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Abstract. In this paper, the θ scheme of operator splitting methods is applied

to the Navier-Stokes equations with nonlinear slip boundary conditions whose

variational formulation is the variational inequality of the second kind with

the Navier-Stokes operator. Firstly, we introduce the multiplier such that the

variational inequality is equivalent to the variational identity. Subsequently, we

give the θ scheme to compute the variational identity and consider the finite

element approximation of the θ scheme. The stability and convergence of the

θ scheme are showed. Finally, we give the numerical results.
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1. Introduction

Numerical simulation for the incompressible flow is the fundamental and signif-
icant problem in computational mathematics and computational fluid mechanics.
It is well known that the mathematical model of viscous incompressible fluid with
homogeneous boundary conditions is the Navier-Stokes equations

(1)

{

∂u

∂t
− ν∆u + (u · ∇)u +∇p = f,

divu = 0.

It is obvious that (1) is a coupled system with a first-order nonlinear evolution
equation and an imposed incompressible constrain so that the numerical simulation
for the Navier-Stokes equations is very difficult. The popular technique to overcome
this difficulty is to relax the solenoidal condition in an appropriate method and
to result in a pesudo-compressible system, such as the penalty method and the
artificial compressible method. The operator splitting method is also very useful to
overcome this shortage. The main advantage is that it can decouple the difficulties
associated to the nonlinear property with those associated to the incompressible
condition. For more detail, see [1].

The operator splitting method has been a popular tool for the numerical simula-
tion of the incompressible viscous flow. Based on the main idea of the operator split-
ting method, there have some different schemes, such as the Peaceman-Rachford
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scheme [2], the Douglas-Rachford scheme [3] and the θ scheme [4-5]. In this pa-
per, we only apply the θ scheme to the Navier-Stokes equations with nonlinear slip
boundary conditions. This class of boundary conditions are introduced by Fujita in
[6-7], where he investigated some hydrodynamics problems under nonlinear bound-
ary conditions, such as leak and slip boundary conditions involving a subdifferential
property. These types of boundary conditions appear in the modeling of blood flow
in a vein of an arterial sclerosis patient and in that of avalanche of water and rocks.
Moreover, the variational formulation of the Navier-Stokes equations with these
nonlinear boundary conditions is the variational inequality of the second kind.

The stability analysis of the θ scheme for the Navier-Stokes equations with the
whole homogeneous Dirichlet boundary conditions has been investigated in [8].
The difficulty lies in the treatment of the trilinear term in the right-hand side.
However, in this paper, besides the trilinear term, another difficulty is due to that
the variational formulation is the variational inequality. To overcome this difficulty,
we introduce the multiplier such that the variational inequality is equivalent to the
variational identity.

2. The Navier-Stokes Equations

Consider the following Navier-Stokes equations:

(2)

{

∂u

∂t
− ν∆u + (u · ∇)u +∇p = f, in QT ,

divu = 0, in QT ,

where QT = Ω× [0, T ] for some T > 0, u(t, x) denotes the velocity, p(t, x) denotes
the pressure, f(t, x) denotes the external force and ν > 0 is the kinematic viscous
coefficient. The domain Ω ⊂ R

2 is a bounded domain.
Given the initial value u(0, x) = u0(x) in Ω, we consider the following nonlinear

slip boundary conditions:

(3)

{

u = 0 on Γ× (0, T ],
un = 0, −στ (u) ∈ g∂|uτ | on S × (0, T ],

where Γ ∩ S = ∅,Γ ∪ S = ∂Ω with |Γ| 6= 0, |S| 6= 0. g is a scalar functions; un =
u · n and uτ = u − unn are the normal and tangential components of the velocity,
where n stands for the unit vector of the external normal to S; στ (u) = σ − σnn,
independent of p, is the tangential component of the stress vector σ which is defined

by σi = σi(u, p) = (µeij(u)− pδij)nj , where eij(u) =
∂ui

∂xj +
∂uj

∂xi , i, j = 1, 2. The set
∂ψ(a) denotes a subdifferential of the function ψ at the point a:

∂ψ(a) = {b ∈ R
2 : ψ(h)− ψ(a) ≥ b · (h− a), ∀ h ∈ R

2}.
Denote

V = {u ∈ H1(Ω)2; u|Γ = 0, u·n|S = 0}, V0 = H1
0 (Ω)

2; Vσ = {u ∈ V | divu = 0};

H = {u ∈ L2(Ω)2; u · n|∂Ω = 0}, M = L2
0(Ω) = {q ∈ L2(Ω);

∫

Ω

qdx = 0}.

Let || · ||k be the norm of the Hilbert space Hk(Ω) or Hk(Ω)2. Let (·, ·) and || · || be
the inner product and the norm in L2(Ω)2 or L2(Ω). Then we can equip the inner
product and the norm in V by (∇·,∇·) and || · ||V = ||∇ · ||, respectively, because
||∇ · || is equivalent to || · ||1 according to the Poincare inequality.

If X is a Banach space, Lp(0, T,X), 1 ≤ p < +∞ will be the linear space of
measurable functions from the interval (0, T ) into X such that

∫ T

0

||u(t)||pXdt <∞.
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If p = +∞, we require that

ess sup
t∈[0,T ]

||u(t)||X <∞.

Introduce the following bilinear forms:














a(u, v) = ν(∇u,∇v) ∀ u, v ∈ V,
d(u, p) = (p, divu) ∀ u ∈ V, p ∈M,

c(µ, u) =

∫

S

µuτds ∀ µ ∈ L2(S), u ∈ V,

and the trilinear form

b(u, v, w) = ((u · ∇)v, w) +
1

2
((divu)v, w)

=
1

2
((u · ∇)v, w) − 1

2
((u · ∇)w, v) ∀ u, v, w ∈ V.

It is obvious that b(u, v, w) satisfies the antisymmetric property:

b(u, v, w) = −b(u,w, v) ∀ u, v, w ∈ V.

Denote j(·) =
∫

S

g|·|ds. Given u0 ∈ Vσ, f ∈ L2(0, T,H) and g ∈ L2(0, T, L∞(S))

with g(t) ≥ 0, the variational problem of the problem (2)-(3) is: find u ∈ L∞(0, T,H)∩
L2(0, T, V ) with u′ ∈ L2(0, T, V ′) and p ∈ L2(0, T,M) such that

(4)







< u′, v − u > +a(u, v − u) + b(u, u, v − u)− d(v − u, p)
+j(vτ )− j(uτ ) ≥ (f, v − u) ∀ v ∈ V,

d(u, q) = 0 ∀ q ∈M,

which is the variational inequality of the second kind with the Navier-Stokes oper-
ator.

Using a regularized method, in [9] we show the following theorem about the
existence and uniqueness of the solution to (4):

Theorem 2.1 Given u0 ∈ Vσ, f ∈ L2(0, T,H) and g ∈ L2(0, T, L∞(S)), there
exists a unique solution u ∈ L∞(0, T,H) ∩ L2(0, T, V ) with u′ ∈ L2(0, T, V ′) and
p ∈ L2(0, T,M) of the variational inequality (4). Moreover, the following energy
inequality holds:

sup
0≤t≤T

||u(t)||2 + ν

∫ T

0

||u(ξ)||2V dξ ≤
4

ν

∫ T

0

(||f(ξ)||2V ′ + ||g(ξ)||2S)dξ + 2||u0||2.

3. Existence of Multiplier

Define the convex set Λ by

Λ = {µ ∈ L2(S), |µ(x)| ≤ 1 a.e. on S}.
The next theorem from the idea in [10] shows the existence of the multiplier such
that the variational inequality (4) is equivalent to the following variational formu-
lation (5).

