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Abstract. A new nonconforming element constructed by the Double Set

Parameter method, is applied to the fourth order elliptic singular perturbation

problem. The convergence uniformly in the perturbation parameter ε, is proved

under the anisotropic meshes and optimal convergence rate O(h) is obtained.

Numerical results are given to demonstrate validity of our theoretical analysis.
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1. Introduction

In the discretization of the non-stationary Navier-Stokes systems and the non-
stationary oscillation model, the following singular perturbation problem is often
considered [11, 15]:

(1)





ε2△2u−∆u = f, in Ω,

u =
∂2u

∂n2
= 0, on ∂Ω,

where f ∈ L2(Ω), ∆ = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator, ∆2 = (∂2/∂x2 +
∂2/∂y2)2, Ω ⊂ R2 is a bounded rectangle domain, ∂Ω is the boundary of Ω, and
∂/∂n, ∂/∂s denote the outer normal derivative and tangential derivative on ∂Ω,
respectively. Because Ω is a rectangle, we have

∆u|∂Ω =

(
∂2u

∂s2
+

∂2u

∂n2

) ∣∣∣
∂Ω

= 0.

In (1) ε is a real parameter such that 0 < ε ≤ 1. In particular, we are interested
in the regime when ε is close to zero. Obviously, if ε tends to zero the differential
equation (1) formally degenerates to the Poisson equation. Hence, a plate model
may degenerate towards an elastic membrane problem.

The problem (1) but with boundary condition u =
∂u

∂n
= 0 on ∂Ω has been

studied in [7, 12, 17]. [12] presented a nine parameter C0 triangular element,
[17] presented a modified triangular Morley’s element and a modified rectangular
Morley’s element by changing the discrete variational problem, and [7] presented
two non-C0 nonconforming elements.
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The classical finite element approximation relies on the regular or non-degenerate
condition, i.e., there exists a constant C such that

(2)
hK

ρK
≤ C, for each element K,

where hK is the diameter of K and ρK is the diameter of the biggest ball contained
in K, see e.g. [3, 8] for details. But the solution of some problems may have
the anisotropic behavior in parts of the domain, which means the solution varies
significantly in certain direction. For such problems using regular element meshes
will make the computation expensive. It is inclined to use anisotropic meshes with
a small mesh size in the direction of the rapid variation of the solution and a
large mesh size in the perpendicular direction. Recently much attention is paid
to anisotropic finite elements, see e.g. [1, 2, 6, 9]. The main point is to get the
error estimate independent of the above regular or nondegenerate condition. The
fourth order elliptic singular perturbation problem (1) is such a problem which
may have the boundary layers. The anisotropic behavior will happen near some
boundaries. However, all the analysis results in [7, 12, 17] were got based on
the regular and quasi-uniform assumption of the mesh. The convergence order

O(h
1

2 ) were obtained. In [19], we constructed a nonconforming finite element by
the Double Set Parameter Method for solving the plate bending problem. The goal
of this paper is to use this element for solving the singular perturbation problem
(1), which is uniformly convergent for ε under anisotropic meshes with the optimal
convergence order O(h).

Double Set Parameter method is one of the useful nonstandard methods for
constructing nonconforming finite elements, which is firstly proposed by the first
author and his coworker in [5]. The key step to construct a finite element is to choose
suitable and matched shape function space and degrees of freedom. The degrees of
freedom determine the global continuity of the whole finite element space, so they
should be chosen carefully to satisfy the convergence demand. On the other hand,
the degrees of freedom represent the unknowns of discrete finite element equations,
therefore they should be chosen to be simple and convenient so that the size of
discrete system is small. These two demands for degrees of freedom are sometimes
difficult to meet each other. To overcome this difficulty the double set parameter
method separates the two demands for degrees of freedom. The essential point is to
choose two sets of parameters, which can be chosen independently with each other.
The first set of parameters are discretized into the second one according to suitable
numerical rules, which will make the degrees of freedom having small perturbations.
In principle, the first set of parameters, which determine the smoothness of the
shape function across elements, are selected to meet convergence requirements,
while the second set of parameters, which are real degrees of freedom, are chosen to
be simple to make the total number of unknowns in the resulting discrete system
small. Recently, we have found the new application of double set parameter method
in the anisotropic elements. In some cases this method can improve the behavior of
the element to make the element anisotropically convergent, while the corresponding
single set parameter form of the element is not anisotropically convergent. The
element in this paper is one example and the double set parameter rotated-Q1

element in [18] is another example.
The rest of this paper is organized as follows. In the following section, we

construct a rectangular element using Double Set Parameter method, and prove
it’s anisotropy. Next, we prove the new element is uniformly convergent in ε for the
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Figure 1

singular perturbation problem, and give the error bound. Finally, two numerical
experiments are given to demonstrate validity of our theoretical analysis.

2. A Nonconforming Element and Anisotropic Interpolation

In this section, to make the completeness of the paper, we present the noncon-
forming finite element introduced in [19].

Let reference element K̂ be a square on (ξ, η) plane with vertices â1(−1,−1),

â2(1,−1), â3(1, 1), â4(−1, 1), sides l̂1 = â1â2, l̂2 = â2â3, l̂3 = â3â4, l̂4 = â4â1
and middle points of sides â5(0,−1), â6(1, 0), â7(0, 1), â8(−1, 0), respectively. See
Figure 1.

