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Abstract. We consider a two-point boundary-value problem for a singularly

perturbed convection-diffusion problem. The problem is solved by using a

defect-correction method based on a first-order upwind difference scheme and

a second-order (unstabilized) central difference scheme.

A robust a posteriori error estimate in the maximum norm is derived. It

provides computable and guaranteed upper bounds for the discretization error.

Numerical examples are given that illustrate the theoretical findings and verify

the efficiency of the error estimator on a priori adapted meshes and in an

adaptive mesh movement algorithm.
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1. Introduction

Defect correction methods (DCM) have been advocated for the numerical so-
lution of ordinary and partial differential equations since the early 1970s and
80s [27, 5]. The idea of DCMs is to combine the good stability properties of a
low order upwinded discretization with the higher order accuracy of unstabilized
discretizations. They have been successfully applied in computational fluid dy-
namics, for example to combustion problems [3] or when solving the Navier-Stokes
equations [14, 19].

Hemker [12, 13] proposed the use of DCM for the numerical treatment of
convection-diffusion and other singularly perturbed boundary-value problems.
Most of the papers found in the literature deal with DCM on (quasi)uniform meshes.
Only recently adaptivity and layer-adapted meshes have been used in combination
with DCM, see [9, 10, 15, 22]. Of particular interest are parameter-uniform meth-
ods, i.e., methods that perform equally well no matter how small the perturbation
parameter.

Let us consider the convection-diffusion problem

Lu := −εu′′ − (bu)′ + cu = f in (0, 1), u(0) = γ0, u(1) = γ1,(1)

where ε is a small positive parameter and b ≥ β > 0 on [0, 1]. It provides an
excellent paradigm for numerical techniques in computational fluid dynamics for
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the treatment of problems with boundary layers, i. e., regions where the solution
and its derivates change rapidly [26].

In the present paper we shall investigate a DCM for (1) based on finite differ-
ence discretizations. Ervin and Layton [8] proved that this method is uniformly
convergent of second in the maximum norm order outside layers. However, the
crucial point in singularly perturbed problems is the resolution of layers. This can
for example be achieved by the use of layer-adapted meshes, i.e., meshes that are
significantly refined inside the layer regions. The resulting non-uniformity of the
mesh results in difficulties both in the appropriate construction of the DCM and
its analysis which must be overcome.

In [10] a DCM on a particular class of layer-adapted meshes, so called Shishkin-
type meshes, is considered. The authors conduct an a priori error analysis and
establish uniform nodal convergence of essentially second order in all mesh points.
A theory for arbitrary meshes has been derived in [22, 23].

Let us describe the DCM from [10, 22, 23]. Given a mesh ωN : 0 = x0 < x1 <
· · · < xN = 1 with mesh sizes hi := xi − xi−1 and ~i = (hi + hi+1) /2 define the
difference operators

vx,i :=
vi+1 − vi
hi+1

, vx̄,i :=
vi − vi−1

hi
, vx̂,i :=

vi+1 − vi
~i

and vx̊,i :=
vi+1 − vi−1

2~i
.

Then the central difference approximation on ωN for (1) is[
LcūN

]
i
:= −εūNx̄x̂,i+1 − (būN )x̊,i + ciū

N
i = fi.

It is combined with the upwind scheme[
LuûN

]
i
:= −εûNx̄x,i+1 − (bûN )x,i + ciû

N
i = fi,

where for any function g ∈ C[0, 1] we have set gi := g(xi).
With this notation the DCM is as follows:

1. Compute an initial first-order approximation ûN using simple upwinding:[
LuûN

]
i
= fi for i = 1, . . . , N − 1, ûN0 = γ0, ûNN = γ1.(2a)

2. Estimate the defect τ in the differential equation by means of the central
difference scheme:

τi =
[
LcûN

]
i
− fi for i = 1, . . . , N − 1.(2b)

3. Compute the defect correction ∆ by solving

[Lu∆]i = κiτi, κi :=
~i
hi+1

for i = 1, . . . , N − 1, ∆0 = ∆N = 0.(2c)

4. Then the final computed solution is

uNi = ûNi −∆i for i = 0, . . . , N.(2d)

Remark 1. At a first glance both the upwind discretization and the particular
weighting of the residual in (2c) appear a bit non-standard. No justification for
these choices are provided by [10, 22, 23]. An argument that suggests this particular
choice is presented in Sect. 4. Furthermore, our weighting becomes the standard
κi = 1 on uniform meshes; however, when used on non-uniform meshes, κi = 1
might reduce the order of convergence (see numerical results in Sect. 5.3).

While the a priori results [10, 22, 23] establish the asymptotic behaviour of the
error as the mesh is refined, it cannot give guaranteed upper bounds for the error
on a particular mesh. The constant in the error bound, though independent of
the perturbation parameter ε, depends on the exact solution u which in turn is
unknown.
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The main contribution of the present paper is in establishing an a posteriori
error bound which provides an upper bound on the error:∥∥u− uN

∥∥
∞ ≤ C∗ max

i=1,...,N
min

{
hi

∥b∥∞
,
h2i
4ε

} ∣∣∣(f − cuN
)
i−1/2

+ (buN )x̄,i

∣∣∣
+

1

β
max

i=1,...,N
hi
∣∣(b∆)x̄,i

∣∣+ higher order terms

The constant C∗ can be expressed explicitely in terms of the data of the problem.
The paper is organized as follows. Sect. 2 quotes some a priori results for

the DCM from the literature. Our novel a posteriori estimates are presented in
Sect. 3, while in Sect. 4 we consider particular issues in the construction of the
DCM, namely the choice of a suitable upwind scheme. Finally in Sect. 5 results of
numerical experiments for a test problem are given that illustrate the theoretical
findings and verify the efficiency of the error estimator on a priori adapted meshes
and in an adaptive mesh movement algorithm.
Notation. Throughout we shall use C to denote a generic positive constant that is
independent of both the perturbation parameter ε and of N , the number of mesh
intervals.

