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SUBGRID MODEL FOR THE STATIONARY INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS BASED ON THE HIGH ORDER

POLYNOMIAL INTERPOLATION

YAN ZHANG, MINFU FENG, AND YINNIAN HE

Abstract. In this paper, we propose a subgrid finite element method for the

two-dimensional (2D) stationary incompressible Naver-Stokes equation (NSE)

based on high order finite element polynomial interpolations. This method

yields a subgrid eddy viscosity which does not act on the large scale flow struc-

tures. The proposed eddy viscous term consists of the fluid flow fluctuation

stress. The fluctuation stress can be calculated by means of simple reduced-

order polynomial projections. Assuming some regular results of NSE, we give

a complete error analysis. Finally, in the part of numerical tests, the numeri-

cal computations show that the numerical results agree with some benchmark

solutions and theoretical analysis very well.
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analysis and numerical tests.

1. Introduction

In this paper, we focus on formulating a subgrid eddy viscosity method for the
stationary incompressible Navier-Stokes equation. For the subgrid method, we
must admit that there exists a scale separation between large and small scales.
This model can be viewed as a viscous correction for large scale fluid flows. For
the laminar fluid flows, the added subgrid viscosity term should not affect the large
scale structures of fluid flow fields and should tend to vanish. These kinds of subgrid
methods are flexible and effective for high Reynolds number fluid flows.

It is well-known that for most problems of fluid flows, the numerical algorithms
capturing all scales of fluid flows are impossible. In complex fluid flows, there
often exist several scales that span from the large scales to the small Kolmogorov
scales which hardly be resolved by state-of-the-art computers for most engineering
problems. Especially, for the convection-dominated fluid flows, we often need to
consider the dispersive effects of unresolved scales on resolved scales. The eddy
viscosity models are often utilized to model and solve this kind of problems by
engineers, which have been achieved many successes in engineering practice [1].
These kinds of models are firstly proposed by Boussinesq [2], developed by Taylor
and Prandlt [3], and introduced a dissipative mechanism by Smagorinsky [4]. At
present, these models have been further improved by various numerical methods [5,
6, 7]. In existing mathematical models, these eddy viscosity models are established
by introducing the scale separation based on L2 and elliptic projection. Recently,
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Hughes et al has proposed a variational multi-scale method (VMM) in which the
diffusion acts only on the finest resolved scales. This VMM is very effective to model
this complex multi-scale phenomena. The key problem focuses on introducing a
reasonable scale separation (coarse and fine scales). Generally, there exist many
different ways to define coarse and fine scales according to the VMM framework [8].
According to the idea of VMM, the subgrid methods in this paper are variational
multiscale methods.

In this paper, we will implement a subgrid method to remove the dispersive
effects from small scales by virtue of low-order polynomial projections. The added
subgrid term does not need special treatments for implementing calculations. The
added subgrid term is calculated by simple treatments of basis functions, which will
be given in the section of numerical tests. And you can find an analogous treatment
in [9]. But, the method in [9] is based on a projection from a fine finite element
space to a coarse finite element space.

The adopted finite element pair is the P2/P1 pair to approach velocity-pressure
fields. For low Reynolds number fluid flows, the results indicate that this method
has a convergence rate of the same order as the standard Garlerkin method. By the
numerical tests, it is shown that the proposed subgrid correction model can simulate
the fluid flows correctly and does not act on the large scale flow structures.

The outline of the paper is organized as follows. In the next section we introduce
the Navier-Stokes equations (NSE) and the corresponding function settings. In
section 2, we give the NSE and the corresponding functional settings. In section
3, the subgrid viscous term is introduced into the NSE and the standard Galerkin
discretization of the Navier-Stokes equations is given. In section 4, we show the
results of the error estimates. Some numerical results are presented in section 5,
which show the correctness and efficiency of the methods. Finally, we give some
conclusions.

2. Navier-Stokes equations and functional settings

Let Ω ⊂ R
2 be a bounded domain with Lipschitz continuous boundary Γ = ∂Ω.

We consider the stationary Navier-Stokes equation

(1)





−ν∆u+∇p+ (u · ∇)u = f, in Ω
div u = 0, in Ω

u = 0, on Γ

where u = (u1, u2) represents the velocity vector, p denotes the pressure, f is the
body force and ν > 0 is the viscosity.