Its shape function space is taken as

P̂ = P2(K̂)
⋃

{ξ3, η3} = span{p̂i(ξ, η), i = 1, · · ·, 8},

where Pi(K̂) is the space of polynomials of degree less than or equal to i on K̂ and

p̂1(ξ, η) =
1

4
(1− ξ)(1 − η), p̂2(ξ, η) =

1

4
(1 + ξ)(1− η),

p̂3(ξ, η) =
1

4
(1 + ξ)(1 + η), p̂4(ξ, η) =

1

4
(1 − ξ)(1 + η),

p̂5(ξ, η) = (1−ξ2), p̂6(ξ, η) = (1−η2), p̂7(ξ, η) = ξ(1−ξ2), p̂8(ξ, η) = η(1−η2).

We use the Double Set Parameter method introduced in [5] to construct the
element. The first set of parameters are

(3) D(v̂) = {v̂1, v̂2, v̂3, v̂4, v̂5η, v̂6ξ, v̂7η, v̂8ξ},

where v̂i = v̂(âi), i = 1, · · · , 4, v̂iη = ∂v̂/∂η(âi), i = 5, 7, v̂iξ = ∂v̂/∂ξ(âi), i = 6, 8.

Then ∀v̂ ∈ P̂ ,

(4) v̂ =

8∑

i=1

βip̂i(ξ, η),
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where

(5)





βi = v̂i, 1 ≤ i ≤ 4,

β5 =
1

4
(v̂8ξ − v̂6ξ),

β6 =
1

4
(v̂5η − v̂7η),

β7 =
1

8
(−v̂1 + v̂2 + v̂3 − v̂4 − 2v̂8ξ − 2v̂6ξ),

β8 =
1

8
(−v̂1 − v̂2 + v̂3 + v̂4 − 2v̂5η − 2v̂7η).

In remark 2.1 (ii) we will prove the single set parameter element defined by (3)-
(5) is not anisotropically convergent element, and its double set parameter form is
considered in the following.

The second set of parameters, which are real degrees of freedom, are taken as

(6) Q(v̂) = {v̂i, v̂iξ, v̂iη, i = 1, · · · , 4},

where v̂iξ = ∂v̂/∂ξ(âi), v̂iη = ∂v̂/∂η(âi), 1 ≤ i ≤ 4.

Since
∂v̂

∂η
|η=const ∈ P1, and

∂v̂

∂ξ
|ξ=const ∈ P1, we have

v̂5η =
1

2
(v̂1η + v̂2η), v̂6ξ =

1

2
(v̂2ξ + v̂3ξ), v̂7η =

1

2
(v̂3η + v̂4η), v̂8ξ =

1

2
(v̂4ξ + v̂1ξ).

Substituting the above formulas into βi, we get

(7)





βi = v̂i, 1 ≤ i ≤ 4,

β5 =
1

8
(v̂1ξ − v̂2ξ − v̂3ξ + v̂4ξ),

β6 =
1

8
(v̂1η + v̂2η − v̂3η − v̂4η),

β7 =
1

8
(−v̂1 + v̂2 + v̂3 − v̂4 − v̂1ξ − v̂2ξ − v̂3ξ − v̂4ξ),

β8 =
1

8
(−v̂1 − v̂2 + v̂3 + v̂4 − v̂1η − v̂2η − v̂3η − v̂4η).

Let Hm(K̂) be the usual Sobolev space, ‖ · ‖m,K̂ and | · |m,K̂ be the norm and

semi-norm of Hm(K̂), respectively. The interpolation operator of this element is
defined by

(8) Î : H3(K̂) → P̂ , Î v̂ =

8∑

i=1

βip̂i(ξ, η),
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where βi, 1 ≤ i ≤ 8 are defined as (7). By the simple computations, we have




(Î v̂)i = v̂i, 1 ≤ i ≤ 4,

(Î v̂)5η =
1

2
(v̂1η + v̂2η), (Î v̂)6ξ =

1

2
(v̂2ξ + v̂3ξ),

(Î v̂)7η =
1

2
(v̂3η + v̂4η), (Î v̂)8ξ =

1

2
(v̂1ξ + v̂4ξ),





(Î v̂)1ξ + (Î v̂)4ξ = v̂1ξ + v̂4ξ, (Î v̂)2ξ + (Î v̂)3ξ = v̂2ξ + v̂3ξ,

(Î v̂)1η + (Î v̂)2η = v̂1η + v̂2η, (Î v̂)3η + (Î v̂)4η = v̂3η + v̂4η.

But (Î v̂)iξ 6= v̂iξ, (Î v̂)iη 6= v̂iη, 1 ≤ i ≤ 4. We have

(9) |(Î v̂)iξ − v̂iξ| ≤
∥∥∥ ∂3v̂

∂ξ2∂η

∥∥∥
0,K̂

, |(Î v̂)iη − v̂iη | ≤
∥∥∥ ∂3v̂

∂ξ∂η2

∥∥∥
0,K̂

, 1 ≤ i ≤ 4.

In fact,

|(Î v̂)1ξ − v̂1ξ| =
∣∣∣1
4
(−v̂1 + v̂2 − v̂3 + v̂4 − 2v̂1ξ + 2v̂4ξ)

∣∣∣

=
∣∣∣1
4

∫ 1

−1

∫ ξ

−1

∫ 1

−1

∂3v̂

∂ξ2∂η
(ξ, η)dηdξdξ

∣∣∣

≤
∥∥∥ ∂3v̂

∂ξ2∂η

∥∥∥
0,K̂

.

It is similar for the other cases.
Obviously, the interpolation Î will preserve the quadratical polynomials, i.e.,

(10) ∀v̂ ∈ P2(K̂), Î v̂ = v̂.