2. A priori error analysis

This type of analysis is based on derivative bounds for the exact solution and on
stability properties of the discrete operator Lu. These will be provided first. Next
a sketch of the analysis in [22, 23] for arbitrary meshes is given. This general result
is then applied to two special layer-adapted meshes.

Lemma 1. Assume b, c, f ∈ C1[0, 1]. Then (1) possesses a unique solution u ∈
C3[0, 1] with∣∣∣u(k)(x)∣∣∣ ≤ C

{
εmin{0,2−k} + ε−ke−βx/ε

}
for k = 0, 1, 2, 3 and x ∈ [0, 1],

Proof. A first proof was given in [16]. The precise smoothness requirement are
stated in [21]. �

Introduce the discrete norms

|||v|||ε,∞,ω := max

{
ε

2
max

i=1,...,N
|vx̄,i| ,

β

2
max

i=0,...,N
|vi|

}
and

∥v∥−1,∞,ω := min
γ∈R

max
i=0,...,N−1

∣∣∣∣∣∣
N−1∑
j=i

hj+1vj − γ

∣∣∣∣∣∣
Theorem 1. Suppose the coefficients in (1) satisfy

c ≥ 0 and c− b′ ≥ 0 on [0, 1].(3)

Then the operator Lu enjoys the stability inequality

|||v|||ε,∞,ω ≤ ∥Luv∥−1,∞,ω for all v ∈ RN+1
0 :=

{
w ∈ RN+1 : w0 = wN = 0

}
.

Proof. See [23] for a proof based on comparison principles. The proof in [1] uses
the Green’s function associated with Lu. �
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Remark 2. The results hold also without the restrictions imposed by (3), see [1],
however the arguments become more complicated and the constants in the estimates
will differ.

Furthermore, note that when β > 0 then (3) can always be ensured for ε smaller
than some threshold value ε0 by a simple transformation u = ũeχx with χ chosen
appropriately.

Set

(Av) (x) := εv′(x) + (bv) (x) +

∫ 1

x

(cv) (s)ds, F(x) :=

∫ 1

x

f(s)ds,

[Auv]i := εvx̄,i + (bv)i +
N−1∑
k=i

hk+1 (cv)k , Fu
i :=

N−1∑
k=i

hk+1fk,

and

[Acv]i := εvx̄,i +
(bv)i + (bv)i−1

2
+

N∑
k=i

~k(cv)k, F c
i :=

N∑
k=i

~kfk,

where we have formally set ~N = hN/2. The differential equation (1) yields

(Au−F) (x) = α for all x ∈ [0, 1],(4a)

while (2) implies[
AcuN − (Au −Ac)∆− F c

]
i
= a for i = 1, . . . , N.(4b)

A direct calculation gives[
Au

(
u− uN

)]
i
=

[
(Ac −Au)

(
ûN − u

)]
i
+ [Acu− F c]i

− (Au−F) (xi−1/2)− a− α.

The first term on the right-hand side, the so-called relative truncation error, consti-
tuted the main difficulty in [10, 22]. It is related to the approximation of derivatives
by the upwind scheme. In [22] an error expansion for the error of the upwind scheme
is constructed that addresses this issue. Then using Theorem 1 and Lemma 1, one
obtains ∣∣∣∣∣∣uN − u

∣∣∣∣∣∣
ε,∞,ω

≤ Cϑ (ωN )
2

(5)

with

ϑ (ωN ) := max
i=1,...,N

∫ xi

xi−1

(
1 + ε−1e−βs/2ε

)
ds,

see [22, 23].
The general convergence result (5) can be used to conclude the uniform order of

convergence for various layer-adapted meshes. We shall restrict ourselve to the two
most commonly used meshes.
Bakhvalov meshes. [4] for (1) are generated by equidistributing the function

MBa(x) = max
{
1, Kε−1e−βx/(εσ)

}
with positive constants K and σ, i.e. the mesh points xi are chosen such that∫ xi

0

MBa(s)ds =
i

N

∫ 1

0

MBa(s)ds.
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The parameter K determines the number of mesh points used to resolve the layer.
For the Bakhvalov mesh ωB

N it can be shown [20, 23] that

ϑ(ωB
N ) ≤ CN−1 if σ ≥ 2.

Shishkin meshes. [24] are constructed as follows. Let q ∈ (0, 1) and σ > 0 be mesh
parameters. Set

τ = min

{
q,

σε

β
lnN

}
.

Assume that qN is an integer. Then the Shishkin mesh ωS
N for problem (1) divides

the interval [0, τ ] into qN equidistant subintervals, while [τ, 1] is divided into (1−
q)N equidistant subintervals. For this mesh we have

ϑ(ωS
N ) ≤ CN−1 lnN if σ ≥ 2.

3. A posteriori error analysis

This type of error analysis employs stability properties of the differential opera-
tor. We use results from [2, 23] and a generalization of Lemma 2.2 in [17].