Theorem 3.1 For almost everywhere t ∈ (0, T ], that u ∈ L∞(0, T,H) ∩
L2(0, T, V ) with u′ ∈ L2(0, T, V ′) and p ∈ L2(0, T,M) is the solution of the varia-
tional inequality (4) if and only if there exists a λ(t) ∈ Λ such that
(5)















< u′, v > +a(u, v) + b(u, u, v)− d(v, p) +

∫

S

λgvτds = (f, v) ∀ v ∈ V,

d(u, q) = 0 ∀ q ∈M,
λuτ = |uτ | a.e. on S.
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Proof We first prove that (4) implies (5). Setting v = 0 and v = 2u in (4)
yields

(6) < u′, u > +a(u, u) + j(uτ )− d(u, p) = (f, u).

Hence

(f, v)− < u′, v > −a(u, v)− b(u, u, v) + d(v, p) ≤ j(vτ ) ∀ v ∈ V,

which implies that

(7)
|(f, v)− < u′, v > −a(u, v)− b(u, u, v) + d(v, p)|

≤ j(vτ ) =

∫

S

g|vτ |ds ∀ v ∈ V.

Then there exists a continuous linear functional l(·) on H 1
2 (S) such that

(8) (f, v)− < u′, v > −a(u, v)− b(u, u, v) + d(v, p) = l(vτ |S) ∀ v ∈ V.

From (7), we have

|l(µ)| ≤ c||g||L∞(S)||µ||L2(S) ∀ µ ∈ H
1
2 (S).

Since H
1
2 (S) ⊂ L2(S), according to the Hahn-Banach theorem, there exists a λ ∈ Λ

such that

l(µ) =

∫

S

λgµds ∀ µ ∈ H
1
2 (S).

Therefore, according to (8), we have

(f, v)− < u′, v > −a(u, v)− b(u, u, v) + d(v, p) =

∫

S

λgvτds ∀ v ∈ V,

which shows the first formulation of (5). Taking v = u in the above equation, we
obtain

< u′, u > +a(u, u)− d(u, p) +

∫

S

λguτds = (f, u).

In view of (6), one has

(9)

∫

S

(λguτ − g|uτ |)ds = 0.

Since |λ| ≤ 1,

g|uτ | − λguτ ≥ 0,

which, together with (9), implies that

λuτ = |uτ | a.e. on S.

This completes the proof of (5). Next, we will show that (5) implies (4). For almost
everywhere t ∈ (0, T ], let (u′(t), u(t), p(t), λ(t)) ∈ V ′ × V ×M × Λ be the solution
of (5), then

< u′, v−u > +a(u, v−u)+b(u, u, v−u)−d(v−u, p)+
∫

S

λg(vτ −uτ )ds = (f, v−u).

From the third identity in (5), we obtain

< u′, v−u > +a(u, v−u)+b(u, u, v−u)−d(v−u, p)+
∫

S

λgvτds−
∫

S

g|uτ |ds = (f, v−u).

Since λvτ ≤ |vτ | a.e. on S,

< u′, v−u > +a(u, v−u)+b(u, u, v−u)−d(v−u, p)+
∫

S

g|vτ |ds−
∫

S

g|uτ |ds ≥ (f, v−u).
�
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4. The θ Scheme

In this section, we will give the θ scheme to solve the variational problem (5). Let

0 < θ <

√
24− 3

10
, we divide the time interval [tn, tn+1] of length ∆t into three parts

[tn, tn+θ), [tn+θ, tn+1−θ) and [tn+1−θ, tn+1], where the lengths are θ∆t, (1 − 2θ)∆t
and θ∆t, respectively. Denote un = u(tn, x), p

n = p(tn, x), λ
n = λ(tn, x), f

n =
f(tn, x), g

n = g(tn, x). Let α > 0 and β > 0 with α+ β = 1. We give the following
θ scheme:

Step I:

(10) u0 = u0 ∈ Vσ, λ0 ∈ Λ is given.

For every n ≥ 0, un, λn, we can compute un+θ, un+1−θ and un+1 as follows
Setp II:

(11)



















Find (un+θ, pn+θ) ∈ V ×M such that
1

θ∆t
(un+θ, v) + αa(un+θ, v)− d(v, pn+θ) =

1

θ∆t
(un, v)− βa(un, v)

−b(un, un, v)− c(λn, gnv) + (fn, v) ∀ v ∈ V,
d(un+θ, q) = 0 ∀ q ∈M.

Setp III:

(12) λn+1−θ = PΛ(λ
n + ρgn+θun+θ

τ ) ρ > 0,

where
PΛ(µ) = sup(−1, inf(1, µ)) ∀ µ ∈ L2(S).

Step IV:

(13)



























Find un+1−θ ∈ V such that
1

(1 − 2θ)∆t
(un+1−θ, v) + βa(un+1−θ, v) + b(un+1−θ, un+1−θ, v)

=
1

(1 − 2θ)∆t
(un+θ, v)− αa(un+θ, v) + d(v, pn+θ)

−c(λn+1−θ, gn+1−θv) + (fn, v) ∀ v ∈ V.

Step V:

(14)



























Find (un+1, pn+1) ∈ V ×M such that
1

θ∆t
(un+1, v) + αa(un+1, v)− d(v, pn+1) =

1

θ∆t
(un+1−θ, v)

−βa(un+1−θ, v)− b(un+1−θ, un+1−θ, v)
−c(λn+1−θ, gn+1−θv) + (fn+1, v) ∀ v ∈ V

d(un+1, q) = 0 ∀ q ∈M.

Step VI:

(15) λn+1 = PΛ(λ
n+1−θ + ρgn+1un+1

τ ) ρ > 0.

5. Finite Element Approximation

Let Th be a family of regular triangular partitions of Ω into triangles of diameter
not greater than 0 < h < 1 [11]. Let Vh ⊂ V and Mh ⊂M be the conforming finite
element subspaces, which satisfy the discrete inf-sup condition, i.e., there exists a
positive constant β > 0 independent of h such that

β||ph|| ≤ sup
vh∈Vh

d(vh, ph)

||vh||V
.
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Denote Vσh the discretized solenoidal subspace of Vh. For uh ∈ Vh, we have the
following inverse inequality:

||uh||V ≤ c1h
−1||uh||,

where c1 > 0 is independent of h. According to the definition of b(·, ·, ·), we have

b(uh, vh, vh) ≡ 0 ∀ uh, vh ∈ Vh.

Moreover, it satisfies

b(uh, vh, wh) ≤ c2h
−1||uh|| · ||vh||V · ||wh|| ∀ uh, vh, wh ∈ Vh,

where c2 > 0 is independent of h.
Denote Λh = {wh : |wh(xS)| ≤ 1, ∀ xS ∈ NS}, where NS is the set of all

nodes on S. For every λh ∈ Λh and vh ∈ Vh, we have

c(λh, gvh) ≤ c4||g||L∞(S)||vh||V .
For simplicity, we assume ci = 1, i = 1, 2, 3.

For initial value u0 ∈ Vσ, the discretized initial value u0h ∈ Vσh is defined as
follows

a(u0h, vh) = a(u0, vh) ∀ vh ∈ Vσh.

The finite element approximation of the θ scheme (10)-(15) is
Step I:

(16) u0h = u0h ∈ Vσh, λ0h ∈ Λh is given.

For every n ≥ 0, unh, λ
n
h , we can compute un+θ

h , un+1−θ
h and un+1

h as follows:
Step II:

(17)



















Find (un+θ
h , pn+θ

h ) ∈ Vh ×Mh such that
1

θ∆t
(un+θ

h , vh) + αa(un+θ
h , vh)− d(vh, p

n+θ
h ) =

1

θ∆t
(unh, vh)

−βa(unh, vh)− b(unh, u
n
h, vh)− c(λnh , g

nvh) + (fn, vh) ∀ vh ∈ Vh,

d(un+θ
h , qh) = 0 ∀ qh ∈Mh.