Lemma 2.1. Let P̂ be a polynomial space on K̂, Π̂ be an interpolation operator
on P̂ , α be a multi-index. Suppose Pl(K̂) ⊂ D̂αP̂ and

D̂αΠ̂v̂ =
r∑

j=1

β̂j(v̂)q̂j ,

where r = dim(D̂αP̂ ) and {q̂i}
r
i is a set of base functions of D̂αP̂ . If β̂j(v) can be

expressed by

β̂j(v) = Rj(D̂
αv̂), 1 ≤ j ≤ r,

and

Rj ∈ (H l+1(K̂))
′

, 1 ≤ j ≤ r,

then there is a constant C > 0 such that

‖D̂α(v̂ − Π̂v̂)‖0,K̂ ≤ C|D̂αv̂|l+1,K̂ .

Proof. See Theorem 2.2 of [4] or Theorem 2.3 of [6]. �

Lemma 2.2. The interpolation operator Î have the following behavior: there is
a constant C > 0, such that ∀ α, |α| = 1, 2,

(11) ‖D̂α(v̂ − Î v̂)‖0, K̂ ≤ C|D̂αv̂|3−|α|, K̂ , ∀ v̂ ∈ H3(K̂).
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Proof. By Lemma 2.1, we only need to check that D̂αÎ v̂ can be expressed as

D̂αÎ v̂ =

r∑

i=1

Ri(D̂
αv̂)qi,

where {qi}
r
i=1 are basis of D̂αP̂ and

|Ri(ŵ)| ≤ Ĉ‖ŵ‖3−|α|.

(I) α = (2, 0),

D̂αÎ v̂ =

8∑

i=1

βi
∂2p̂i
∂ξ2

= −2β̂5 − 6ξβ̂7.

Define R1(ŵ) =
1

8

(
−

∫

l̂1

ŵdŝ+

∫

l̂3

ŵdŝ

)
, then from (7) we have

β̂5(v̂) =
1

8

(
−

∫

l̂1

∂2v̂

∂ξ2
dŝ+

∫

l̂3

∂2v̂

∂ξ2
dŝ

)
= R1(D̂

αv̂).

Define R2(ŵ) =
1

16

[∫ 1

−1

dξ

∫ ξ

−1

(ŵ(t,−1) + ŵ(t, 1))dt−

∫ 1

−1

dξ

∫ 1

ξ

(ŵ(t,−1) + ŵ(t, 1))dt

]
,

then from (7) we have

β̂7(v̂) =
1

8

[∫ 1

−1

∂v̂

∂ξ
(ξ,−1)dξ −

1

2

∫ 1

−1

(
∂v̂

∂ξ
(−1,−1) +

∂v̂

∂ξ
(1,−1)

)
dξ

]

+
1

8

[∫ 1

−1

∂v̂

∂ξ
(ξ, 1)dξ −

1

2

∫ 1

−1

(
∂v̂

∂ξ
(1, 1) +

∂v̂

∂ξ
(−1, 1)

)
dξ

]

= R2(D̂
αv̂).

From Hölder’s inequality and the trace theorem [8], we have

|R1(ŵ)| ≤ ĉ|ŵ|0,∂K̂ ≤ ĉ‖ŵ‖1,K̂ ,

|R2(ŵ)| ≤
1

4

[∫ 1

−1

|ŵ(ξ,−1)|dξ +

∫ 1

−1

|ŵ(ξ, 1)|dξ

]
≤ ĉ|ŵ|0,∂K̂ ≤ ĉ‖ŵ‖1,K̂ .

(II) α = (0, 2),

D̂αÎ v̂ =

8∑

i=1

βi
∂2p̂i
∂η2

= −2β6 − 6ηβ8.

Similarly, we have

β6(v̂)=R̃1

(
∂2v̂

∂η2

)
, β8(v̂)=R̃2

(
∂2v̂

∂η2

)
, |R̃i(ŵ)| ≤ ĉ‖ŵ‖1,K̂ , i = 1, 2.

(III) α = (1, 1), define R(ŵ) =
1

4

∫

K̂

ŵdx̂, then

D̂αÎ v̂ =

8∑

i=1

βi
∂2p̂i
∂ξ∂η

=
1

4
(v̂1 − v̂2 + v̂3 − v̂4) =

1

4

∫

K̂

∂2v̂

∂ξ∂η
dξdη=R(D̂αv̂),

|R(ŵ)| =
1

4

∣∣∣∣
∫

K̂

ŵdξdη

∣∣∣∣ ≤ ĉ‖ŵ‖1,K̂ .

(IV) α = (1, 0), D̂αP̂ = span{1, ξ, η, ξ2},

D̂αÎ v̂ =
1

4
φ̂1(v̂) +

η

4
φ̂2(v̂)−

ξ

4
φ̂3(v̂) +

(1− 3ξ2)

8
φ̂4(v̂),
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with 



φ̂1(v̂) = −v̂1 + v̂2 + v̂3 − v̂4,

φ̂2(v̂) = v̂1 − v̂2 + v̂3 − v̂4,

φ̂3(v̂) = v̂1ξ − v̂2ξ − v̂3ξ + v̂4ξ,

φ̂4(v̂) = −v̂1 + v̂2 + v̂3 − v̂4 − v̂1ξ − v̂2ξ − v̂3ξ − v̂4ξ.

By H2(K̂) →֒ C0(K̂), Hölder inequality and the trace theorem,




φ̂1(v̂) =

∫

l̂1

D̂αv̂dŝ+

∫

l̂3

D̂αv̂dŝ ≤ C‖D̂αv̂‖2,K̂ ,

φ̂2(v̂) = −

∫

l̂1

D̂αv̂dŝ+

∫

l̂3

D̂αv̂dŝ ≤ C‖D̂αv̂‖2,K̂ ,

φ̂3(v̂) = v̂1ξ − v̂2ξ − v̂3ξ + v̂4ξ ≤ C‖D̂αv̂‖2,K̂ ,

φ̂4(v̂) =

∫

l̂1

D̂αv̂dŝ+

∫

l̂3

D̂αv̂dŝ− v̂1ξ − v̂2ξ − v̂3ξ − v̂4ξ ≤ C‖D̂αv̂‖2,K̂ .