Given an arbitrary function v with v(0) = v(1) = 0, we have

v(x) =

∫ 1

0

G(x, ξ)
(
Lv

)
(ξ)dξ for x ∈ [0, 1],

where G, the Green’s function associated with L and Dirichlet boundary conditions,
solves for fixed ξ ∈ [0, 1]

(LG(·, ξ)) (x) = δ(x− ξ) for x ∈ (0, 1), G(0, ξ) = G(1, ξ) = 0,(6)

with δ denoting the Dirac-δ function. Therefore (6) has to be read in the context
of distributions. G can also be defined using the adjoint operator L∗v := −εv′′ +
bv′ + cv. For fixed x ∈ [0, 1] it solves

(L∗G(x, ·)) (ξ) = δ(ξ − x) for ξ ∈ (0, 1), G(x, 0) = G(x, 1) = 0.(7)

For our further investigations, let us introduce the supremum and the L1 norms

∥v∥∞ := ess sup
x∈[0,1]

|v(x)| and ∥v∥1 :=

∫ 1

0

|v(x)|dx,

and the W−1,∞ norm

∥v∥−1,∞ := min
V :V ′=v

∥V ∥∞ = min
C∈R

∥∥∥∥∫ 1

·
v(s)ds+ C

∥∥∥∥
∞

= sup
u∈W 1,1

0

⟨u, v⟩
|u|1,1

.

For a detailed discussion of this norm the reader is referred to [2, §2.2].
For arbitrary x ∈ (0, 1) we have the following bounds on various semi-norms of

G, see [2, 23]:

∥G(x, ·)∥1 ≤ ∥G(x, ·)∥∞ ≤ β−1, ∥Gξ(x, ·)∥1 ≤ 2β−1 and ∥Gxξ(x, ·)∥1 = 2ε−1.

(8)

These norms are used in [2, 23] to establish stabily properties for the operator L.

Theorem 2. Suppose (3) holds true. Then the operator L satisfies

|||v|||ε,∞ := max

{
β

2
∥v∥∞,

ε

2
∥v′∥∞

}
≤ ∥Lv∥−1,∞ for all v ∈W 1,∞

0 (0, 1).

Remark 3. Again the conditions (3) can be relaxed though the stability constant
will change, see [2].
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The next result is an extension of Lemma 2.2 in [17] which gave bounds in
the mesh points only. It is a crucial ingredient for the analysis of second-order
approximations.

Theorem 3. Let u be the solution of the boundary value problem

Lu = −F ′ on (0, 1), u(0) = u(1) = 0

with

F (x) = Ai−1/2(x− xi−1/2) for x ∈ (xi−1, xi).

Then

∥u∥∞ ≤ C∗ max
i=1,...,N

{∣∣Ai−1/2

∣∣min

[
hi

∥b∥∞
,
h2i
4ε

]}
,(9)

where

C∗ =
2∥b∥∞ + ∥c∥∞ + β

2β
(10)

Proof. Let x ∈ (0, 1) be arbitrary, but fixed. The Green’s function representation
gives

u(x) =

∫ 1

0

Gξ(x, ξ)F (ξ)dξ =

N∑
i=1

Ai−1/2Ii(11)

with

Ii :=

∫ xi

xi−1

Gξ(x, ξ)(ξ − xi−1/2)dξ =

∫ xi

xi−1

Gξξ(x, ξ)

[
h2i
8

−
(ξ − xi−1/2)

2

2

]
dξ.

Therefore we have two bounds for the Ii’s:

|Ii| ≤
hi
2

∫ xi

xi−1

|Gξ(x, ξ)| dξ

and

|Ii| ≤
h2i
8ε

∫ xi

xi−1

ε |Gξξ(x, ξ)| dξ

Using (7), we get the combined estimate

|Ii| ≤ min

{
h2i
8ε
,

hi
2∥b∥∞

}{∫ xi

xi−1

δ(ξ − x)dξ + ∥b∥∞
∫ xi

xi−1

|Gξ(x, ξ)| dξ

+ ∥c∥∞
∫ xi

xi−1

|G(x, ξ)| dξ
}
.

The Ii’s in (11) have been bounded and application of a discrete Hölder inequality
completes the proof. �

With these stability results at hand we can now derive our a posteriori error
bounds. We shall identify any mesh function v with its piecewise linear nodal
interpolant.
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Theorem 4. Suppose (3) holds true. Set ψ := f − cuN . Then the error of the
defect-correction method satisfies∥∥u− uN

∥∥
∞ ≤ η := η1 + η2 + η3 + η4 + η5

with

η1 := C∗ max
i=1,...,N

min

{
hi

∥b∥∞
,
h2i
4ε

} ∣∣∣ψi−1/2 +
(
buN

)
x̄,i

∣∣∣ ,
η2 :=

1

β
max

i=1,...,N
hi

∣∣∣(b∆)x̄,i

∣∣∣ , η3 :=
1

β
max

i=1,...,N−1

∣∣∣∣∣
N−1∑
k=i

hk+1 − hk
2

ck∆k

∣∣∣∣∣ ,
η4 :=

1

6β

N∑
i=1

h3i ∥ψ′′∥∞,[xi−1,xi]
,

and

η5 :=
3

4β
max

i=1,...,N
h2i

{
2 ∥ψ′∥∞,[xi−1,xi]

+
∥∥(buN )′′

∥∥
∞,[xi−1,xi]

}
.

