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A FAST ALGORITHM FOR VECTORIAL TV-BASED IMAGE
RESTORATION
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Abstract. In this paper, we first extend a simple algorithm proposed by Jia

et al. [16] to color/vectorial images, and then apply the vectorial algorithm to

some variational models for image restoration problems including color image

denoisings with the red-green-blue (RGB) and chromaticity-brightness (CB)

color representations, CB based colorization and image inpainting. The varia-

tional models are all total variation (TV)-based. The proposed vectorial algo-

rithm is simple and straightforward to implement. Some numerical experiments

show that it is fast and efficient.

Key Words. Image restoration, vectorial TV model, split Bregman iteration,

color denoising, CB based colorization, TV-based inpainting.

1. Introduction

Image restoration is an important research field in image processing. It is often
considered as a pre-processing step for other image tasks such as image segmenta-
tion, image registration and so on. Image restoration includes many aspects, for
example denoising, deblurring, inpainting, colorization, etc.

Over the past twenty years, total variation(TV)-based models proposed firstly
by Rudin, Osher, and Fatemi in [23] for gray image denoising have become very
popular. They have had very good applications in image denoising [1, 9, 8, 21],
deblurring [12, 15], inpainting [10, 19, 11, 24], colorization [18], and so forth. There
have been a lot of methods to solve these TV-based models like standard regularized
approach [23, 1], primal-dual method [7], duality based method [5], split Bregman
method [14], recent augmented Lagrangian method [25, 26, 27], etc. The classical
algorithms (standard regularized approach or explicit gradient descent flow) often
need to solve discrete Euler-Lagrange equations [23, 1, 2, 13], whose computational
speed is very slow due to the regularization process of the TV-norm. Later, Cham-
bolle [5] proposed a fast algorithm based on the dual formulation of TV-norm,
which avoided the regularization of TV-norm and hence speeded up the computa-
tion dramatically. Recently, Goldstein and Osher [14] gave a novel algorithm called
“split Bregman” method to solve these TV-based models. The key of their method
is that they de-coupled the `1 and `2 portions of TV model and transformed the
`1 regularized term to compressed sensing (CS) problems, which can be fast solved
by the Bregman iteration and shrinkage. The convergence of the split Bregman
iteration was shown in [14, 17] under the assumption that the resulting subproblem
is solved exactly. Cai et al. [4] had also proven that the alternating split Bregman
iterations are convergent when the number of inner iterations is fixed to be one.
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However, these iteration schemes [14, 17, 4] still require solving a partial differen-
tial equation in each iteration step. The augmented Lagrangian method [25, 26, 27]
was presented to solve TV models via a splitting technique and the Lagrange mul-
tiplier method. Some subproblems can be efficiently solved by shrinkage and fast
Fourier transformation (FFT) implementation, where the FFT technique is used
for solving a differential equation, and thus cuts down the computational time. But
it is still less efficient than the direct closed form solution. More recently, Jia and
Zhao [16] proposed a fast and simple algorithm to solve the Rudin-Osher-Fatemi
(ROF) model/ TV denoising model. Their algorithm did not include any partial
differential equations and had very simple iteration steps, which saved more com-
putational time. What’s more, they also gave a rigorous proof of the convergence
of their algorithm.

In this paper, we extend Jia and Zhao’s algorithm [16] to vectorial TV model,
and then apply it to vector-valued image restoration problems such as a color
image restoration. Here, we mainly focus on three restoration problems: color de-
noisings by vectorial TV-based denoising models in the red-green-blue(RGB) and
chromaticity-brightness(CB) representations of color images [1, 9, 8]; image col-
orization based on CB color model [18]; and image inpainting [10, 19] by TV-based
model for gray and color images. The proposed algorithm has several advantages.
First, it has a very simple form, which will be favorable to making code. Then,
the number of iterations to reach the solution is low, which gives a fast algorithm.
Finally, the algorithm converges to the solution of the original vectorial TV mini-
mization problem if appropriate parameters are chosen.

This paper is organized as follows. In Section 2, we introduce some notations
and extend Jia and Zhao’s algorithm to vector-valued functions so that the speed
of the vectorial image processing is faster. The applications of the algorithm to
image restoration including color image denoisings based on RGB and CB color
representations, CB-based colorization and inpainting for gray and color images
are shown in Section 3. At last, in Section 4, we present a brief conclusion.

2. Proposed algorithm for vectorial TV minimization

2.1. Notations. As in [17], we adopt the discrete form of the vectorial TV model.
Let us consider a q-dimensional/channel image u defined on a rectangular domain
Ω as follows:

u : Ω → Rq,

(x, y) → u(x, y) =
(
u1(x, y), u2(x, y), · · · , uq(x, y)

)
.

Discretizing the image domain Ω to some grid points, then

u : {1, · · · ,M} × {1, · · · , N} → Rq,

(m,n) → (
u1(m,n), u2(m,n), · · · , uq(m,n)

)
,

where M,N ≥ 2 and q ≥ 1.
When q = 1, the image is scalar; otherwise, the image is vector-valued.
We shall use the following norm and inner product notations:

‖u‖p :=
( ∑

1≤m≤M
1≤n≤N

|u(m,n)|p
)1/p

, for 1 ≤ p < ∞,

〈
u(m, n),v(m,n)

〉
:=

q∑

i=1

ui(m,n) · vi(m, n),
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|u(m,n)| :=
√〈

u(m,n),u(m,n)
〉

=

√√√√
q∑

i=1

(
ui(m,n)

)2
.