(V) α = (0, 1), we have the similar corresponding results with case (IV). �

Remark 2.1. (i) Following the literatures [1, 9], if the element satisfies the
inequality like (11), we call the element anisotropic, because from (11) we can get
the interpolation error independent of the shape regular assumption (2). (ii) The
single set parameter element by (3)-(5) is not anisotropic since (11) does not hold

in this case. In fact, let v̂ = ξη2, then
∂2v̂

∂ξ2
= 0, but

∂2Î v̂

∂ξ2
= −3ξ.

3. Error Estimate

For the elliptic singular perturbation problem (1), its weak formulation is as in

[12]: To find u ∈ V = {v ∈ H2(Ω); v =
∂2v

∂n2
= 0 on ∂Ω}, such that

(12) ε2a(u, v) + b(u, v) = (f, v), ∀v ∈ V,

where

a(u, v) =

∫

Ω

D2u : D2vdxdy, b(u, v) =

∫

Ω

∇u · ∇vdxdy.

∀w ∈ V , D2w is the Hessian matrix of w, and D2u : D2v is the summation of
each corresponding component product. The energy norm is defined by |||v|||2ε =
ε2a(v, v) + b(v, v) = ε2|v|22 + |v|21.

Let a general element K be a rectangle on (x, y) plane with vertices a1(xK −
hK1

, yK−hK2
), a2(xK+hK1

, yK−hK2
), a3(xK+hK1

, yK+hK2
), a4(xK−hK1

, yK+
hK2

), sides l1 = a1a2, l2 = a2a3, l3 = a3a4, l4 = a4a1 and middle points of
sides a5(xK , yK − hK2

), a6(xK + hK1
, yK), a7(xK , yK + hK2

), a8(xK − hK1
, yK),

respectively. The affine mapping FK from K̂ to K is :




x = hK1
ξ + xK ,

y = hK2
η + yK .

Let J be the Jacobian matrix of FK , then

|J | = hK1
hK2

, |J−1| = h−1
K1

h−1
K2

, Dαu = h−α
K D̂αû, D̂αû = hα

KDαu,
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where hα
K = hα1

K1
hα2

K2
. Put v = v̂ ◦ F−1

K . Let Th be a rectangular partition of Ω,

Ω =
⋃

K∈Th

K, K is the rectangular element. Let the shape function space on K be

PK = P2(K)∪{x3, y3} and the degrees of freedom be {vi, vix, viy, 1 ≤ i ≤ 4}, where

vi = v(ai), vix =
∂v

∂x
(ai), viy =

∂v

∂y
(ai), 1 ≤ i ≤ 4. Obviously PK = P̂ ◦ F−1

K .

The interpolation operator IK : H3(K) → PK is defined by

IKv = Î v̂ ◦ F−1
K .

It is easy to see that IK is affine equivalent and

(13) IKv =

8∑

i=1

βipi(x, y),

where pi = p̂i ◦ F
−1
K and

(14)





βi = vi, 1 ≤ i ≤ 4,

β5 =
hK1

8
(v1x − v2x − v3x + v4x),

β6 =
hK2

8
(v1y + v2y − v3y − v4y),

β7 =
1

8
(−v1 + v2 + v3 − v4 − hK1v1x − hK1v2x − hK1v3x − hK1v4x),

β8 =
1

8
(−v1 − v2 + v3 + v4 − hK2v1y − hK2v2y − hK2v3y − hK2v4y).

It is easy to get

(15)





(IKv)i = vi, 1 ≤ i ≤ 4

(IKv)5y =
1

2
(v1y + v2y), (IKv)6x =

1

2
(v2x + v3x),

(IKv)7y =
1

2
(v3y + v4y), (IKv)8x =

1

2
(v1x + v4x).

By (9) we have

|(IKv)ix − vix| ≤
1

2
(hK1

hK2
)

1

2 ||
∂3v

∂2x∂y
||0,K ,

|(IKv)iy − viy | ≤
1

2
(hK1

hK2
)

1

2 ||
∂3v

∂x∂2y
||0,K .

The corresponding finite element space Vh is defined by

(16)
Vh = { vh : vh|K ∈ PK , vh|K = IKv ∀K ∈ Th;

vh(a) = vhx
(a) = vhy

(a) = 0, for all nodes a on ∂Ω}.

The interpolation operator Ih on Ω is defined as

Ih|K = IK = Î ◦ F−1
K , ∀ K ∈ Th.

The discrete problem of (12) is: To find uh ∈ Vh, such that

(17) ε2ah(uh, vh) + bh(uh, vh) = (f, vh), ∀ vh ∈ Vh,
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where

ah(uh, vh) =
∑

K∈Th

∫

K

D2uh : D2vhdxdy, bh(uh, vh) =
∑

K∈Th

∫

K

∇uh · ∇vhdxdy.

We define the discrete energy norm as

(18) |||vh|||
2
ε,h = ε2ah(vh, vh) + bh(vh, vh) = ε2|vh|

2
2,h + |vh|

2
1,h, ∀ vh ∈ Vh,

where | · |2i,h =
∑
K

| · |2i,K , i = 1, 2. It is easy to see that ||| · |||ε,h is a norm on Vh for

ε ∈ [0, 1], so (17) has a unique solution by Lax-Milgram Lemma [8].
Let [v] be the jump of v between elements. Then [v] = v on ∂Ω, which means

that suppose l = K1 ∩K2,K1,K2 ∈ Th, define [v]|l = (v|K1
− v|K2

)|l, we have

Lemma 3.1. ∀wh ∈ Vh, wh is continuous at all nodes of Th and is zero at the
nodes on ∂Ω, and

(19)





∫

l

[
∂wh

∂n

]
ds = 0, for all interior sides l of Th,

∫

l

∂wh

∂n
ds = 0, for all sides l on ∂Ω.