Step III:

(18) λn+1−θ
h (xS) = PΛh

(λnh(xS) + ρgn+θ(xS)u
n+θ
hτ (xS)) ∀ xS ∈ NS, ρ > 0,

where PΛh
is the projection operator from R to [−1, 1].

Step IV:

(19)



























Find un+1−θ
h ∈ Vh such that

1

(1 − 2θ)∆t
(un+1−θ

h , vh) + βa(un+1−θ
h , vh) + b(un+1−θ

h , un+1−θ
h , vh)

=
1

(1− 2θ)∆t
(un+θ

h , vh)− αa(un+θ
h , vh) + d(vh, p

n+θ
h )

−c(λn+1−θ
h , gn+1−θvh) + (fn, vh) ∀ vh ∈ Vh.

Step V:

(20)



























Find (un+1
h , pn+1

h ) ∈ Vh ×Mh such that
1

θ∆t
(un+1

h , vh) + αa(un+1
h , vh)− d(vh, p

n+1
h ) =

1

θ∆t
(un+1−θ

h , vh)

−βa(un+1−θ
h , vh)− b(un+1−θ

h , un+1−θ
h , vh)

−c(λn+1−θ
h , gn+1−θvh) + (fn+1, vh) ∀ vh ∈ Vh

d(un+1
h , qh) = 0 ∀ qh ∈Mh.

Step VI:

(21) λn+1
h (xS) = PΛh

(λn+1−θ
h (xS) + ρgn+1(xS)u

n+1
hτ (xS)) ∀ xS ∈ NS , ρ > 0.
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6. Stability Analysis

In this section, we will show the stability property of the finite element discretized
θ scheme (16)-(21).

Lemma 6.1 If (un+θ
h , pp+θ

h ) ∈ Vh × Mh is the solution of the problem (17),
then there exists some positive constant C0 > 0 such that

(22)
||un+θ

h ||2 + αθ∆tν||un+θ
h ||2V + βθ∆tν||unh ||2V + (

1

2
− βθ∆tν

h2
)||un+θ

h − unh||2

≤ ||unh||2 + C0(∆th
−1)2||unh||2||unh||2V +

C0∆t

ν
(||fn||2 + ||gn||2L∞(S)).

Proof Taking vh = un+θ
h in (17) gives

1

θ∆t
||un+θ

h ||2 + αν||un+θ
h ||2V =

1

θ∆t
(unh, u

n+θ
h )− βa(unh, u

n+θ
h )

−b(unh, unh, un+θ
h ) + (fn, un+θ

h )− c(λnh , g
nun+θ

h ).

In terms of (u, v) =
1

2
|u|2 + 1

2
|v|2 − 1

2
|u− v|2, the right hand of the above identity

is equivalent to

− 1

2θ∆t
||un+θ

h − unh||2 +
1

2θ∆t
||un+θ

h ||2 + 1

2θ∆t
||unh||2 +

βν

2
||un+θ

h − unh||2V
−βν

2
||unh||2V − βν

2
||un+θ

h ||2V − b(unh, u
n
h, u

n+θ
h ) + (fn, un+θ

h )− c(λnh, g
nun+θ

h ).

According to Young’s inequality, we have

||un+θ
h ||2 + (1 + α)νθ∆t||un+θ

h ||2V + νβθ∆t||unh ||2V + (1− βνθ∆t

h2
)||un+θ

h − unh||2

≤ ||unh||2 − 2θ∆tb(unh, u
n
h, u

n+θ
h ) + 2θ∆t(fn, un+θ

h )− 2θ∆tc(λnh , g
nun+θ

h )

≤ ||unh||2 − 2θ∆tb(unh, u
n
h, u

n+θ
h − unh) + 2θ∆t(fn, un+θ

h )− 2θ∆tc(λnh , g
nun+θ

h )

≤ ||unh||2 + 2θ∆th−1||unh||||unh||V ||un+θ
h − unh||

+2θ∆t||fn||||un+θ
h ||V + 2θ∆t||gn||L∞(S)||un+θ

h ||V
≤ ||unh||2 + νθ∆t||un+θ

h ||2V +
1

2
||un+θ

h − unh||2

+C0(∆th
−1)2||unh||2||unh||2V +

C0∆t

ν
(||fn||2 + ||gn||2L∞(S)).

This completes the proof of (22). �

Lemma 6.2 If un+1−θ
h ∈ Vh is the solution of the problem (19), then there

exists the positive constant C0 > 0 such that

(23)

||un+1−θ
h ||2 + (1 − 2θ)βν∆t||un+1−θ

h ||2V +
1

2
||un+1−θ

h − un+θ
h ||2

+(1− 2θ)αν∆t||un+θ
h ||2V

≤ ||un+θ
h ||2 + C0(ν∆th

−1)2||unh||2V + C0(∆th
−1)2||unh||2||unh||2V

+
C0∆t

ν
(||fn||2 + ||gn||2L∞(S) + ||gn+1−θ||2L∞(S))

+C0(∆th
−1)2||gn||2

L∞(S).

Proof Taking vh = un+1−θ
h in (19) gives

1

(1− 2θ)∆t
||un+1−θ

h ||2 + βν||un+1−θ
h ||2V

=
1

(1− 2θ)∆t
(un+θ

h , un+1−θ
h )− αa(un+θ

h , un+1−θ
h ) + d(un+1−θ

h , pn+θ
h )

+(fn, un+1−θ
h )− c(λn+1−θ

h , gn+1−θun+1−θ
h ).
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According to (17), we have

d(un+1−θ
h , pn+θ

h ) = d(un+1−θ
h − un+θ

h , pn+θ
h )

=
1

θ∆t
(un+θ

h − unh, u
n+1−θ
h − un+θ

h ) + αa(un+θ
h , un+1−θ

h − un+θ
h )

+βa(unh, u
n+1−θ
h − un+θ

h ) + b(unh, u
n
h, u

n+1−θ
h − un+θ

h )

−(fn, un+1−θ
h − un+θ

h ) + c(λnh , g
n(un+1−θ

h − un+θ
h )).

Hence,

1

(1− 2θ)∆t
||un+1−θ

h ||2 + βν||un+1−θ
h ||2V

=
1

(1− 2θ)∆t
(un+θ

h , un+1−θ
h )− αa(un+θ

h , un+1−θ
h ) + (fn, un+1−θ

h )

−c(λn+1−θ
h , gn+1−θun+1−θ

h ) +
1

θ∆t
(un+θ

h − unh, u
n+1−θ
h − un+θ

h )

+αa(un+θ
h , un+1−θ

h − un+θ
h ) + βa(unh, u

n+1−θ
h − un+θ

h )

+b(unh, u
n
h, u

n+1−θ
h − un+θ

h )− (fn, un+1−θ
h − un+θ

h ) + c(λnh, g
n(un+1−θ

h − un+θ
h ))

=
1

(1− 2θ)∆t
(un+θ

h , un+1−θ
h )− αν||un+θ

h ||2V +
1

θ∆t
(un+θ

h − unh, u
n+1−θ
h − un+θ

h )

+βa(unh, u
n+1−θ
h − un+θ

h ) + b(unh, u
n
h, u

n+1−θ
h − un+θ

h )

+(fn, un+θ
h )− c(λn+1−θ

h , gn+1−θun+1−θ
h ) + c(λnh, g

n(un+1−θ
h − un+θ

h ))

= − 1

2(1− 2θ)∆t
||un+1−θ

h − un+θ
h ||2 + 1

2(1− 2θ)∆t
||un+1−θ

h ||2

+
1

2(1− 2θ)∆t
||un+θ

h ||2 − αν||un+θ
h ||2V +

1

θ∆t
(un+θ

h − unh, u
n+1−θ
h − un+θ

h )

+βa(unh, u
n+1−θ
h − un+θ

h ) + b(unh, u
n
h, u

n+1−θ
h − un+θ

h ) + (fn, un+θ
h )

−c(λn+1−θ
h , gn+1−θun+1−θ

h ) + c(λnh , g
n(un+1−θ

h − un+θ
h )).