Proof. By (4) we have, for x ∈ (xi−1, xi),

A
(
u− uN

)
(x) = F(x)− F c

i +
[
AcuN

]
i
−
(
AuN

)
(x)− [(Au −Ac)∆]i + α− a.

Recalling the definitions of F , F c, A, Ac and Au, we obtain the representation

A
(
u− uN

)
(x) =

∫ 1

x

ψ(s)ds−
N∑
k=i

~kψk +

(
buN

)
i
+
(
buN

)
i−1

2
−
(
buN

)
(x)

− hi
2
(b∆)x̄,i −

N−1∑
k=i

hk+1 − hk
2

ckδk + α− a.

(12)

Taylor expansions yield∫ 1

x

ψ(s)ds−
N∑
k=i

~kψk =

∫ 1

xi

(ψ − ψI)(s)ds+ (xi−1/2 − x)ψi−1/2 + µi(x),

and (
buN

)
i
+
(
buN

)
i−1

2
−
(
buN

)
(x) = (xi−1/2 − x)

(
buN

)
x̄,i

+ µ̃i(x)

with

∥µi∥∞,[xi−1,xi]
≤ 3h2i

4
∥ψ′∥∞,[xi−1,xi]

and

∥µ̃i∥∞,[xi−1,xi]
≤ 3h2i

8
∥(bU)′′∥∞,[xi−1,xi]

Substite the above two equations into (12).

A (u− U) (x) =

∫ 1

xi

(ψ − ψI)(s)ds+
(
xi−1/2 − x

) (
ψi−1/2 +

(
buN

)
x̄,i

)
− hi

2
(b∆)x̄,i −

N−1∑
k=i

hk+1 − hk
2

ckδk + (µi + µ̃i) (x) + α− a.
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Furthermore ∣∣∣∣∫ 1

xi

(ψ − ψI)(s)ds

∣∣∣∣ ≤ 1

12

N∑
i=1

h3i ∥ψ′′∥∞,[xi−1,xi]
.

Finally, note that (Av)′ = −Lv. Use Theorems 2 and 3 to complete the proof.
�

Remark 4. Theorem 4 gives an error estimate of a second-order method. There-
fore, all components in η, explicitly or implicitly, involve h2i . In particular, for
η3 an integration-by-parts calculation shows that η3 = (2β)−1 maxi

∣∣hN (c∆)N−1 −
hi(c∆)i −

∑N−1
k=i+1 h

2
k(c∆)x̄,k

∣∣, i.e. η3 is also a second-order term.

Remark 5. The error estimate of Theorem 4 contains terms, namely η5 and η6,
that in general have to be approximated, for example

ψ′ ≈ ψi − ψi−1

hi
, ψ′′ ≈ 4

ψi − 2ψi−1/2 + ψi−1

h2i

and

(buN )′′ ≈ 4
(buN )i − 2(buN )i−1/2 + (buN )i−1

h2i
.

The additional errors introduced this way are of third order and therefore decay
rapidly when the mesh is refined.

4. Construction of the defect correction method

The crucial point in the design of the DCM is the choice of a suitable upwind
operator Lu and of appropriate weights κi.

Let ξ, ζ ∈ [0, 1] be arbitrary, but fixed. Define the weighted step sizes

h′i = ξhi + (1− ξ)hi+1 and h′′i = ζhi + (1− ζ)hi+1.

With this notation a general first-order upwinded scheme for (1) takes the form[
LuûN

]
i
:= −εhi+1

h′i
ûNx̄x,i −

hi+1

h′′i

(
bûN

)
x,i

+ ciû
N
i = fi.(13)

On a uniform mesh hi = ~i = h′i = h′′i = hi+1 and there is no variation in
the upwind scheme and the choice κ ≡ 1 is successful; see the analysis in [8]. For
non-uniform meshes the situation is different and will be discussed in detail now.

For the error χ := uN − u of the defect correction method we have

Lu(uN − u) = (Lu − κLc)
(
uN − u

)
+ κ (f − Lcu) .

The second term on the right-hand side is the truncation error of the central dif-
ference scheme. It is of second order and does not need any further discussion at
the moment.

For the first term, the so-called relative truncation error, we have

[(Lu − κLc) χ̂]i = −ε
(
~i
h′i

− κi

)
χ̂x̄x̂,i −

(bχ̂)i+1 − (bχ̂)i
h′′i

+ κi
(bχ̂)i+1 − (bχ̂)i−1

2~i
+ (1− κi)ciχ̂i,

where χ̂ := ûN − u is the error of the upwind scheme. It is of first order, while
χ̂i+1 − χ̂i can be of second order at best.

First, look at the term arising from the discretization of the diffusion term. This
is a discrete second order derivative of χ̂. Hence it is of of first order too. Therefore,
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second order convergence can only be achieved when this term vanishes, i.e., when
κi = ~i/h′i. This determines the weights of the defect in (2c).

Next, with κ fixed the error contribution form the convection term is

− (bχ̂)i+1 − (bχ̂)i
h′′i

+
(bχ̂)i+1 − (bχ̂)i−1

2h′i
.

These are second order terms divided by h, i.e. will in general give an error contri-
bution of first order. Only when h′i = h′′i this becomes

− (bχ̂)i+1 − 2(bχ̂)i + (bχ̂)i−1

2h′i
.(14)

This is roughly h times a discrete second-order derivative of a term of first order.
Thus is of second order.