Proof. Suppose the degrees of freedom of wh are {vi, vix, viy, ai ∈ Th} which of
course are continuous between elements and are zero on ∂Ω. From (15)(now wh =
Ihv), wh(ai) = vi, so wh is continuous at all nodes of Th and is zero at the nodes on
∂Ω. Let l = aiaj be a side of an element parallel to y−axis, aij be the middle point

of l, then from (15),
∂wh

∂n
(aij) =

∂wh

∂x
(aij) =

1

2
(vix+vjx) is continuous across l and

is zero as l ⊂ ∂Ω. The same is true for l parallel to x−axis. Since
∂wh

∂n
|l ∈ P1(l),

(19) holds. �

Let wI
h be the piecewise bilinear interpolation of wh, wI

h ∈ C0
0 (Ω) = {v ∈

C0(Ω); v|∂Ω = 0}, and then we have

Lemma 3.2. ∀wh ∈ Vh,

(20)

∫

K

∇(wh − wI
h)dxdy = 0.

Proof.

∫

K

∂(wh − wI
h)

∂x
dxdy =

∫

K̂

∂(ŵh − ŵI
h)

∂ξ
h−1
1 (h1h2)dξdη

= h2

∫ 1

−1

∫ 1

−1

(−2ξβ5 + (1− 3ξ2)β7)dξdη = 0.

Similarly,
∫

K

∂(wh − wI
h)

∂y
dxdy = 0.

Then (20) holds. �
The main theorem of this paper is as follows:
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Theorem 3.1. Suppose u, uh are the solution of (12) and (17), respectively. We
have

|‖u− uh‖|ε,h ≤ C
{ ∑

K∈Th

[ε2h2
K |∆u|21,K + ε2

∑

|α|=1

h2α
K |Dαu|22,K

+
∑

|α|=1

h2α
K |Dαu|21,K + h2

K‖f‖20,K]
}1/2

,

where C is independent of shape regular condition (2).
Proof. From the second Strang’s Lemma [3, 8], we get

(21) |‖u− uh‖|ε,h ≤ C

(
inf

vh∈Vh

|‖u− vh‖|ε,h + sup
wh∈Vh\{0}

Eε,h(u,wh)

|‖wh‖|ε,h

)
,

where

(22) Eε,h(u,wh) = ε2ah(u,wh) + bh(u,wh)− (f, wh).

The first term of (21) is called approximation error and the second one is called
consistency error.

Firstly, we will consider the approximation error. From the above Lemma 2.2,
we have

inf
vh∈Vh

|‖u− vh‖|ε,h ≤ |‖u− Ihu‖|ε,h

=

(
∑

K∈Th

(
ε2|u− IKu|22,K + |u− IKu|21,K

)
) 1

2

=



∑

K∈Th



∑

|α|=2

ε2‖Dα(u− IKu)‖20,K +
∑

|α|=1

‖Dα(u− IKu)‖20,K






1

2

≤ C


 ∑

K∈Th

hK1hK2


∑

|α|=2

h−2α
K ε2|D̂αû|2

1,K̂
+
∑

|α|=1

h−2α
K |D̂αû|2

1,K̂






1

2

(23)

≤ C



∑

K∈Th



∑

|α|=2

|β|=1

h2β
K ε2‖Dα+βu‖20,K +

∑

|α|=1

|β|=1

h2β
K ‖Dα+βu‖20,K







1

2

≤ C


 ∑

K∈Th


ε2

∑

|α|=1

h2α
K |Dαu|22,K +

∑

|α|=1

h2α
K |Dαu|21,K






1

2

.

Then we will analyze the consistent error. Since

D2u : D2wh = uxxwhxx + uyywhyy + 2uxywhxy

= △u△ wh + (2uxywhxy − uxxwhyy − uyywhxx),

from Green’s formula, we have
∫

K

△u△whdxdy =

∫

∂K

△u
∂wh

∂n
dS −

∫

K

∇△u · ∇whdxdy,

∫

K

(2uxywhxy − uxxwhyy − uyywhxx)dxdy =

∫

∂K

(
∂2u

∂n∂s

∂wh

∂s
−

∂2u

∂s2
∂wh

∂n

)
dS.
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Hence,

(24)

ah(u,wh) =
∑

K∈Th

∫

K

D2u : D2whdxdy

=
∑

K∈Th

{∫

∂K

[
(△u−

∂2u

∂s2
)
∂wh

∂n
+

∂2u

∂n∂s

∂wh

∂s

]
dS

−

∫

K

∇△u · ∇whdxdy

}
.

Because wI
h ∈ H1

0 (Ω), we have

(25)

(f, wh) = (f, wI
h) + (f, wh − wI

h) = (ε2∆2u−∆u,wI
h) + (f, wh − wI

h)

=
∑

K∈Th

∫

K

(−ε2∇∆u · ∇wI
h +∇u · ∇wI

h)dxdy + (f, wh − wI
h).

Substituting (24), (25) into (22), it yields

(26)

Eε,h(u,wh) =
∑

K∈Jh

{ε2
∫

∂K

[(∆u−
∂2u

∂s2
)
∂ωh

∂n
+

∂2u

∂s∂n

∂ωh

∂s
]dS

−ε2
∫

K

∇△u · ∇(wh − wI
h)dxdy

+

∫

K

∇u · ∇(wh − wI
h)dxdy} − (f, wh − wI

h)

△
= J1 + J2 + J3 + J4.