That is

1

2
||un+1−θ

h ||2 + βν(1− 2θ)∆t||un+1−θ
h ||2V +

1

2
||un+1−θ

h − un+θ
h ||2

≤ 1

2
||un+θ

h ||2 − (1− 2θ)∆tαν||un+θ
h ||2V +

1− 2θ

θ
||un+θ

h − unh|| · ||un+1−θ
h − un+θ

h ||
+β(1− 2θ)∆ta(unh, u

n+1−θ
h − un+θ

h ) + (1− 2θ)∆tb(unh, u
n
h, u

n+1−θ
h − un+θ

h )

+(1− 2θ)∆t(fn, un+θ
h )− (1− 2θ)∆tc(λn+1−θ

h , gn+1−θun+1−θ
h )

+(1− 2θ)∆tc(λnh , g
n(un+1−θ

h − un+θ
h ))

≤ 1

2
||un+θ

h ||2 − (1− 2θ)∆tαν||un+θ
h ||2V +

1

4
||un+1−θ

h − un+θ
h ||2

+
C1

2
(
1− 2θ

θ
)2||un+θ

h − unh||2 +
C1

2
(ν∆th−1)2||unh||2V +

C1

2
(∆th−1)2||unh||2||unh||2V

+
(1− 2θ)∆tαν

2
||un+θ

h ||2V +
βν(1 − 2θ)∆t

2
||un+1−θ

h ||2V +
C1

2
(∆th−1)2||gn||2L∞(S)

+
C1∆t

2ν
(||fn||2 + ||gn+1−θ||2L∞(S)),

where C1 > 0 is some positive constant. Thus we obtain

(24)

||un+1−θ
h ||2 + βν(1 − 2θ)∆t||un+1−θ

h ||2V + (1− 2θ)∆tαν||un+θ
h ||2V

+
1

2
||un+1−θ

h − un+θ
h ||2

≤ ||un+θ
h ||2 + C1(

1− 2θ

θ
)2||un+θ

h − unh||2 + C1(ν∆th
−1)2||unh||2V

+C1(∆th
−1)2||unh||2||unh||2V + C1(∆th

−1)2||gn||2
L∞(S)

+
C1∆t

ν
(||fn||2 + ||gn+1−θ||2L∞(S)).
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Taking vh = un+θ
h − unh ∈ Vσh in (17) gives

0 = d(un+θ
h − unh, p

n+θ)

=
1

θ∆t
||un+θ

h − unh||2 + αa(un+θ
h , un+θ

h − unh) + βa(unh, u
n+θ
h − unh)

+b(unh, u
n
h, u

n+θ
h − unh) + c(λnh , g

n(un+θ
h − unh))− (fn, un+θ

h − unh).

Then

||un+θ
h − unh||2 + θ∆tαν||un+θ

h − unh||2V
≤ θ∆tν||unh||V · ||un+θ

h − unh||V + θ∆th−1||unh|| · ||unh||V · ||un+θ
h − unh||

+θ∆t||gn||L∞(S)||un+θ
h − unh||V + θ∆t||fn||||un+θ

h − unh||V
≤ 1

2
||un+θ

h − unh||2 +
θ∆tαν

2
||un+θ

h − unh||2V +
C2

2
(∆tνh−1)2||unh||2V

+
C2

2
(∆th−1)2||unh||2||unh||2V +

C2∆t

2ν
(||fn||2 + ||gn||2L∞(S)),

where C2 > 0 is some positive constant. That is

(25)

||un+θ
h − unh||2 + θ∆tαν||un+θ

h − unh||2V
≤ C2(∆tνh

−1)2||unh||2V + C2(∆th
−1)2||unh||2||unh||2V

+C2
∆t

ν
(||fn||2 + ||gn||2L∞(S)).

Substituting (25) into (24), we shows (23). �

Lemma 6.3 If (un+1
h , pp+1

h ) ∈ Vh ×Mh is the solution of the problem (20), if
∆t and h satisfy h2 > 8βθ∆tν, then there exists the constant C0 > 0 such that

(26)

||un+1
h ||2 + αθ∆tν||un+1

h ||2V + (
1

4
− 2βνθ∆t

h2
)||un+1

h − un+1−θ
h ||2

+
1

2
θ∆tβν||un+1−θ

h ||2V
≤ ||un+1−θ

h ||2 + [(
2θ

1− 2θ
)2 +

1

8
]||un+1−θ

h − un+θ
h ||2

+C0(∆th
−1)2||unh||2||unh||2V +

33

8
||un+θ

h − unh||2

+
C0∆t

ν
(||fn+1||2 + ||gn||2L∞(S) + ||gn+1−θ||2L∞(S)).

Proof Similar to the proof of Lemma 6.1, we have

(27)

||un+1
h ||2 + (1 + α)νθ∆t||un+1

h ||2V + νβθ∆t||un+1−θ
h ||2V

+(1− βνθ∆t

h2
)||un+1

h − un+1−θ
h ||2

≤ ||un+1−θ
h ||2 − 2θ∆tb(un+1−θ

h , un+1−θ
h , un+1

h )

+2θ∆t(fn+1, un+1
h )− 2θ∆tc(λn+1−θ

h , gn+1−θun+1
h ).

Taking vh = un+1
h −un+1−θ

h in (19) and observing that b(un+1−θ
h , un+1−θ

h , un+1−θ
h ) =

0, then we obtain

(28)

−b(un+1−θ
h , un+1−θ

h , un+1
h ) = −b(un+1−θ

h , un+1−θ
h , un+1

h − un+1−θ
h )

=
1

(1 − 2θ)∆t
(un+1−θ

h − un+θ
h , un+1

h − un+1−θ
h )

+βa(un+1−θ
h , un+1

h − un+1−θ
h ) + αa(un+θ

h , un+1
h − un+1−θ

h )

+c(λn+1−θ
h , gn+1−θ(un+1

h − un+1−θ
h ))

−d(un+1
h − un+1−θ

h , pn+θ)− (fn, un+1
h − un+1−θ

h ).
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Taking vh = un+1
h − un+1−θ

h in (17) gives

−d(un+1
h − un+1−θ

h , pn+θ
h )

=
1

θ∆t
(unh − un+θ

h , un+1
h − un+1−θ

h )− αa(un+θ
h , un+1

h − un+1−θ
h )

−βa(unh, un+1
h − un+1−θ

h )− b(unh, u
n
h, u

n+1
h − un+1−θ

h )

−c(λnh, gn(un+1
h − un+1−θ

h )) + (fn, un+1
h − un+1−θ

h ).

Substituting the above identity into (28), we have

−2θ∆tb(un+1−θ
h , un+1−θ

h , un+1
h ) =

2θ

1− 2θ
(un+1−θ

h − un+θ
h , un+1

h − un+1−θ
h )

+2θ∆tβa(un+1−θ
h , un+1

h − un+1−θ
h ) + 2θ∆tc(λn+1−θ

h , gn+1−θ(un+1
h − un+1−θ

h ))

+2(unh − un+θ
h , un+1

h − un+1−θ
h )− 2θ∆tβa(unh, u

n+1
h − un+1−θ

h )

−2θ∆tb(unh, u
n
h, u

n+1
h − un+1−θ

h )− 2θ∆tc(λnh , g
n(un+1

h − un+1−θ
h )).