Similar to Theorem 1 the upwind operator Lu defined by (13) with h′i = h′′i
satisfies the stability inequality

∥v∥∞,ω ≤ min
γ∈R

max
i=0,...,N−1

∣∣∣∣∣∣
N−1∑
j=i

h′j [L
uv]j − γ

∣∣∣∣∣∣ for all v ∈ RN+1
0 .

Thus, (14) gives the error contribution

max
i=1,...,N

|(bχ̂)i − (bχ̂)i−1|

which can be of second order only when h′i = hi+1. This issue is related to the
approximation of derivative in the upwind scheme and was discussed in [18], see
Remark 1 therein.

The numerical experiments in Sect. 5.3 also show that other choices than h′i =
h′′i = hi+1 and κi = ~i/h′i reduce the order of convergence of the DCM to first
order.

An alternative construction of this DCM is using a Galerkin method with piece-
wise linear test and trial functions and special quadrature rules: the trapezium rule
for the central difference approximation and the left-sided rectangle rule for the
upwind scheme.

5. Numerical experiments

We now consider the test problem

−εu′′(x)− (2 + x)u′(x) + cosx u(x) = e1−x for x ∈ (0, 1), u(0) = u(1) = 0(15)

in order to illustrate the results of our theoretical findings and to study numerically
the magnitude of the various components ηi of our error estimator. We shall also
verify how sharp the results are. For this problem we have β = 2.

5.1. Numerical results for a priori adapted meshes. The exact solution
to (15) is not available. Instead the maximum-norm errors are estimated by com-
paring the numerical solution uN with ũ16N , the solution of the DCM on the mesh
obtained by bisecting the original mesh four times, i.e. a mesh that is 16 times
finer: ∥∥u− uN

∥∥
∞ ≈ χN :=

∥∥ũ16N − uN
∥∥
∞ .

The efficiency constant of the error estimator is evaluated computing the quantities
rN := ηN/χN . In our experiments we take ε = 10−8 which is a sufficiently small
value to bring out the singularly perturbed nature of the problem.

Table 1 contains the results of our test computations for a Bakhvalov mesh with
parameters σ = 2 and K = σ/β. With this choice approximately half of the mesh
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N χN ηN1 ηN2 ηN3 ηN4 ηN5 ηN rN

210 5.78e-06 8.69e-06 5.88e-06 3.88e-07 4.62e-07 3.15e-07 1.57e-05 2.72
211 1.44e-06 2.17e-06 1.48e-06 9.79e-08 1.16e-07 7.86e-08 3.93e-06 2.72
212 3.60e-07 5.39e-07 3.70e-07 2.46e-08 2.89e-08 1.96e-08 9.82e-07 2.73

213 8.98e-08 1.34e-07 9.24e-08 6.15e-09 7.23e-09 4.91e-09 2.45e-07 2.73
214 2.24e-08 3.33e-08 2.31e-08 1.54e-09 1.81e-09 1.23e-09 6.10e-08 2.73
215 5.56e-09 8.26e-09 5.77e-09 3.85e-10 4.52e-10 3.07e-10 1.52e-08 2.73
216 1.38e-09 2.05e-09 1.44e-09 9.63e-11 1.13e-10 7.67e-11 3.78e-09 2.73

217 3.44e-10 5.07e-10 3.60e-10 2.41e-11 2.82e-11 1.92e-11 9.39e-10 2.73
218 8.53e-11 1.25e-10 9.00e-11 6.02e-12 7.06e-12 4.79e-12 2.33e-10 2.73

Table 1. Bakhvalov mesh with σ = 2, K = σ/β, ε = 10−8.

N χN ηN1 ηN2 ηN3 ηN4 ηN5 ηN rN

210 6.72e-05 2.96e-04 2.42e-04 3.93e-07 4.62e-07 3.15e-07 5.39e-04 8.02
211 2.04e-05 9.01e-05 7.54e-05 9.85e-08 1.16e-07 7.86e-08 1.66e-04 8.13
212 6.07e-06 2.69e-05 2.28e-05 2.46e-08 2.89e-08 1.96e-08 4.98e-05 8.19
213 1.78e-06 7.90e-06 6.76e-06 6.16e-09 7.23e-09 4.91e-09 1.47e-05 8.23

214 5.17e-07 2.29e-06 1.97e-06 1.54e-09 1.81e-09 1.23e-09 4.27e-06 8.25
215 1.49e-07 6.59e-07 5.68e-07 3.85e-10 4.52e-10 3.07e-10 1.23e-06 8.27
216 4.23e-08 1.87e-07 1.62e-07 9.63e-11 1.13e-10 7.67e-11 3.50e-07 8.27

217 1.19e-08 5.29e-08 4.59e-08 2.41e-11 2.82e-11 1.92e-11 9.88e-08 8.28
218 3.35e-09 1.48e-08 1.29e-08 6.02e-12 7.06e-12 4.79e-12 2.77e-08 8.28

Table 2. Shishkin mesh with σ = 2, q = 1/2, ε = 10−8.

points are used to resolve the layer. The table lists, from left to right, the number
N of mesh intervals, the maximum-norm error, the five components of the error
estimator, the upper error bound of Theorem 4 and, finally, the efficiency constant
rN .

Second-order convergence is observed as the mesh is refined. Also there is strong
correlation between the error and any of ηN1 , ηN2 and ηN . The remaining ηNi ,
i = 3, 4, 5 a smaller and contribute little to the final error estimator. The efficiency
constant is close to 3.