We introduce the following functional settings

X := H1
0 (Ω)

2, V := {v ∈ X, divv = 0}, Y := (L2(Ω))2

Q := L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω qdx = 0}.

We denote by (·, ·) and ‖ · ‖0 are the inner product and norm in L2(Ω) or L2(Ω)2.
The space Hk(Ω) or Hk(Ω)2 denotes the standard Sobolev spaces with norm ‖ · ‖k
and semi-norm| · |k. The space H1

0 (Ω) or H1
0 (Ω)

2 is equipped with the following
scalar product and norm

((u, v)) = (∇u,∇v), |u|1 = ((u, u))1/2.

The space H−1(Ω)2 is the dual space of H1
0 (Ω)

2 equipped with the norm

‖z‖−1 = sup
v∈H1

0
(Ω)2

|(z, v)|
|v|1
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For convenience, we introduce the following bilinear form a(·, ·) on X×X which
is coercive in X : There exists a constant 0 < C0 ≤ 1 such that

(2) a(u, u) = ((u, u)) ≥ C0|u|21, ∀u ∈ X,

and d(·, ·) on X ×Q defined by

d(v, q) = (q, div v), ∀v ∈ X, q ∈ Q,

A trilinear term is defined by

b(u; v, w) = ((u · ∇)v, w) + 1
2 ((div u)v, w)

= 1
2 ((u · ∇)v, w) − 1

2 ((u · ∇)w, v), ∀u, v, w ∈ X,

which is the skew-symmetric form of the convective term. It is easy to gain

(3) b(u; v, w) = −b(u;w, v).

Whilst we give the following estimates of the trilinear term [10]

(4) |b(u, v, w)| ≤ N‖∇u‖0‖∇v‖0‖∇w‖0, ∀u, v, w ∈ X,

where N is a positive constant depending only on the domain Ω. For a given f ∈ Y ,
the weak formulation of Eq.(1) reads: Find (u, p) ∈ (X,Q) such that

(5)
νa(u, v) + b(u;u, v)− d(v, p) = (f, v), ∀v ∈ X.

d(u, q) = 0, ∀q ∈ Q.

The inf-sup condition [11]

(6) sup
v∈X

d(v, q)

|v|1
≥ β1‖q‖0,

where β is positive constant, guarantees that there is a unique solution of (5).
In order to implement finite element analysis, the following regularity assumption

is given:

Theorem 2.1. [10] Assuming that (u, p) is a nonsingular solution of the Navier-
Stokes equation (1), the solution (u, p) satisfies the following regularities

(7) u ∈ X ∩H3(Ω)2, p ∈ Q ∩H2(Ω).

For low Reynolds number fluid flow, f and ν satisfy the following uniqueness con-
dition :

(8) N‖f‖−1 ≤ C0ν
2,

where N is the constant of (4) and C0 is the constant of (2).
If f ∈ H1(Ω)2 and (8) hold, then the solution (u, p) satisfies that

(9) ν‖u‖3 + ‖p‖2 ≤ c‖f‖1,
where c is a positive constant depending on the domain Ω, which stands for different
values at different occurrences.

If we restrict the domain Ω to be a convex-polygonal domain in a 2D plane,
Theorem 2.1 is invalid. For current polygonal domain, we make the following
regularity assumption of the solution (u, p) of Eq. (1):

Assumption 2.1. When the domain Ω is a convex, polygonal domain in a 2-
dimensional plane, we assume that (u, p) satisfies

(10) u ∈ X ∩H3(Ω)2, p ∈ Q ∩H2(Ω).

If f ∈ H1(Ω)2 and (8) hold, then the solution (u, p) satisfies that

(11) ν‖u‖3 + ‖p‖2 ≤ c‖f‖1,
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where c is a positive constant depending on the domain Ω, which stands for different
values at different occurrences.

If we implement the finite element discretization for Navier-Stokes equation (1),
the computational domain will become a polygonal domain. Under this case, we
will use regularity results of Assumption 2.1 to carry out the finite element analysis.

3. Discretization of the Navier-Stokes equations and Subgrid model

We give a family τh, which is a partition of Ω into triangles or quadrilaterals,
assumed to be regular in the usual sense [12]. The diameter of the cell K is denoted
by hK . The mesh parameter h describes the maximum diameter of the cells K ∈ τh.