Substituting above identity into (27) and according to
θβ∆tν

h2
≤ 1

8
, we have

||un+1
h ||2 + (1 + α)νθ∆t||un+1

h ||2V
+νβθ∆t||un+1−θ

h ||2V + (1 − βνθ∆t

h2
)||un+1

h − un+1−θ
h ||2

≤ ||un+1−θ
h ||2 + 2θ

1− 2θ
(un+1−θ

h − un+θ
h , un+1

h − un+1−θ
h )

+2(unh − un+θ
h , un+1

h − un+1−θ
h ) + 2θ∆tβa(un+1−θ

h − unh, u
n+1
h − un+1−θ

h )

+2θ∆tc(λn+1−θ
h , gn+1−θ(un+1

h − un+1−θ
h ))− 2θ∆tb(unh, u

n
h, u

n+1
h − un+1−θ

h )

−2θ∆tc(λnh , g
n(un+1

h − un+1−θ
h )) + 2θ∆t(fn+1, un+1

h )

−2θ∆tc(λn+1−θ
h , gn+1−θun+1

h )

≤ ||un+1−θ
h ||2 + θ∆tν||un+1

h ||2V +
3

4
||un+1

h − un+1−θ
h ||2 + 4||un+θ

h − unh||2

+(
2θ

1− 2θ
)2||un+1−θ

h − un+θ
h ||2 + θ∆tβν

h2
||un+1

h − un+1−θ
h ||2+

θ∆tβν||un+1−θ
h − unh||2V + C0(∆th

−1)2||unh||2||unh||2V
+C0

∆t

ν
(||gn||2L∞(S) + ||gn+1−θ||2L∞(S) + ||fn+1||2)

≤ ||un+1−θ
h ||2 + θ∆tν||un+1

h ||2V +
3

4
||un+1

h − un+1−θ
h ||2 + 4||un+θ

h − unh||2

+(
2θ

1− 2θ
)2||un+1−θ

h − un+θ
h ||2 + θ∆tβν

h2
||un+1

h − un+1−θ
h ||2

+
θβ∆tν

h2
||un+1−θ

h − un+θ
h ||2 + θβ∆tν

h2
||un+θ

h − unh||2 + C0(∆th
−1)2||unh||2||unh||2V

+C0
∆t

ν
(||gn||2L∞(S) + ||gn+1−θ||2L∞(S) + ||fn+1||2)

≤ ||un+1−θ
h ||2 + θ∆tν||un+1

h ||2V +
3

4
||un+1

h − un+1−θ
h ||2 + 33

8
||un+θ

h − unh||2

+[(
2θ

1− 2θ
)2 +

1

8
]||un+1−θ

h − un+θ
h ||2 + θ∆tβν

h2
||un+1

h − un+1−θ
h ||2

+C0(∆th
−1)2||unh||2||unh||2V + C0

∆t

ν
(||gn||2L∞(S) + ||gn+1−θ||2L∞(S) + ||fn+1||2).

Simplifying the above inequality gives (26). �
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Since 0 < θ ≤
√
24− 3

10
, then (

2θ

1− 2θ
)2 +

1

8
≤ 1

2
. Thus, substituting (22) and

(23) into (26) gives

||un+1
h ||2 + αθ∆tν||un+1

h ||2V
+(

1

4
− 2βνθ∆t

h2
)||un+1

h − un+1−θ
h ||2 + 1

2
θ∆tβν||un+1−θ

h ||2V
≤ ||un+1−θ

h ||2 + 1

2
||un+1−θ

h − un+θ
h ||2 + C0(∆th

−1)2||unh||2||unh||2V
+4||un+θ

h − unh||2 +
C0∆t

ν
(||fn+1||2 + ||gn||2L∞(S) + ||gn+1−θ||2L∞(S))

≤ ||un+θ
h ||2 + 4||un+θ

h − unh||2 + C0(ν∆th
−1)2||unh||2V

+2C0(∆th
−1)2||unh||2||unh||2V + C0(∆th

−1)2||gn||2
L∞(S)

+
C0∆t

ν
(||fn||2 + ||fn+1||2 + 2||gn||2L∞(S) + 2||gn+1−θ||2L∞(S))

≤ ||unh||2 + C0(ν∆th
−1)2||unh||2V

+3C0(∆th
−1)2||unh||2||unh||2V + C0(∆th

−1)2||gn||2
L∞(S)

+
2C0∆t

ν
(||fn||2 + ||fn+1||2 + ||gn||2L∞(S) + ||gn+1−θ||2L∞(S)),

where we require that
1

2
− βθ∆tν

h2
> 0, that is h2 > 2βθ∆tν. Then for n =

0, 1, · · · , r, r ∈ Z+, we have

(29)

||ur+1
h ||2 + αθ∆tν

r
∑

n=0

||un+1
h ||2V + (

1

4
− 2βνθ∆t

h2
)

r
∑

n=0

||un+1
h − un+1−θ

h ||2

+
1

2
θ∆tβν

r
∑

n=0

||un+1−θ
h ||2V

≤ ||u0h||2 + C0(ν∆th
−1)2

r
∑

n=0

||unh||2V + 3C0(∆th
−1)2

r
∑

n=0

||unh||2||unh||2V

+
2C0∆t

ν

r
∑

n=0

(||fn||2 + ||fn+1||2 + ||gn||2L∞(S) + ||gn+1−θ||2L∞(S))

+C0(∆th
−1)2

r
∑

n=0

||gn||2L∞(S)

≤ ||u0h||2 + C0(ν∆th
−1)2

r
∑

n=0

||unh||2V + 3C0(∆th
−1)2

r
∑

n=0

||unh||2||unh||2V

+
8C0∆t

ν

r
∑

n=0

(||fn||2 + ||gn||2L∞(S)),

where we use (∆th−1)2 ≤ ∆t

2βθν
. Denote

ΛT = ||u0h||2 + C0(ν∆th
−1)2||u0h||2V + 3C0(∆th

−1)2||u0h||2||u0h||2V
+
8C0

ν
(||f ||2L2(0,T,H) + ||g||2L2(0,T,L∞(S)))

≤ ||u0h||2 +
C0ν∆t

2βθ
||u0h||2V +

3C0∆t

2βθν
||u0h||2||u0h||2V

+
8C0

ν
(||f ||2L2(0,T,H) + ||g||2L2(0,T,L∞(S))).

Lemma 6.4 For every 0 < δ < 1 and r ∈ Z+, if

(30) C0(ν∆th
−1)2 + 3C0(∆th

−1)2ΛT ≤ (1 − δ)αθ∆tν,
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then we have
(31)

||ur+1
h ||2 + δαθ∆tν

r
∑

n=0

||un+1
h ||2V + (

1

4
− 2βνθ∆t

h2
)

r
∑

n=0

||un+1
h − un+1−θ

h ||2

+
1

2
θ∆tβν

r
∑

n=0

||un+1−θ
h ||2V ≤ Λr,

where

Λr = ||u0h||2 + C0(ν∆th
−1)2||u0h||2V + 3C0(∆th

−1)2||u0h||2||u0h||2V
+
8C0∆t

ν

r
∑

n=0

(||fn||2 + ||gn||2L∞(S)).