Let Πiv =
1

|li|

∫

li

vdS, 1 ≤ i ≤ 4, because

∫

li

∂ωh

∂n
,

∫

li

∂ωh

∂s
are continuous

between the elements by Lemma 3.1, and (∆u−
∂2u

∂s2
)|∂Ω = 0,Πi(

∂wh

∂s
) = 0 on ∂Ω,

we have

(27)

J1 =
∑

K∈Th

ε2
4∑

i=1

∫

li

[(∆u−
∂2u

∂s2
)(
∂wh

∂n
−Πi(

∂wh

∂n
))

+
∂2u

∂s∂n
(
∂wh

∂s
−Πi(

∂wh

∂s
))]dS.

In order to get the error bounds independent of K, we will use a new method
treating J1, which is different from the traditional method in [10]. For the sake of
simplicity, we denote

Ii
△
=

∫

li

[(∆u−
∂2u

∂s2
)(
∂wh

∂n
−Πi(

∂wh

∂n
))]dS,



AN ANISOTROPIC NONCONFORMING ELEMENT 777

then

(28)

I1 + I3 =

∫ xk+hK1

xk−hK1

[(∆u−
∂2u

∂x2
)(
∂wh

∂y
−Π3(

∂wh

∂y
))(x, yK + hK2

)

−(∆u−
∂2u

∂x2
)(
∂wh

∂y
−Π1(

∂wh

∂y
))(x, yK − hK2

)]dxdy,

where

(29)

(
∂wh

∂y
−Π3(

∂wh

∂y
))(x, yK + hK2

)

=
∂wh

∂y
(x, yK + hK2

)−
1

2hK1

∫ xk+hK1

xk−hK1

∂wh

∂y
(t, yK + hK2

)dt

=
1

2hK1

∫ xk+hK1

xk−hK1

∫ x

t

∂2wh

∂r∂y
(r, yK + hK2

)drdt.

Since
∂2wh

∂x∂y
is a constant independent of y,

(30)

w(x) = (
∂wh

∂y
−Π1(

∂wh

∂y
))(x, yK − hK2

)

= (
∂wh

∂y
−Π3(

∂wh

∂y
))(x, yK + hK2

)

=
1

4hK1
hK2

∫ xK+hK1

xK−hK1

∫ x

t

∫ yK+hK2

yK−hK2

∂2wh

∂r∂y
dydrdt,

(31) |ω(x)| ≤
1

2hK2

∫ xk+hK1

xk−hK1

∫ yk+hK2

yk−hK2

|
∂2ωh

∂x∂y
(x, y)|dydx ≤

√
hK1

hK2

|ωh|2,K .

Substituting (30) and (31) into (28), we get

(32)

|I1 + I3| =
∣∣
∫ xk+hK1

xk−hK1

w(x)[(∆u −
∂2u

∂x2
)(x, yK + hK2

)

−(∆u− ∂2u
∂x2 )(x, yK − hK2

)]dx
∣∣

=
∣∣
∫ xk+hK1

xk−hK1

w(x)[

∫ yk+hK2

yk−hK2

∂(∆u− ∂2u
∂x2 )

∂y
(x, y)]dydx

∣∣

≤

√
hK1

hK2

|wh|2,K

∫ xk+hK1

xk−hK1

∫ yk+hK2

yk−hK2

|
∂(∆u− ∂2u

∂x2 )

∂y
|dydx

≤

√
hK1

hK2

|wh|2,K
√
4hK1

hK2
(|∆u|1,K + |

∂u

∂x
|2,K)

= 2hK1
(|∆u|1,K + |

∂u

∂x
|2,K)|wh|2,K .
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Similarly, we obtain

(33) |I2 + I4| ≤ 2hK2
(|∆u|1,K +

∣∣∣∂u
∂y

∣∣∣
2,K

)|wh|2,K .

From (32) and (33), we get

(34)

∣∣ε2
∑

K∈Th

{

4∑

i=1

∫

Fi

(∆u −
∂2u

∂s2
)(
∂wh

∂n
−Πi(

∂wh

∂n
))dS}

∣∣ = ε2
∑

K∈Th

{

4∑

i=1

Ii}

≤ C
∑

K∈Th

ε2(hK |∆u|1,K +
∑

|α|=1

hα
K |Dαu|2,K)|ωh|2,K

≤ C(
∑

K∈Th

ε2(h2
K |∆u|21,K +

∑

|α|=1

h2α
K |Dαu|22,K))1/2(

∑

K∈Th

ε2|wh|
2
2,K)1/2

≤ Cε(
∑

K∈Th

(h2
K |∆u|21,K +

∑

|α|=1

h2α
K |Dαu|22,K))1/2|‖wh‖|ε,h.

In the same way, we get

(35)

∣∣ε2
∑

K∈Th

4∑

i=1

∫

li

∂2u

∂s∂n
(
∂wh

∂s
−Πi(

∂wh

∂s
))dS

∣∣

≤ 2ε2
∑

K∈Th

(
∑

|α|=1

hα
K |Dαu|2,K)|wh|2,K

≤ Cε(
∑

K∈Th

∑

|α|=1

h2α
K |Dαu|22,K)1/2|‖wh‖|ε,h.

From (34) and (35), we have

(36) |J1| ≤ Cε(
∑

K∈Th

(h2
K |∆u|21,K +

∑

|α|=1

h2α
K |Dαu|22,K))

1

2 |‖wh‖|ε,h.