We introduce the finite-dimensional subspace Xh and Qh,

(12)
Xh := {vh ∈ (C0(Ω))2 ∩X : vh|K ∈ P2(K)2, ∀K ∈ τh},
Qh := {qh ∈ Q : qh|K ∈ P1(K), ∀K ∈ τh},

and define the discrete analogue of the space V denoted by Vh:

(13) Vh := {vh ∈ Xh : d(vh, qh) = 0, ∀qh ∈ Qh}
Under Assumption 2.1, we assume that for the finite element space (Xh, Qh), the
following approximation properties hold:

(14)
inf

vh∈Xh

{‖u− vh‖0 + h‖∇(u− vh)‖0} ≤ ch3|u|3,
inf

qh∈Mh

‖p− qh‖0 ≤ ch2|p|2,

Meanwhile, the velocity-pressure pare in (Xh, Qh) satisfies the following well-
known discrete inf -sup condition

(15) inf
qh∈Qh

sup
vh∈Xh

d(vh, qh)

‖qh‖0|vh|1
≥ β > 0.

Remark 3.1. [12, 13, 14] Let Π : Q → R0 be the standard L2-projection with the
following properties

(16) (q, qh) = (Πq, qh), ∀q ∈ Q, qh ∈ R0,

(17) ‖Πq‖0 ≤ c‖q‖0, ∀q ∈ Q,

(18) ‖q −Πq‖0 ≤ ch‖q‖1, ∀q ∈ H1(Ω) ∩Q,

where R0 = {qh ∈ Q : qh|K is constant, ∀K ∈ Kh}.
We know that, for high Reynolds number fluid flows, when the fluid convection

dominates fluid flow fields, under the finite resolution of meshes, the flow become
very instable. When the mesh scales can not resolve the smallest scale in fluid
flows, we must add some term into the Navier-Stokes equations to smear out the
effect from the unresolve scales. Here, we chose the following subgrid stabilization
term to control the effect from the unresolve scales

(19) M(uh, vh) = α((I −Π)∇uh, (I −Π)∇vh),

where α is the user-selected stabilization parameter and typically, α = hs (s is
a real number). The analogous stabilization is used to circumvent the pressure
stabilization LBB condition for Stokes problems [15]. S. Kaya and B. Rivière [9]
had proposed a analogous subgrid model, but their mode was based on two-level
finite element spaces (dependent on two different kinds of mesh partition). Our
proposed subgrid model is only dependent on one kind of mesh partition (mixed
finite element spaces are adopted, which guarantee the LBB stability condition).
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Using the above stabilization term, we give the following stabilization finite ele-
ment discretization form of the variational form Eq. (5): find (uh, qh) ∈ (Xh, Qh)
satisfying

(20)
νa(uh, vh) + b(uh;uh, vh)− d(vh, ph) +M(uh, vh) = (f, vh), ∀vh ∈ Xh,

d(uh, qh) = 0, ∀qh ∈ Qh,

Under the inf-sup condition (15), the formulation (20) is equivalent to the fol-
lowing problem [16]: find uh ∈ Vh such that

(21) νa(uh, vh) + b(uh, uh, vh) +M(uh, vh) = (f, vh), ∀vh ∈ Vh.

Theorem 3.1. [16] Suppose the uniqueness condition (8) holds. Under the condi-
tion (15), then the variational form (20) has a unique solution (uh, ph) ∈ (Xh, Qh).

4. Error Analysis

The basic principle of subgrid method focuses on enhancing the numerical sta-
bility of solving the discrete Navier-Stokes equations. For this purpose, we will
analysis the numerical scheme (20) by H1 and L2 estimates of velocity and L2 esti-
mate of pressure. The theoretical results of error analysis are classical[9]. To derive
error estimates for the finite elements solution (uh, ph), we first give the following
lemma:

Lemma 4.1. The finite element approximation of velocity for the variational form(20)
is stable

(22) ν|uh|21 + 2α‖(I −Π)∇uh‖20 ≤ 1

ν
√
C0

‖f‖2−1

where C0 is the constant of (2).

Proof. The result is easily obtained by setting vh = uh, ph = qh in the variational
form (20) and Cauchy Schwarz, Young’s inequalities.

Remark 4.1. Lemma 4.1 directly implies that

(23) |uh|1 ≤ 1

ν
√
C0

‖f‖−1.