Proof We complete the proof of this lemma by the method of a mathematical
induction. When r = 0, (31) holds following (29). Assume that when r = k ∈ Z+,
(31) holds, that is

(32)

||uk+1
h ||2 + δαθ∆tν

k
∑

n=0

||un+1
h ||2V + (

1

4
− 2βνθ∆t

h2
)

k
∑

n=0

||un+1
h − un+1−θ

h ||2

+
1

2
θ∆tβν

k
∑

n=0

||un+1−θ
h ||2V ≤ Λk.

Next we will show that (31) also holds when r = k + 1. In terms of (29) and (32),
we have

||un+1
h ||2 ≤ Λk ≤ ΛT n = 0, 1, · · · , k.

In terms of (29) and (30), we have

||uk+2
h ||2 + αθ∆tν

k+1
∑

n=0

||un+1
h ||2V + (

1

4
− 2βνθ∆t

h2
)
k+1
∑

n=0

||un+1
h − un+1−θ

h ||2

+
1

2
θ∆tβν

k+1
∑

n=0

||un+1−θ
h ||2V

≤ ||u0h||2 + C0(ν∆th
−1)2

k+1
∑

n=0

||unh||2V + 3C0(∆th
−1)2

k+1
∑

n=0

||unh||2||unh||2V

+
8C0∆t

ν

k+1
∑

n=0

(||fn||2 + ||gn||2L∞(S))

≤ Λk+1 + C0(ν∆th
−1)2

k+1
∑

n=1

||unh||2V + 3C0(∆th
−1)2ΛT

k+1
∑

n=1

||unh||2V

≤ Λk+1 +
[

C0(ν∆th
−1)2 + 3C0(∆th

−1)2ΛT

]

k+1
∑

n=1

||unh||2V

≤ Λk+1 + (1− δ)αθ∆tν
k+1
∑

n=1

||unh||2V .

Simplifying the above inequality gives (31). �

Under these lemmas, we have the following stability theorem.

Theorem 6.1 If 0 < θ ≤
√
24− 3

10
, 0 < δ < 1, ∆t and h satisfy h2 > 8βθ∆tν

and (30), then for every N ∈ Z+, the solutions uN+θ
h , uN+1−θ

h and uN+1
h of the

finite element approximation problem (17),(19) and (20) all belong to l2(0, T, Vh)∩
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l∞(0, T,H), where l2(0, T, Vh) = {vh ∈ Vh : ∆t

N
∑

n=0

||vh||2V < +∞}, l∞(0, T,H) =

{vh ∈ Vh : ||vh|| < +∞}.
Proof According to Lemma 6.4, for every N ∈ Z+, we have

||uN+1
h ||2 + δαθ∆tν

N
∑

n=0

||un+1
h ||2V +

1

2
θ∆tβν

N
∑

n=0

||un+1−θ
h ||2V ≤ ΛT .

This shows

uN+1
h ∈ l2(0, T, Vh) ∩ l∞(0, T,H), uN+1−θ

h ∈ l2(0, T, Vh).

According to Lemma 6.1, we have

||uN+θ
h ||2 ≤ ||uNh ||2 + C0(∆th

−1)2ΛT

N
∑

n=0

||unh||2V

+
C0∆t

ν

N
∑

n=0

(||fn||2 + ||gn||2L∞(S))

≤ 2ΛT + (1 − δ)αθ∆tν

N
∑

n=0

||unh||2V

≤ 2ΛT + αθ∆tν

N
∑

n=0

||unh||2V ≤ (2 +
1

δ
)ΛT .

Hence,

uN+θ
h ∈ l∞(0, T,H).

According to Lemma 6.2, we have

||uN+1−θ
h ||2 + 1

2

N
∑

n=0

||un+1−θ
h − un+θ

h ||2

≤ ||uN+θ
h ||2 + C0(ν∆th

−1)2
N
∑

n=0

||unh||2V

+C0(∆th
−1)2

N
∑

n=0

||unh||2||unh||2V + C0(∆th
−1)2

N
∑

n=0

||gn||2L∞(S)

+
C0∆t

ν

N
∑

n=0

(||fn||2 + ||gn||2L∞(S) + ||gn+1−θ||2L∞(S))

≤ ||uN+θ
h ||2 + [C0(ν∆th

−1)2 + C0(∆th
−1)2ΛT )

N
∑

n=0

||unh||2V

+
8C0∆t

ν

N
∑

n=0

(||fn||2 + ||gn||2L∞(S))

≤ (2 +
1

δ
)ΛT + αθ∆tν

N
∑

n=0

||unh||2V + 8ΛT ≤ (10 +
1

δ
)ΛT .

Hence,

uN+1−θ
h ∈ l∞(0, T,H).
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From (25), we obtain

N
∑

n=0

||un+θ
h − unh||2 + θ∆tαν

N
∑

n=0

||un+θ
h − unh||2V

≤ C2(∆tνh
−1)2

N
∑

n=0

||unh||2V + C2(∆th
−1)2

N
∑

n=0

||unh||2||unh||2V

+C2
∆t

ν

N
∑

n=0

(||fn||2 + ||gn||2L∞(S))

≤ C2

C0
[C0(∆th

−1)2ΛT )]
N
∑

n=0

||unh||2V +
C2

C0
ΛT

≤ C2

C0
αθ∆tν

N
∑

n=0

||unh||2V +
C2

C0
ΛT ≤ C2

C0
(1 +

1

δ
)ΛT .

Thus, from the triangle inequality, we have

θ∆tαν

N
∑

n=0

||un+θ
h ||2V ≤ θ∆tαν

N
∑

n=0

||un+θ
h − unh||2V + θ∆tαν

N
∑

n=0

||unh||2V

≤ C2

C0
(1 +

1

δ
)ΛT +

1

δ
ΛT .

So,

uN+θ
h ∈ l2(0, T, Vh). �

7. Convergence Analysis

Define






























u(1)(t) =

{

unh t ∈ (n∆t, (n+ θ)∆t],
0 t ∈ ((n+ θ)∆t, (n+ 1)∆t],

u(2)(t) =

{

un+θ
h t ∈ ((n+ θ)∆t, (n+ 1− θ)∆t],

0 t ∈ (n∆t, (n+ θ)∆t] ∪ ((n+ 1− θ)∆t, (n+ 1)∆t],

u(3)(t) =

{

un+1−θ
h t ∈ ((n+ 1− θ)∆t, (n+ 1)∆t],

0 t ∈ (n∆t, (n+ 1− θ)∆t],

and














λ(1)(t) =

{

λnh t ∈ (n∆t, (n+ θ)∆t],
0 t ∈ ((n+ θ)∆t, (n+ 1)∆t],

λ(3)(t) =

{

λn+1−θ
h t ∈ ((n+ 1− θ)∆t, (n+ 1)∆t],

0 t ∈ (n∆t, (n+ 1− θ)∆t],

where n = 0, 1, · · · , N − 1, N ·∆t = T .
Denote wh(t) a continuous function from [0, T ] to Vh which is a linear function

on every interval [n∆t, (n+ 1)∆t] and satisfies wh(n∆t) = unh. Then wh(t) can be
represented as

(33) wh(t) = unh +
1

∆t
(t− tn)(u

n+1
h − unh) t ∈ [n∆t, (n+ 1)∆t],

where tn = n∆t, n = 0, 1, · · · , N − 1. Obviously, we have
dwh

dt
=

1

∆t
(un+1

h − unh).

According to (17), (19) and (20), for every φh ∈ Vσh and t ∈ [n∆t, (n + 1)∆t], we
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have
(34)

1

θ

d

dt
(wh, φh) + αa(u(1)(t+∆t), φh) + βa(u(1)(t), φh) + b(u(1)(t), u(1)(t), φh)

=
1

θ∆t
(u(3)(t)− u(2)(t), φh)− βa(u(3)(t), φh)− αa(u(2)(t), φh)

−c(λ(3)(t) + λ(1)(t), g(t)φh)− b(u(3)(t), u(3)(t), φh) + (fn(t) + fn+1(t), φh).