In Table 2 we present results for the Shishkin mesh. The errors behave like
N−2 ln2N . Again there is a strong correlation between the actual error and η1 and
η2. The other ηi contribute much less to the a posteriori error bound. They are of
order N−2. This time the efficiency constant is approx. 8.

Our last experiment, documented in Table 3, uses a Bakhvalov mesh with σ = 1.
This is a deliberately bad choice because the convergence is only of first order.
However the terms ηi, i = 3, 4, 5, in the error bound are of order N−2. This
clearly illustrates that η1 and η2 are the dominating terms and a potential adaptive
algorithm should aim at minimizing these two.

Remark 6. Ideally, one would like to establish the efficiency of the error estimator
of Theorem 4 theoretically, i.e. to prove a lower estimate ∥u − uN∥∞ ≥ C0η for
some positive efficiency constant C0 < 1. However, the authors are not aware of
any such error estimate for singularly perturbed problems in the maximum norm.
For our particular problem, such an analysis would require a lower-bound version
of the stability estimate (9), which cannot be obtained due to the non-symmetric
nature of the Green’s function for the convection-diffusion operator.

5.2. Numerical results using adaptive mesh movement. We shall now con-
sider a simple mesh movement algorithm, originally due to de Boor [6], which
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N χN ηN1 ηN2 ηN3 ηN4 ηN5 ηN rN

210 8.78e-04 3.27e-03 8.83e-04 5.36e-07 4.62e-07 3.15e-07 4.15e-03 4.73
211 4.32e-04 1.63e-03 4.38e-04 1.33e-07 1.16e-07 7.86e-08 2.06e-03 4.78
212 2.12e-04 8.09e-04 2.17e-04 3.30e-08 2.89e-08 1.96e-08 1.03e-03 4.85

213 1.03e-04 4.02e-04 1.07e-04 8.18e-09 7.23e-09 4.91e-09 5.09e-04 4.93
214 5.04e-05 2.00e-04 5.31e-05 2.03e-09 1.81e-09 1.23e-09 2.53e-04 5.02
215 2.44e-05 9.90e-05 2.62e-05 5.01e-10 4.52e-10 3.07e-10 1.25e-04 5.12
216 1.18e-05 4.91e-05 1.29e-05 1.24e-10 1.13e-10 7.67e-11 6.20e-05 5.25

217 5.67e-06 2.43e-05 6.33e-06 3.04e-11 2.82e-11 1.92e-11 3.06e-05 5.41
218 2.70e-06 1.20e-05 3.10e-06 7.47e-12 7.06e-12 4.79e-12 1.51e-05 5.59

Table 3. Bakhvalov mesh with σ = 1, K = σ/β, ε = 10−8.

starts with a uniform mesh and aims to construct a mesh that solves the following
equidistribution problem

Mihi =
1

N

N∑
j=1

Mjhj for i = 1, . . . , N,(16)

where we choose the monitor function M =M(uN , ωN ) in the algorithm from the
a posteriori error estimate of Theorem 4:

Mi :=
√
ϱ0 + ϱ1η1;i + ϱ2η2;i + ϱ3η3;i + ϱ4η4;i + ϱ5η5;i

with

η1;i := C∗ min

{
hi

∥b∥∞
,
h2i
4ε

} ∣∣∣ψi−1/2 +
(
buN

)
x̄,i

∣∣∣ , η2;i :=
hi
β

∣∣∣(b∆)x̄,i

∣∣∣ ,
η3;i :=

1

β

∣∣∣∣∣
N−1∑
k=i

hk+1 − hk
2

ck∆k

∣∣∣∣∣ , η4;i :=
2

3β

∣∣ψi − 2ψi−1/2 + ψi−1

∣∣ ,
η5;i :=

3

2β
hi |ψi − ψi−1|+ 3

∣∣(buN )i − 2(buN )i−1/2 + (buN )i−1

∣∣
and non-negative weights ϱℓ. Because all η’s explicitely or implicitely involve h2i—
see also Remark 4—we have to take the square root in the definition of the monitor
function M .

The equidistribution principle (16) does not need to be enforced strictly. The
de Boor algorithm we are going to describe now can be stopped when the weakend
equidistribution principle

Mihi ≤
C0

N

N∑
j=1

Mjhj for i = 1, . . . , N,

with a user-chosen constant C0 > 1 is satisfied. We will see that C0 = 2 produces
suitable layer-adapted meshes and requires quite few iterations.
Algorithm:

1. Initialization: Fix N and choose the weights ϱℓ, ℓ = 0, . . . , 5, and the

constant C0 > 1. The initial mesh ω
(0)
N is uniform with mesh size 1/N .

2. For k = 0, 1, . . . , given the mesh ω(k), compute the discrete solution uN,(k)

by means of the defect-correction method (2) on this mesh. Set h
(k)
i =

x
(k)
i − x

(k)
i−1 for each i. Let the piecewise-constant monitor function M̃ (k)

be defined by

M̃ (k)(x) :=M
(k)
i :=Mi

(
uN,(k), ω

(k)
N

)
for x ∈

(
x
(k)
i−1, x

(k)
i

)
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ϵ = 10−2 ϵ = 10−4 ϵ = 10−8

N χN ηN rN χN ηN rN χN ηN rN

rate rate K rate rate K rate rate K

210 3.84e-06 1.11e-05 2.90 4.93e-06 1.12e-05 2.28 5.34e-06 1.12e-05 2.09
1.99 1.98 5 2.02 2.01 7 2.09 1.98 50