Theorem 4.1. Suppose the uniqueness condition (8) holds, then we have

(24)

ν|u − uh|21 + 2α‖(I −Π)∇(u − uh)‖20
≤ C inf

wh∈Vh

{ν|u|21 + N2

ν (|u|1 + |uh|1)2|u− wh|21 + α‖(I −Π)∇u‖20
+α‖(I −Π)∇(u − wh)‖20}+ C inf

qh∈Mh

1
ν ‖p− qh‖20.

where C is independent of parameters ν, α and h.

Proof. First, we know that the true solution satisfies the following equation

(25)
νa(u, vh) + b(u, u, vh)− d(vh, p)− d(u, qh) +M(u, vh)

= (f, vh) +M(u, vh), ∀vh ∈ Xh, qh ∈ Qh.

By subtracting Eq. (20) from Eq. (25):

(26)
νa(u− uh, vh) + b(u, u, vh)− b(uh, uh, vh)− d(vh, p− ph)
−d(u− uh, qh) +M(u− uh, vh) = M(u, vh), ∀vh ∈ Xh, qh ∈ Qh,

Now setting u− uh = η− φh, with η = u−wh and φh = uh −wh, where wh is any
function in Vh. Taking vh = φh ∈ Vh in the Eq.(26), we obtain:

(27)
νa(φh, φh) +M(φh, φh) = νa(η, φh) + b(u, u, φh)− b(uh, uh, φh)

+M(η, φh)− d(φh, p− qh)−M(u, φh), ∀qh ∈ Qh
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To bound the nonlinear terms, we rewrite two trilinear terms as follows:

(28) b(u, u, φh)− b(uh, uh, φh) = b(u, η, φh) + b(η, uh, φh)− b(φh, uh, φh).

By using Eq.(4), Young’s inequality, Eq.(23) and Eq.(8), we have:

(29)
|b(u, u, φh)− b(uh, uh, φh)| ≤ N(|u|1 + |uh|1)|η|1|φ|1 +N |uh|1|φh|21

≤ CN2

ν (|u|1 + |uh|1)2|η|1|2 + 1
4 |φh|21.

To bound the linear terms in the right-hand side of (27), we use the Cauchy Schwarz
inequality and Young’s inequality and get

(30) |νa(η, φh)| ≤ ν|η|1|φ|1 ≤ ν|η|21 +
1

4
|φh|21,

(31) |d(φh, p− qh)| ≤ ν‖p− qh‖20 +
1

4
|φh|21,

(32)
|M(η, φh)| ≤ α‖(I −Π)∇η‖0‖(I −Π)∇φh‖0

≤ α
4 ‖‖‖(I − Π)∇φh‖20 + α‖(I −Π)∇η‖20,

(33) |M(u, φh)| ≤ α‖(I −Π)∇u‖20 +
α

4
‖(I −Π)∇φh‖20.

Combining all the above bounds gives

(34)
ν|φh|21 + 2α‖(I −Π)∇φh‖20 ≤ C{ν|η|21 + N2

ν (|u|1 + |uh|1)2|η|21
+α‖(I −Π)∇η‖20 + α‖(I −Π)∇u‖20
+ 1

ν ‖p− qh‖20}
The final result is easily obtained by using the triangle inequality

(35)
ν|u− uh|21 + 2α‖(I − Π)∇(u − uh)‖20
≤ C{ν|u− wh|21 + 2α‖(I −Π)∇(u − wh)‖20
+ν|φh|21 + 2α‖(I −Π)∇φh‖20}

By choosing the proper parameters α and h, and using Eq.(14) and (3.1), we can
obtain the following corollary.

Corollary 4.1. Under the assumption of Theorem 3.1 and the regularity assump-
tion of (u, p) ∈ (H3(Ω)2∩X,H2(Ω)∩Q) in Assumption 2.1, there exists a constant
C independent of α and h such that:

(36)
ν|u − uh|21 + 2α‖(I −Π)∇(u − uh)‖20
≤ Ch4|u|23(ν + 1

ν (1 +
1
ν )

2 + α) + C
ν h

4|p|22 + Cαh2|u|23.
In particular,

(37) |u− uh|1 ≤ Ch2, if α = h2

Now, we give the estimation of the discrete pressure in the following Theorem:

Theorem 4.2. Suppose the uniqueness condition (8) holds, then the pressure error
satisfies

(38)
‖p− ph‖0 ≤ C((ν + 1)|u− uh|1 + |u− uh|21 + α‖(I −Π)∇(u − uh)‖0

+α‖(I −Π)∇u‖0) + C inf
qh∈Qh

‖p− qh‖0,

where C is independent of ν, α, h.
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Proof. Setting the error of the velocity e = u − uh and introducing an approxi-
mation of the pressure p̃h ∈ Qh in Eq.(26), we have:

(39)
d(vh, ph − p̃h) = d(vh, p− p̃h)− νa(e, vh)− (b(u, u, vh)− b(uh, uh, vh))

−M(e, vh) +M(u, vh), ∀vh ∈ Xh.