From the proof of Theorem 6.1, for every i = 1, 2, 3, we have

(35) sup
t∈[0,T ]

||u(i)(t)||2 ≤ (10 +
2

δ
)ΛT .

(36)

∫ T

0

||u(i)(t)||2V dt =

N−1
∑

n=0

∫ tn+1

tn

||u(i)(t)||2V dt = ∆t

N−1
∑

n=0

||u(i)(t)||2V

≤
[ 1

δαθν
+

2

θβν
+

C2

C0αθν
(1 +

1

δ
) +

1

αθνδ

]

ΛT .

Lemma 7.1 If ∆t and h satisfy h2 > 16βθ∆tν, then for every i = 1, 2, 3, as
∆t −→ 0, we have

(37) ||u(i) − wh||L2(0,T,L2(Ω)2) −→ 0.

Proof From the definition of wh, we have

||u(1) − wh||2L2(0,T,L2(Ω)2)

= (
1

∆t
)2

N−1
∑

n=0

||un+1
h − unh||2

∫ tn+1

tn

(t− tn)
2dt =

1

3
∆t

N−1
∑

n=0

||un+1
h − unh||2

≤ 1

3
∆t

N−1
∑

n=0

(

||un+1
h − un+1−θ

h ||2 + ||un+1−θ
h − un+θ

h ||2 + ||un+θ
h − unh||2

)

.

In terms of the proof of Theorem 6.1, we have

N−1
∑

n=0

||un+θ
h − unh||2 ≤ C2

C0
(1 +

1

δ
)ΛT ,

N−1
∑

n=0

||un+1−θ
h − un+θ

h ||2 ≤ (20 +
2

δ
)ΛT .

On the other hand, since h2 > 16βθ∆tν, then

1

4
− 2βνθ∆t

h2
>

1

8
.

From the proof of Lemma 6.4, we obtain

N−1
∑

n=0

||un+1
h − un+1−θ

h ||2 ≤ 8ΛT .

Thus,

||u(1) − wh||L2(0,T,L2(Ω)2) ≤ [
C2

3C0
(1 +

1

δ
) + (7 +

1

δ
)]ΛT∆t.

So as ∆t −→ 0, we show

||u(1) − wh||L2(0,T,L2(Ω)2) −→ 0.
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For u(2), we have

||u(1) − u(2)||2
L2(0,T,L2(Ω)2) =

N−1
∑

n=0

∫ tn+1

tn

||u(1)(t)− u(2)(t)||2dt

= ∆t
N−1
∑

n=0

||un+θ
h − unh||2 ≤ C2

C0
(1 +

1

δ
)ΛT∆t.

Hence, as ∆t −→ 0, we have ||u(1) − |u(2)||L2(0,T,L2(Ω)2) −→ 0. From the triangle
inequality, we have

||u(2) − wh||L2(0,T,L2(Ω)2) −→ 0 as ∆t −→ 0.

Similarly, we can show

||u(3) − wh||L2(0,T,L2(Ω)2) −→ 0 as ∆t −→ 0. �

Lemma 7.2 It holds that wh ∈ L2(0, T, V ).
Proof According to the definition of wh(t), we have

∫ T

0

||wh(t)||2V dt

≤
∫ T

0

||u(1)(t)||2V dt+ (
1

∆t
)2

N−1
∑

n=0

||un+1
h − unh||2V

∫ tn+1

tn

(t− tn)
2dt

≤
∫ T

0

||u(1)(t)||2V dt+
1

3
∆t

N−1
∑

n=0

||un+1
h − unh||2V

≤
∫ T

0

||u(1)(t)||2V dt+
2

3
∆t

N
∑

n=1

||unh||2V ≤ 2

δαθν
ΛT . �

From (35), (36) and Lemma 7.2, there exist ui ∈ L2(0, T, V )∩L∞(0, T, L2(Ω)), i =
1, 2, 3, and w ∈ L2(0, T, V ) such that as (h,∆t) −→ 0, we have

(38)























u(i) weakly converges to ui in L2(0, T, V ),

u(i) weakly star converges to ui in L∞(0, T,H),
wh weakly converges to w in L2(0, T, V ) ,
wh strongly converges to w in L2(0, T,H),
wh strongly converges to w in L2(0, T, L2(S)2).

Moreover, from Lemma 7.1, for almost everywhere t ∈ (0, T ), we have

(39) ui(t) = w(t) a.e. in Ω.

Next, we will show that w satisfies the variational problem (5). Let Πh : V −→
Vh be the projection operator and satisfy

||v −Πhv||V ≤ ch||v||2 ∀ v ∈ V ∩H2(Ω)2,
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where c > 0 is independent of h. Let ψ ∈ C1[0, T ] and satisfy ψ(T ) = 0. Taking
φh = Πhv for v ∈ Vσ ∩H2(Ω)2 and integrating t from 0 to T in (34), we have

(40)

−1

θ

∫ T

0

(wh(t), ψ
′(t)Πhv)dt+ α

∫ T

0

a(u(1)(t+∆t), ψ(t)Πhv)dt

+β

∫ T

0

a(u(1)(t), ψ(t)Πhv)dt+

∫ T

0

b(u(1)(t), u(1)(t), ψ(t)Πhv)dt

=
1

θ∆t

∫ T

0

(u(3)(t)− u(2)(t), ψ(t)Πhv)dt− β

∫ T

0

a(u(3)(t), ψ(t)Πhv)dt

−α
∫ T

0

a(u(2)(t), ψ(t)Πhv)dt−
∫ T

0

c(λ(3)(t) + λ(1)(t), g(t)ψ(t)Πhv)dt

−
∫ T

0

b(u(3)(t), u(3)(t), ψ(t)Πhv)dt+

∫ T

0

(fn(t) + fn+1(t), ψ(t)Πhv)dt

+
1

θ
(u0h,Πhv)ψ(0),

On the other hand, integrating from 0 to T in (19) yields
(41)

1

θ∆t

∫ T

0

(u(3)(t)− u(2)(t), ψ(t)Πhv)dt = −1− 2θ

θ
β

∫ T

0

a(u(3)(t), ψ(t)Πhv)dt

−1− 2θ

θ

∫ T

0

b(u(3)(t), u(3)(t), ψ(t)Πhv)dt−
1− 2θ

θ
α

∫ T

0

a(u(2)(t), ψ(t)Πhv)dt

−1− 2θ

θ

∫ T

0

c(λ(3)(t), g(t)ψ(t)Πhv)dt+
1− 2θ

θ

∫ T

0

(fn(t), ψ(t)Πhv)dt.

Since λ
(i)
h ∈ [−1, 1], i = 1, 3, then as (h,∆t) −→ 0, λ

(i)
h (t) almost everywhere

converges to λi(t). Next, we show λ1(t) = λ3(t). From (18), (21) and (39), one has

λ3 = PΛ(λ
1 + ρgwτ ) and λ1 = PΛ(λ

3 + ρgwτ ).