211 9.63e-07 2.82e-06 2.93 1.21e-06 2.78e-06 2.29 1.26e-06 2.83e-06 2.25
1.99 1.99 5 2.03 2.03 7 2.00 2.00 9

212 2.42e-07 7.10e-07 2.94 2.97e-07 6.83e-07 2.30 3.13e-07 7.07e-07 2.26
2.00 2.00 5 2.04 2.01 17 2.01 2.01 9

213 6.05e-08 1.78e-07 2.93 7.21e-08 1.69e-07 2.35 7.77e-08 1.75e-07 2.25

2.00 2.00 5 2.05 1.89 12 2.00 2.00 10

214 1.51e-08 4.45e-08 2.94 1.74e-08 4.56e-08 2.62 1.94e-08 4.39e-08 2.26
2.00 2.00 5 2.08 2.00 13 2.00 2.01 9

215 3.79e-09 1.11e-08 2.94 4.11e-09 1.14e-08 2.78 4.85e-09 1.09e-08 2.25
2.00 2.00 5 2.01 2.00 10 1.98 1.98 82

216 9.47e-10 2.79e-09 2.94 1.02e-09 2.85e-09 2.78 1.22e-09 2.76e-09 2.25

2.00 2.00 5 2.00 1.96 5 2.00 2.00 8

217 2.37e-10 6.97e-10 2.94 2.57e-10 7.31e-10 2.85 3.06e-10 6.90e-10 2.25
2.00 2.00 5 2.00 1.98 5 2.00 2.00 8

218 5.92e-11 1.74e-10 2.94 6.44e-11 1.85e-10 2.87 7.65e-11 1.72e-10 2.25
— — 5 — — 5 — — 8

2.00 2.00 2.03 1.99 2.01 2.00

Table 4. Adaptive algorithm with full error estimator and
strongly enforced equidistribution

Then the total integral of the monitor function M (k) is

I(k) :=

∫ 1

0

M̃ (k)(x)dx =
N∑
i=1

M
(k)
i h

(k)
i .

3. Test mesh: If

max
i=1,...,N

M
(k)
i h

(k)
i ≤ C0I

(k)N−1,(17)

then go to Step 5. Otherwise, continue to Step 4.
4. Generate a new mesh by equidistributing the monitor function M̃ (k) of the

current computed solution: Choose the new mesh ω
(k+1)
N such that∫ x

(k+1)
i

x
(k+1)
i−1

M (k)(x)dx = I(k)/N, i = 0, . . . , N.

(Since
∫ x

0
M (k)(t) dt is increasing in x, the above relation clearly determines

the x
(k+1)
i uniquely.) Return to Step 2.

5. Set ω∗
N = ω

(k)
N and uN,∗ = uN,(k) then stop.

Our first test of the adaptive algorithm is with ϱ0 = 0, ϱ1 = ϱ2 = · · · = ϱ5 = 1,
i.e., with the full error estimator of Theorem 4. We choose C0 = 1.001. Thus the
equidistribution principle is rather strongly enforced. Table 4 contains the results
of our test computations. It contains, in dependence on N and ε, the actual errors
χN and the error estimator ηN with the corresponding rates, the efficiency constant
rN and the number of iterations K of the de Boor algorithm. The last line contains
the averaged rates.

The table illustrates how the adaptive algorithm works on minimizing the error
estimator rather than the error. When the number of mesh points is doubled the
theoretical error bound is reduced by a factor of 4. The rates for the actual errors
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are more irregular, in particular when ε is small. However, on average, i.e., over a
number of refinements the rates of convergence are close to two.

The number of iterations of the algorithm can be significantly reduced by chosing
C0 larger. The effects of this choice is illustrated by Table 5 where we have taken
C0 = 2. The number of iterations are reduced by a factor of 10 to 20. The rates
observed become more irregular, but their average over a sequence of refinements
are nonetheless close to 2.

Computing the full error estimator in step 2 of the algorithm is rather expensive.
In view of our observations for a priori chosen meshes we may simplify this step by
considering the leading terms of the error estimator only. We consider the monitor
function defined by ϱ0 = ϱ1 = 1 and ϱ2 = · · · = ϱ5 = 0. Chosing ϱ0 ̸= 0 avoids
mesh starvation and ensures that the maximum step size if of order N−1. Results
for this monitor and C0 = 2 are given in Table 6. They compare to those for the
monitor function based on the full error estimator.

In Sect. 5.1 it was observed that η2;i = β−1
∣∣(b∆)x̄,i

∣∣ is the other dominant term
in the error estimator. However the adaptive algorithm based on this part of the
error estimator only, i.e., with ϱ0 = ϱ2 = 1 and ϱ1 = ϱ3 = ϱ4 = ϱ5 = 0 fails.

Remark 7. Many successful algorithms in higher dimensions simply assume that
the error is related to the interpolation error. Thus the generated, possibly,
anisotropic mesh is supposed to be (quasi-)uniform under a certain metric induced,
e.g., by the positive definite Hessian matrix of the solution [7, 11, 25]. Note that
the principal part of our error estimator is η1 . C∗ maxi{h2i |uNxx̂|}, so our adaptive
algorithm may be viewed as similar to interpolation-error-based algorithms.