From Eq.(4), the nonlinear terms are bounded as:

(40)
|b(u, u, vh)− b(uh, uh, vh)| = |b(u, e, vh) + b(e, u, vh)− b(e, e, vh)|

≤ C(|e|1 + |u|1)|e|1|vh|1.
To bound the linear terms in the right-hand side of (39), we apply Cauchy Schwarz
inequality and (3.1), the term M(u, vh) is bounded as in (32). Combining all the
bounds, we have:

(41)
|d(vh, ph − p̃h)| ≤ C{‖p− p̃h‖0 + ν|e|1 + (|e|1 + |u|1)|e|1

+α‖(I −Π)∇e‖0 + α‖(I −Π)∇u‖0}|vh|1.
Meanwhile, the inf-sup condition (15) implies that there exists a velocity vh ∈ Xh

such that

(42) d(vh, ph − p̃h) ≥ β|vh|1‖ph − p̃h‖0.
In view of (42), we get

(43) ‖p− ph‖0 ≤ ‖p− p̃h‖0 + β−1 |d(vh, ph − p̃h)|
|vh|1

.

By (41) and (43), we obtain the conclusion

(44)
‖p− ph‖0 ≤ C‖p− p̃h‖0 + C(ν|e|1 + |e|21 + |e|1|u|1

+α‖(I −Π)∇e‖0 + α‖(I −Π)∇u‖0).
Namely

(45)
‖p− ph‖0 ≤ C((ν + 1)|u− uh|1 + |u− uh|21 + α‖(I −Π)∇(u − uh)‖0

+α‖(I −Π)∇u‖0) + C infqh∈Qh
‖p− qh‖0.

Corollary 4.2. From Theorem 4.1, the approximation results (14), and corollary
4.1, we have

(46) ‖p− ph‖0 ≤ C(h2 + α
1

2 h).

In particular,

(47) ‖p− ph‖0 ≤ Ch2, if α = h2,

where C is independent of α and h.

In order to derive the estimate in L2 space for the velocity, we consider the
linearized dual problem of Navier-Stoles equations [9, 13]: Given ξ ∈ L2(Ω), find
(φ, ϕ) such that

(48)
νa(φ, v) + b(u, v, φ) + b(v, u, φ) +M(φ, v)− d(v, ϕ) + d(φ, q) = (ξ, v),

∀(v, q) ∈ (X,Q).

We assume that, for any ξ ∈ L2(Ω), there exists a unique pair (φ, ϕ) ∈ (H2(Ω)2 ∩
X,H1(Ω) ∩Q) satisfying

(49) ‖φ‖2 + ‖ϕ‖1 ≤ C‖ξ‖0.
Now we give the L2 error estimate by the following theorem.



SUBGRID MODEL FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 741

Theorem 4.3. Suppose that the assumptions of Theorem 4.1 and Theorem 4.2
hold, the dual problem (48) satisfies Eq.(49). We have

(50) ‖u− uh‖0 ≤ Ch(1 + α)|e|1 + C|e|21 + Cαh2 + Ch‖p− ph‖0
where C is independent of α, h.

Proof. Setting e = u− uh, and subtracting (25) from (20), we can get:

(51)
νa(e, vh) + b(u, u, vh)− b(uh, uh, vh)− d(vh, p− ph)
−d(e, qh) +M(e, vh)−M(u, vh) = 0, ∀vh ∈ Xh, ∀qh ∈ Qh.