Next, since the bilinear interpolation is anisotropic [1],

(37)

|wh − wI
h|

2
1,K

=

∫

K

[(
∂(wh − wI

h)

∂x
)2 + (

∂(wh − wI
h)

∂y
)2]dxdy

= (hK1
hK2

)

∫

K̂

[((
∂(ŵh − ŵI

h)

∂ξ
)
∂ξ

∂x
)2 + ((

∂(ŵh − ŵI
h)

∂η
)
∂η

∂y
)2]dξdη

= (hK1
hK2

)(h−2
K1

‖
∂(ŵh − ŵI

h)

∂ξ
‖2
0,K̂

+ h−2
K2

‖
∂(ŵh − ŵI

h)

∂η
‖2
0,K̂

)

≤ C(hK1
hK2

)(h−2
K1

|
∂ŵh

∂ξ
|2
1,K̂

+ h−2
K2

|
∂ŵh

∂η
|2
1,K̂

)

≤
∑

|α|=1

h2α
K |Dαwh|

2
1,K ≤ Ch2

K |wh|
2
2,K .
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So

(38)

|J2| =
∣∣ε2

∑
K∈Th

∫

K

∇△u · ∇(wh − wI
h)dxdy

∣∣

≤ ε2
∑

K∈Th

|△u|1,K |ωh − wI
h|1,K

≤ Cε2
∑

K∈Th

hK |△u|1,K |wh|2,K

≤ C(ε2
∑

K∈Th

h2
K |△u|21,K)1/2(ε2

∑

K∈Th

|wh|
2
2,K)1/2

≤ Cε(
∑

K∈Th

h2
K |△u|21,K)1/2|‖ωh‖|ε,h.

Let Π0v =
1

|K|

∫

K

vdxdy = Π̂0v̂ =
1

|K̂|

∫

K̂

v̂dξdη. By using Lemma 3.2,

(39)

∣∣
∫

K

∇u · ∇(wh − wI
h)dxdy

∣∣ =
∣∣
∫

K

(∇u−Π0∇u) · ∇(wh − wI
h)dxdy

∣∣

≤ ‖∇u−Π0∇u‖0,K |wh − wI
h|1,K .

Denote v = ∇u, then

(40)

‖∇u−Π0∇u‖0,K = ‖v −Π0v‖0,K = (hK1
hK2

)1/2‖v̂ − Π̂0v̂‖0,K̂

≤ (hK1
hK2

)1/2|v̂|1,K̂

≤ C(
∑

|α|=1

h2α
K ‖Dαv‖20,K)1/2

≤ C(
∑

|α|=1

h2α
K |Dαu|21,K)1/2.

Substituting (37) and (40) into (39), we get

(41)

|J3| =
∣∣ ∑

K∈Th

∫

K

∇u · ∇(wh − wI
h)dxdy

∣∣

≤ C(
∑

K∈Th

∑

|α|=1

h2α
K |Dαu|21,K)1/2|‖wh‖|ε,h.

For the last term,

‖wh − wI
h‖

2
0,K = (hK1

hK2
)

∫

K̂

|ŵ − ŵI |2dξdη ≤ C(hK1
hK2

)|ŵ|21,K ≤ Ch2
K |wh|

2
1,K ,

(42)

|J4| = |(f, wh − wI
h)| =

∣∣ ∑

K∈Th

∫

K

f(wh − wI
h)dxdy

∣∣

≤
∑

K∈Th

‖f‖0,K‖wh − wI
h‖0,K ≤ C

(
∑

K∈Th

h2
K‖f‖20,K

)1/2

|‖wh‖|ε,h.
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Substituting (36), (38), (41), (42) into (26), it yields

(43)

|Eε,h(u,wh)| ≤ C{
∑

K∈Th

[ε2h2
K |∆u|21,K + ε2

∑

|α|=1

h2α
K |Dαu|22,K

+
∑

|α|=1

h2α
K |Dαu|21,K + h2

K‖f‖20,K]}
1

2 |‖wh‖|ε,h.

Substituting (43) into (21), together (23), the theorem is derived. �

To show that the error estimate is valid uniformly in the singular perturbation
parameter ε, we need a priori estimate about the exact solution of equation (1). To
the best of our knowledge, [13] and [16] both gave a precise asymptotic expansion
of the exact solution u for ε in 1D, [12] and [17] gave another a priori estimate and

both got their uniformly convergence results O(h
1

2 ) in 2D. But a better a priori

regular estimate was presented in [11].

Lemma 3.3. For a given f ∈ L2(Ω), let u be the solution of (1). If Ω is
rectangle, then there exists a constant C independent of ε such that

(44) ε2‖u‖23,Ω + ‖u‖22,Ω ≤ C‖f‖20,Ω.

Proof. Multiplying (1) by △u and integrating over Ω, we get
∫

Ω

ε2∆2u∆udxdy −

∫

Ω

∆u∆udxdy =

∫

Ω

f∆udxdy .

From the boundary condition of (1) and Ω is a rectangle, it is easy to see that
∫

Ω

ε2∆2u∆udxdy = −ε2|u|23,Ω ,

∫

Ω

∆u∆udxdy = |u|22,Ω ,

∣∣∣
∫

Ω

f∆udx
∣∣∣ ≤ ‖f‖0,Ω‖∆u‖0,Ω ≤

1

2
‖f‖20,Ω +

1

2
‖∆u‖20,Ω =

1

2
‖f‖20,Ω +

1

2
|u|22,Ω .

Hence

ε2|u|23,Ω + |u|22,Ω = −

∫

Ω

f∆udx ≤
1

2
‖f‖20,Ω +

1

2
|u|22,Ω . �

If we denote h = max
K∈Th

{hK}, by using the above global a priori regular estimate,

together with the above Theorem 3.1, we get the following uniformly convergence
results in the singular perturbation parameter ε:

Theorem 3.2. Suppose u, uh are the solution of (12) and (17), respectively, we
have the following uniformly anisotropic convergence bounds:

(45) |‖u− uh‖|ε,h ≤ Ch‖f‖0,Ω.