5.3. Results for variants of the defect correction method. In Sect. 4 the
precise design of the DCM has been studied. We shall confirm this by numeri-
cal experiments now. To this end consider (1) with ε = 10−8 again. We use a
modified Shishkin mesh which is constructed as follows. Pick the transition point
τ = 2εβ−1 lnN as usual. Set h = 2τ/N and H = 2(1 − τ)/N . Then the mesh is

ϵ = 10−2 ϵ = 10−4 ϵ = 10−8

N χN ηN rN χN ηN rN χN ηN rN

rate rate K rate rate K rate rate K

210 4.00e-06 1.32e-05 3.29 8.60e-06 2.29e-05 2.67 1.40e-05 4.41e-05 3.15

2.01 2.05 2 2.18 2.17 3 2.18 2.43 4

211 9.91e-07 3.18e-06 3.21 1.90e-06 5.09e-06 2.68 3.09e-06 8.19e-06 2.65
2.01 2.03 2 2.30 2.28 3 2.09 2.10 4

212 2.46e-07 7.81e-07 3.17 3.84e-07 1.05e-06 2.73 7.24e-07 1.91e-06 2.64
2.00 2.00 2 2.21 2.31 3 2.27 2.26 4

213 6.14e-08 1.95e-07 3.18 8.33e-08 2.12e-07 2.55 1.50e-07 3.98e-07 2.66
2.00 2.01 2 2.03 1.21 3 2.33 2.46 4

214 1.53e-08 4.86e-08 3.17 2.04e-08 9.19e-08 4.51 2.97e-08 7.22e-08 2.43
2.00 2.00 2 2.15 2.48 2 1.54 1.39 4

215 3.83e-09 1.21e-08 3.17 4.59e-09 1.65e-08 3.59 1.02e-08 2.76e-08 2.69

2.00 2.00 2 2.07 2.19 2 2.04 2.07 3

216 9.58e-10 3.03e-09 3.17 1.10e-09 3.61e-09 3.29 2.48e-09 6.56e-09 2.64
2.00 2.00 2 2.03 2.10 2 2.01 2.01 3

217 2.39e-10 7.58e-10 3.16 2.69e-10 8.42e-10 3.13 6.16e-10 1.62e-09 2.64
2.00 2.00 2 2.01 2.00 2 2.00 2.01 3

218 5.99e-11 1.89e-10 3.16 6.65e-11 2.10e-10 3.16 1.54e-10 4.05e-10 2.63

— — 2 — — 2 — — 3

2.00 2.01 2.12 2.09 2.06 2.09

Table 5. Adaptive algorithm with full error estimator and weak equidistribution
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ϵ = 10−2 ϵ = 10−4 ϵ = 10−8

N χN ηN rN χN ηN rN χN ηN rN

rate rate K rate rate K rate rate K

210 4.67e-06 1.42e-05 3.05 4.75e-06 1.18e-05 2.48 5.81e-06 2.84e-05 4.89
2.12 2.09 2 2.06 2.03 3 2.08 2.71 4

211 1.07e-06 3.34e-06 3.11 1.14e-06 2.88e-06 2.53 1.38e-06 4.34e-06 3.15
2.02 2.03 2 2.02 1.98 3 2.33 2.57 4

212 2.65e-07 8.18e-07 3.09 2.80e-07 7.31e-07 2.61 2.74e-07 7.29e-07 2.66
2.00 2.00 2 1.98 1.96 3 2.00 2.00 4

213 6.61e-08 2.04e-07 3.08 7.11e-08 1.88e-07 2.64 6.86e-08 1.82e-07 2.65

2.00 2.00 2 1.92 1.87 3 1.99 1.98 4

214 1.65e-08 5.09e-08 3.08 1.88e-08 5.16e-08 2.74 1.72e-08 4.61e-08 2.67
2.00 2.00 2 2.00 1.96 3 1.98 1.88 4

215 4.13e-09 1.27e-08 3.08 4.70e-09 1.33e-08 2.82 4.38e-09 1.25e-08 2.85
2.00 2.00 2 2.00 1.97 3 1.93 1.73 4

216 1.03e-09 3.18e-09 3.08 1.18e-09 3.37e-09 2.87 1.15e-09 3.76e-09 3.28

2.00 2.00 2 2.00 1.95 3 2.06 2.33 6

217 2.58e-10 7.96e-10 3.08 2.94e-10 8.75e-10 2.98 2.76e-10 7.49e-10 2.71
2.00 2.00 2 1.79 1.78 3 1.90 1.96 3

218 6.45e-11 1.99e-10 3.08 8.47e-11 2.55e-10 3.02 7.41e-11 1.92e-10 2.59
— — 2 — — 2 — — 3

2.02 2.02 1.98 1.94 2.03 2.14

Table 6. Adaptive algorithm with reduced error estimator and
weak equidistribution

defined by

hi =


7h/6 if i is odd and i ≤ N/2,

5h/6 if i is even and i ≤ N/2,

7H/6 if i is odd and i > N/2,

5H/6 if i is even and i > N/2.

Thus instead of a uniform mesh on each of the two subdomains [0, τ ] and [τ, 1] we
use non-uniform, though very regular sub meshes.

Table 7 displays results for three variants of the defect correction method:

• κi = ~i/hi+1, h
′
i = h′′i = hi+1, i.e. the method analysed in Sect. 3,

• κi = 1, h′i = h′′i = hi+1 and
• κi = 1, h′i = ~i, h′′i = hi+1.

The table gives the errors and the estimated “Shishkin” rates of convergence, i.e.
p in the error bound C

(
N−1 lnN

)p
computed from the numerical solution.

In full agreement with the theoretical conclusions of Sect. 4, the latter two vari-
ants fail to achieve second-order convergence aimed at by the defect correction
approach.
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