Taking ξ = e, v = e, q = ph − p in Eq.(48) and subtracting (51), we gain:
(52)

‖e‖20 ≤ |νa(φ− vh, e)|+ |b(e, u, φ) + b(u, e, φ)− b(u, u, vh) + b(uh, uh, vh)|
+|d(e, ϕ− qh)|+ |d(φ− vh, p− ph)|+ |M(φ− vh, e) +M(u, vh)|
≤ C(ν|e|1 + ‖p− ph‖0 + α‖(I −Π)∇e‖0)|φ− vh|1 + C‖ϕ− qh‖0|e|1
+α‖(I −Π)∇u‖0‖(I −Π)∇vh‖0 + |b(e, u, φ) + b(u, e, φ)− b(u, u, vh)
+b(uh, uh, vh)|.

Let φ̃ and ϕ̃ be the best approximation of (φ, ϕ) ∈ (Xh, Qh), we have the following
approximation properties:

(53)
‖φ− φ̃‖1 ≤ Ch‖φ‖2,
‖ϕ− ϕ̃‖0 ≤ Ch‖ϕ‖1.

Setting (vh, qh) = (φ̃, ϕ̃) and using the Cauchy-Schwarz inequality and the above
approximation properties, Eq.(52) becomes:

(54)

‖e‖20 ≤ Ch(|e|1 + ‖p− ph‖0 + α‖(I −Π)∇e‖0)‖φ‖2
+Ch‖ϕ‖1|e|1 + α‖(I −Π)∇u‖0‖(I −Π)∇φ̃‖0
+|b(u, e, φ) + b(e, u, φ)− b(u, u, φ̃) + b(uh, uh, φ̃)|.

Using (3.1), the consistency error term in the right-hand side of (54) gives

(55)

α‖(I −Π)∇u‖0‖(I −Π)∇φ̃‖0 ≤ Cαh|u|3h‖∇φ̃‖1
≤ Cαh2|u|3‖φ̃‖2
≤ Cαh2|u|2(‖φ− φ̃‖2 + ‖φ‖2)
≤ Cαh2|u|3‖φ‖2.

To bound the nonlinear terms in (54), we rewrite these terms as follows:

(56)
b(u, e, φ) + b(e, u, φ) −b(u, u, φ̃) + b(uh, uh, φ̃) = b(e, e, φ) + b(u, e, φ− φ̃)

+b(e, u, φ− φ̃) + b(e, e, φ− φ̃).

Using Eq.(4) and Eq.(53), we gain

(57)
|b(u, e, φ) + b(e, u, φ)− b(u, u, φ̃) + b(uh, uh, φ̃)|
≤ C|e|21‖φ‖1 + C|u|1|e|1‖φ− φ̃‖1 + C|e|21‖φ− φ̃‖1
≤ C(|e|1 + h)|e|1‖φ‖2.

Combining all the bounds and using Eq.(49) give the final result

(58)
‖e‖0 ≤ Ch(ν + α)|e|1 + Ch‖p− ph‖0 + Cαh2|u|3 + C(|e|1 + h)|e|1

≤ Ch(1 + α)|e|1 + C|e|21 + Cαh2 + Ch‖p− ph‖0.
Corollary 4.3. The statement of Theorem 4.3, the result of Corollary 4.1 and
Corollary 4.2 imply that

(59) ‖u− uh‖0 ≤ C(h3 + α
1

2h2).
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In particular,

(60) ‖u− uh‖0 ≤ Ch3, if α = h2

where C is independent of α, h.

5. Numerical tests

Firstly, we give the algorithm used to deal with the nonlinear term and the sub-
grid eddy viscosity term. For the nonlinear term the Newtonian iteration method
is adopted. Given (un−1

h , pn−1
h ), we find (un

h, p
n
h) satisfying

(61)
νa(un

h, vh)− d(vh, p
n
h) + d(un

h, qh) +M(un
h, vh)+

b(un
h, u

n−1
h , vh) + b(un−1

h , un
h, vh) = (f, vh) + b(un−1

h , un−1
h , vh).

(62) M(un
h, vh) = α((∇un

h ,∇vh)− (Π∇un−1
h ,∇vh)).

In order to calculate the subgrid term M(uh, vh), we use a simple treatment. De-
noting a basis of R0 by {φh

j0}Nj=1, and a basis of Xh by {φh
j }Nj=1. So, we have

(63) Π∇un−1
h =

N∑

j=1

βn−1
j φh

j0.