Remark 3.1. The uniform error estimate (45) is half order higher than the
corresponding results in [12] and [17].

Remark 3.2. All the above analyses are independent of the special meshes.
However, it was pointed out by Su and Liu in [15] that the solution u(x, y) of (1)
has the boundary layers along the four boundaries of Ω and has the representation

u(x, y) = G(x, y, ε) + ε2
(
E1(x, y, ε)e

−x/ε +

E2(x, y, ε)e
−(1−x)/ε + F1(x, y, ε)e

−y/ε + F2(x, y, ε)e
−(1−y)/ε

)
,
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Figure 2. Mesh 1 (n=16).

where the functions G, E1, E2, F1, F2 have asymptotic power series expansions in
ε and they are sufficiently differentiable for (x, y) ∈ Ω. In the following numerical
experiments, we will take a special mesh adapted to the boundary layers.

4. Numerical Experiments

Experiment 1. Consider problem (1) on the unit square Ω = [0, 1]×[0, 1] ⊂ R2,
where f = ε2△2u −△u, and u = (sin(πx) sin(πy))2. The domain Ω is subdivided
into small rectangles by the following two different meshes:
mesh 1: each edge of Ω is divided into n equal segments. See Figure 2 (case n = 16).
mesh 2: each edge of Ω is divided into n segments with n+1 points (1−cos( iπn ))/2, i =
0, 1, · · · , n. See Figure 3 (case n = 16).

This example has also been studied in [12]. We compute the error in the energy
norm by taking ε = 2−2, 2−4, 2−6. Table 1-3 denote the convergence trend under
two different meshes, respectively.

Remark 4.1. For singular perturbation problems, Shishkin meshes are widely
used, see e.g. [16], which are uniformly fine on the boundary layer domains and
uniformly spare on the other domains. Recently, [9] presented a new graded meshes,
on which it is gradual from fine meshes to spare meshes. Here we use another kind
of mesh, i.e., mesh 2, which comes from the Chebyshev polynomial [14].

Experiment 2. Consider problem (1) on the unit square Ω = [0, 1]×[0, 1] ⊂ R2,
where we take f such that u = (1 − e−x(1−x)/ε)2(1 − e−y(1−y)/ε)2 is the exact
solution. The exact solution u has boundary layers, which varies significantly near
the boundary of Ω. See Figure 4 (case ε = 2−6). The unit square is subdivided
by mesh 1 and mesh 2, respectively. We compute the error in the energy norm
by taking ε = 2−2, 2−4, 2−6. Table 4-6 are the comparisons of errors based on two
different meshes.

From the numerical experiments it can be seen that these numerical results
are consistent with our theoretical analysis. Firstly, this element is convergent on
any narrow rectangular meshes for the fourth order elliptic singular perturbation
problem. Secondly, for the solution with isotropic property (Experiment 1), the
finite element solutions on the uniform mesh 1 have smaller errors than those on
the anisotropic mesh 2; and for the solution with anisotropic property (Experiment
2), the anisotropic mesh (mesh 2) can help to get better solutions than uniform mesh
1. Finally, the convergent order is also consistent with the theoretical analysis.
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Figure 3. Mesh 2 (n=16).
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Figure 4. The exact solution u when ε = 2−6 in experiment 2.

Table 1. Experiment 1, |‖u− uh‖|ε, h under two meshes, ε = 2−2.

mesh \ n× n 8× 8 16× 16 32× 32 64× 64 128× 128
mesh 1 0.7057E0 0.3453E0 0.1716E0 0.8569E-1 0.4283E-1
mesh 2 0.9287E0 0.4420E0 0.2179E0 0.1086E0 0.5424E-1

Table 2. Experiment 1, |‖u− uh‖|ε, h under two meshes, ε = 2−4.

mesh \ n× n 8× 8 16× 16 32× 32 64× 64 128× 128
mesh 1 0.1957E0 0.8867E-1 0.4320E-1 0.2146E-1 0.1071E-1
mesh 2 0.3158E0 0.1227E0 0.5603E-1 0.2734E-1 0.1358E-1

Table 3. Experiment 1, |‖u− uh‖|ε, h under two meshes, ε = 2−6.

mesh \ n× n 8× 8 16× 16 32× 32 64× 64 128× 128
mesh 1 0.1166E0 0.3235E-1 0.1206E-1 0.5519E-2 0.2697E-2
mesh 2 0.3215E0 0.9480E-1 0.2665E-1 0.8836E-2 0.3670E-2
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Table 4. Experiment 2, |‖u− uh‖|ε, h under two meshes, ε = 2−2.

mesh \ n× n 8× 8 16× 16 32× 32 64× 64 128× 128
mesh 1 0.1981E0 0.9141E-1 0.4429E-1 0.2195E-1 0.1095E-1
mesh 2 0.1984E0 0.8137E-1 0.3936E-1 0.1955E-1 0.9761E-2

Table 5. Experiment 2, |‖u− uh‖|ε, h under two meshes, ε = 2−4.

mesh \ n× n 8× 8 16× 16 32× 32 64× 64 128× 128
mesh 1 0.4818E0 0.2279E0 0.8333E-1 0.3009E-1 0.1272E-1
mesh 2 0.6193E0 0.1096E0 0.3120E-1 0.1368E-1 0.6671E-2

Table 6. Experiment 2, |‖u− uh‖|ε, h under two meshes, ε = 2−6.

mesh \ n× n 8× 8 16× 16 32× 32 64× 64 128× 128
mesh 1 0.1015E+1 0.7103E0 0.4397E0 0.1973E0 0.6401E-1
mesh 2 0.3153E+1 0.7385E0 0.1194E0 0.2230E-1 0.7167E-2
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