scheme 4: Second order scheme for the Henon-Heiles(HH) system [15].

p
k+1
1 = p

k
1 − h(qk1 + 2qk1 q

k
2 )

p
k+1
2 = p

k
2 − h(qk2 + (q21)

k − (q22)
k)

q
k+1
1 = q

k
1 + hp

k+1
1

q
k+1
2 = q

k
2 + hp

k+1
2
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