The coefficients β = (βn−1
j )j can be calculated by the definition of the projection

operator as follows

(64) Sβ = (∇un−1
n , φh

j0)1≤j≤N ,

where the matrix S is the mass matrix, which has the form Sij = (φh
i0, φ

h
j0). More-

over, un−1
h can be denoted by

(65) un−1
h =

N∑

j=1

γn−1
j φh

j .

Then, we have

(66) β = S−1RTγ,

where γ = (γn−1
j )1≤j≤N and Rij = (φh

j0,∇(φh
j )). Finally, we have

(67) (Π∇un−1
h ,∇vh) = Rβ = RS−1RTγ.

Because R0 consists of piecewise constants, the matrix S is block diagonal and this
computation can be implemented on each element. The analogous algorithm can
be found in [9].

5.1. Example of a exact solution. It is essential to investigate the subgrid
model (19) for low viscosity fluid flow and validate the flexibility and convergence
rates of this model. So, we need to choose a true solution. We consider the equation
(1) on the domain Ω = [0, 1] × [0, 1], with a body force obtained such that the
following true solution is given by u = (u1, u2),

(68)





u = 2x2(x− 1)2y(y − 1)(2y − 1),
v = −y2(y − 1)22x(x− 1)(2x− 1),
p = y2 − x2.

The viscosity ν = 0.01 and the corresponding Reynolds number Re = 100. We
choose α = h2. The mesh scales we choose are h ∈ {1/20, 1/30, 1/40, 1/50}. The
iterative tolerance is 10−6. In Fig. 1, we show the convergence orders by log-log
plots. From the figure, it is shown that the convergence orders are up to 2.985 and
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Figure 1. L2 and H1 convergence order by a log-log plot.
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Figure 2. L2 and H1 relative errors by a log-log plot.

1.922 for L2 and H1 norms, respectively. This results coincide with the results of
theoretic analysis. In Fig. 2, the relative errors of u and v are given. In Figs. 3-4, the
number results and the exact solutions are shown. From the figures, it is obvious
that the simulation results by the subgrid method exhibit that the numerical results
agree with the exact solution very well. According to all of these, we know that the
subgrid term for low Re fluid flows does not act on the large scale structures.

5.2. Lid-driven cavity fluid flows. In this section, we will use the model pro-
posed in this paper to simulate the benchmark lid-driven fluid flows of high Re
fluid flows and try out the correctness of the model. The computational domain
Ω = [0, 1]× [0, 1] and the top boundary velocity (u, v) = (1, 0), and the other three
boundaries possess non-slip boundary conditions. The iterative tolerance is 10−6.
The Reynolds numbers Re = LU/ν = 100, 400 and 1000. And the corresponding



744 Y. ZHANG, M.F. FENG, AND Y.N. HE

0.0 0.2 0.4 0.6 0.8 1.0
-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015
 

 u

X (at x=0.5)

 Mesh scale 1/20
 Mesh scale 1/30
 Mesh scale 1/40
 Mesh scale 1/50
 Exact soution

Figure 3. The exact solution and the numerical solutions of u.

0.0 0.2 0.4 0.6 0.8 1.0
-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

 Mesh scale 1/20
 Mesh scale 1/30
 Mesh scale 1/40
 Mesh scale 1/50
 Exact soution

 

 v

Y (at y=0.5)

Figure 4. The exact solution and the numerical solutions of v.

mesh scale is set as h = 1/32 for Re = 100 and 400 , and h = 1/40 for Re = 1000.
The comparisons of numerical solutions and Ghia benchmark solutions [17] are
shown in Figs. 5-10. According to these comparisons, the numerical results by the
current subgrid model coincide with the Ghia’s results [17] very well.

6. Conclusion

In this paper, we proposed a subgrid model by high-order polynomial interpola-
tions. The theoretical analysis guarantees that the subgrid term does not act on the
large scale structures of fluid flows. The stability and error estimates are established
in this paper. Meanwhile, the numerical tests are implemented. The proposed sub-
grid model is simple and easy to be implemented. According to computational
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Figure 5. The numerical solutions and the benchmark solution
of u for Re = 100.
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Figure 6. The numerical solutions and the benchmark solution
of v for Re = 100.

results, the subgrid method provides some creditability to engineering applications.
The current numerical tests are based on P2/P1 polynomial interpolations. We
must point out that this method is very easy to extent to higher interpolation finite
element spaces. In future, this subgrid method will be attempted to implement
some simulations for 2D turbulence fluid flows and 3D high Reynolds fluid flows.
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