Subtracting the above two identities and according to the compressibility of the pro-
jection operator, we conclude λ1(t) = λ3(t). Here we denote it by λ(t). According
to (38) and (39), making (h,∆t) −→ 0 in (40) and (41) gives

−
∫ T

0

(w(t), ψ′(t)v)dt+

∫ T

0

a(w(t), ψ(t)v)dt+

∫ T

0

b(w(t), w(t), ψ(t)v)dt

+

∫ T

0

c(λ(t), g(t)ψ(t)v)dt = (u0, v)ψ(0) +

∫ T

0

(f(t), ψ(t)v)dt ∀ v ∈ Vσ,

which shows that w satisfies the variational problem (5). Thus, we show the fol-
lowing converges theorem:

Theorem 7.1Under the assumptions of Theorem 6.1, if h satisfies h2 > 16βθ∆tν,
then as (h,∆t) −→ 0, the solutions uN+θ

h , uN+1−θ
h and uN+1

h of the discretized
problem (17),(19) and (21) strongly converge to the solution of the problem (5) in
L2(0, T,H).

If Vσh ⊂ Vσ, then
Theorem 7.2 Under the assumptions of Theorem 7.1, as (h,∆t) −→ 0, the

solutions uN+θ
h , uN+1−θ

h and uN+1
h of the discretized problem (17),(19) and (21)

strongly converge to the solution of the problem (5) in L2(0, T, V ).
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Proof Since wh ∈ Vσ, then taking v = w − wh in (5) yields

(42)

ν

∫ T

0

||w(t) − wh(t)||2V dt = −
∫ T

0

a(wh(t), w(t) − wh(t))dt

−
∫ T

0

(w′(t), w(t) − wh(t))dt−
∫ T

0

b(w(t), w(t), w(t) − wh(t))dt

−
∫ T

0

c(λ(t), g(t)(w(t) − wh(t)))dt+

∫ T

0

(f(t), w(t) − wh(t))dt.

Because wh strongly converges to w in L2(0, T,H) and L2(0, T, L2(S)2), so as
(h,∆t) −→ 0, we have

(43)

∫ T

0

(w′(t), w(t) − wh(t))dt+

∫ T

0

c(λ(t), g(t)(w(t) − wh(t)))dt

−
∫ T

0

(f(t), w(t) − wh(t))dt −→ 0.

For trilinear form, we have

∫ T

0

b(w(t), w(t), w(t) − wh(t))dt

≤
∫ T

0

||w(t)|| 12 ||w(t)||
3
2

V ||w(t) − wh(t)||
1
2 ||w(t) − wh(t)||

1
2

V dt

≤ sup
t∈[0,T ]

||w(t)|| 12 sup
t∈[0,T ]

||w(t) − wh(t)||
1
2 (

∫ T

0

||w(t)||2V dt)
3
4 (

∫ T

0

||w(t) − wh(t)||2V dt)
1
4 .

For almost everywhere t ∈ [0, T ], there holds ||w(t)− wh(t)|| −→ 0. Thus,

(44)

∫ T

0

b(w(t), w(t), w(t) − wh(t))dt −→ 0.

From (38), (43) and (44), making (h,∆t) −→ 0 in (42) gives

∫ T

0

||w(t)− wh(t)||2V dt = 0,

which shows that wh strongly converges to w in L2(0, T, V ). �

8. Numerical Results

In this section, we give the numerical results to check the theoretical analysis.
Assume that the domain Ω is the standard square domain, i.e., Ω = [0, 1]× [0, 1].
The exact solutions u and p are

u(t, x, y) = (u1(t, x, y), u2(t, x, y)), p(x, y) = t(2x− 1)(2y − 1),
u1(x, y) = tx2y(x− 1)(3y − 2), u2(x, y) = −txy2(y − 1)(3x− 2).

It is easy to verify the exact solution u satisfies u = 0 on Γ, u ·~n = u1 = 0, u2 6= 0
on S1 and u1 6= 0, u · ~n = u2 = 0 on S2. Moreover, the tangential vectors τ on S1

and S2 are (0, 1) and (−1, 0), so

{

στ = σ21 = 4νty2(y − 1) on S1,
στ = −σ12 = 4νtx2(1 − x) on S2.
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Figure 1 the domain Ω
On the other hand, from the nonlinear boundary conditions (2), we have

|στ | ≤ g and στuτ + g|uτ | = 0 on S = S1 ∪ S2,

so the function g can be chosen such that g = −στ ≥ 0 on S1 and g = στ ≥ 0 on
S2.

Figure 2 the velocity field and the pressure isovalue

Let ν = 0.005. The external force f can be determined by the first equation
of (2). Since the finite element space (Vh,Mh) must satisfy the discretized inf-sup
condition, we use the Taylor-Hood element (P2−P1 element). Take the initial value

u0 = 0, λ0 = 1, the time step ∆t = 0.01, the parameter ρ = 0.1ν, α = 2−
√
2, β =√

2− 1, h = 1/32.

Although 0 < θ <

√
24− 3

10
in Theorem 6.1, for the θ scheme, the optimal

value of θ is 1 −
√
2/2 (e.g.[1]). Here, we give the numerical comparison between

θ = 0.01, 0.1 and 1 −
√
2/2. Tables 1-3 show the relative errors at different times

T = 0.02, 0.5, 1 as θ = 0.01, 0.1 and 1−
√
2/2, from which we can see that the errors

are the smallest as θ = 1−
√
2/2. Figure 2 shows the velocity field and the pressure

isovalue at T = 1 as θ = 1−
√
2/2.
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T
||u− uh||L2(0,T,H)

||u||L2(0,T,H)

||u− uh||L2(0,T,V )

||u||L2(0,T,V )

||p− ph||L2(0,T,L2(Ω))

||p||L2(0,T,L2(Ω))

0.02 0.000584957 0.0150981 1.98118
0.5 0.000737447 0.0159339 1.97464
1 0.000862151 0.0164102 1.97627

Table 1 The relative errors at different time T as θ = 0.01

T
||u− uh||L2(0,T,H)

||u||L2(0,T,H)

||u− uh||L2(0,T,V )

||u||L2(0,T,V )

||p− ph||L2(0,T,L2(Ω))

||p||L2(0,T,L2(Ω))

0.02 0.000446522 0.0117658 0.160728
0.5 0.000551083 0.0123479 0.160753
1 0.000631107 0.0126645 0.160886

Table 2 The relative errors at different time T as θ = 0.1

T
||u− uh||L2(0,T,H)

||u||L2(0,T,H)

||u− uh||L2(0,T,V )

||u||L2(0,T,V )

||p− ph||L2(0,T,L2(Ω))

||p||L2(0,T,L2(Ω))

0.02 0.000195296 0.00527557 0.0287233
0.5 0.000228313 0.00540365 0.0284619
1 0.000304089 0.00550197 0.0283958

Table 3 The relative errors at different time T as θ = 1−
√
2/2

In the above numerical results, we select the small time step ∆t = 0.01. Then, if
∆t > 0.01, we want to know if the numerical results are acceptant. Let θ = 1−

√
2/2.

Table 4 shows the relative error at T = 1 with the different time step ∆t. When
∆t = 0.02, the relative error of u is small, but the relative error of p is large. When
∆t = 0.05, 0.1 and 0.2, the errors of u and p both are large. Moreover, the relative
errors are larger and larger when ∆t becomes large. Hence, it is important to study
the numerical methods for solving the time-dependent Navier-Stokes equations with
the nonlinear slip boundary conditions using large time steps ∆t in the future
papers.

∆t
||u− uh||L2(0,T,H)

||u||L2(0,T,H)

||u− uh||L2(0,T,V )

||u||L2(0,T,V )

||p− ph||L2(0,T,L2(Ω))

||p||L2(0,T,L2(Ω))

0.01 0.00030408 0.005501 0.028395
0.02 0.00109316 0.023815 0.056916
0.05 0.00720578 0.156394 0.143162
0.1 0.03081094 0.593744 0.288979
0.2 0.13937837 2.264180 0.588398

Table 4 The relative errors with the different ∆t
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