The TV norm of a vector-valued function u is represented by:

‖∇u‖1 : =
∑

1≤m≤M
1≤n≤N

|∇u(m,n)| =
∑

1≤m≤M
1≤n≤N

√√√√
q∑

i=1

〈∇ui(m,n),∇ui(m,n)
〉

=
∑

1≤m≤M
1≤n≤N

√√√√
q∑

i=1

(∇xui(m, n)
)2 +

(∇yui(m,n)
)2

,

where ∇x and ∇y denote the difference operators in the x-direction and y-direction,
which are given by ∇xui(1, n) = 0, for n = 1, · · · , N ,

∇xui(m, n) = ui(m,n)− ui(m− 1, n), m = 2, · · · ,M ; n = 1, · · · , N,

and ∇yui(m, 1) = 0, for m = 1, · · · ,M ,

∇yui(m,n) = ui(m, n)− ui(m,n− 1), n = 2, · · · , N ; m = 1, · · · ,M.

For the operators ∇x and ∇y, we define their conjugate operators as follows:

∇T
x ω(m,n) :=




−ω(2, n) if m = 1,
ω(m,n)− ω(m + 1, n) if m = 2, · · · ,M − 1,
ω(M, n) if m = M.

∇T
y ω(m,n) :=




−ω(m, 2) if n = 1,
ω(m, n)− ω(m,n + 1) if n = 2, · · · , N − 1,
ω(m, N) if n = N.

Then, the discrete Laplace operator can be given by:

∆ := −∇T
x∇x −∇T

y∇y.

Finally, the vectorial TV denoising model can be represented as the following
minimization problem:

(1) min
u
‖∇u‖1 +

λ

2
‖u− f‖22,

where the vectorial gradient of u is defined as ∇u = (∇u1, · · · ,∇uq), f is the
observed data with noise, and λ > 0 is a weighted parameter balancing the regu-
larization term and the fidelity term.

When q = 1, the minimization problem (1) is the ROF model for gray image
denoising proposed by Rudin, Osher, and Fatemi in [23], which is one of the most
influential variational and PDE-based image denoising models in image processing.
This denoising model removes noise in gray-scale images while preserving main
features such as edges. Chambolle and Lions [6] had proven that the ROF model is
well-posed. In [1], Blomgren and Chan extended the ROF model to vector-valued
functions and presented the vectorial TV model. Bresson and Chan [3] had also
given the existence and uniqueness of the solution of the vectorial TV model. In
this paper, we mainly focus on the case of q ≥ 2.
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2.2. The proposed algorithm for vectorial TV model. In this section, we
propose a fast algorithm to solve the minimization problem (1) for q ≥ 2, which is
considered as the vectorial extension of Jia and Zhao’s algorithm [16]. In fact, the
new algorithm is based on the split Bregman iteration [14]. So before proposing
our algorithm, we give a brief overview of the split Bregman iteration. The split
Bregman method [14] makes use of a splitting technique and the Bregman iteration
to solve the TV minimization problem. Goldstein and Osher transformed the TV-
minimization to constrained `1-problem or CS problem by adding an auxiliary
variable, which avoids the regularization of TV-norm and can be fast solved by
the Bregman iteration and shrinkage. Hence, it saves much computational time.
Here, the Bregman iteration, which was first used in image processing by Osher
et al. [22] for ROF/ TV denoising model, is a very popular approach to solve
constrained optimization problems such as CS problems and constrained TV-based
models. Its solution satisfies the constraint condition to a high degree of accuracy.
In the following, we present the split Bregman iteration for vector-valued function
u.

Let v := (v1,v2, · · · ,vq) : Ω → Rq×2 be an auxiliary variable such that v = ∇u,
where vi := (vix, viy) : Ω → R2,

|v(m,n)| =
√〈

v(m,n),v(m,n)
〉

=

√√√√
q∑

i=1

(
vix(m,n)

)2 +
(
viy(m,n)

)2

and b := (b1,b2, · · · ,bq) : Ω → Rq×2, bi := (bix, biy) : Ω → R2.
The split Bregman iteration for vector-valued function: set b0

ix = b0
iy = v0

ix =
v0

iy = 0 (i = 1, · · · , q), and u0 = f . For k = 0, 1, · · ·
(
uk+1,vk+1

)
= arg min

u,v

{
‖v‖1 +

µ

2
‖v −∇u− bk‖22 +

λ

2
‖u− f‖22

}
,(2)

bk+1
ix = bk

ix +∇xuk+1
i − vk+1

ix , for i = 1, · · · , q,

bk+1
iy = bk

iy +∇yuk+1
i − vk+1

iy , for i = 1, · · · , q,

where

‖v‖1 =
∑

1≤m≤M
1≤n≤N

|v(m,n)|,

‖v −∇u− bk‖22 =
q∑

i=1

‖vix −∇xui − bk
ix‖22 +

q∑

i=1

‖viy −∇yui − bk
iy‖22.

To solve the minimization problem (2), one commonly needs to solve two subprob-
lems about u and v iteratively:

uk+1 = arg min
u

{
µ

2
‖vk −∇u− bk‖22 +

λ

2
‖u− f‖22

}
,(3)

vk+1 = arg min
v

{
‖v‖1 +

µ

2
‖v −∇uk+1 − bk‖22

}
.(4)

Here, the solution of (3) is given by the following optimality condition:

(5) (λI − µ∆)u = λf + µ∇T
x (vk

x − bk
x) + µ∇T

y (vk
y − bk

y),

where ∆u = (∆u1, · · · , ∆uq),∇T
x w = (∇T

x w1, · · · ,∇T
x wq) and∇T

y w = (∇T
y w1, · · · ,∇T

y wq).

Note that the vectorial split Bregman iterative scheme still requires solving dif-
ferential equations (5) in each iteration, thus it may slow the computation. In order
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to improve the computation speed, we propose to extend Jia and Zhao’s algorithm
[16] to vector-valued functions.

The proposed algorithm: set b0
ix = 0, b0

iy = 0 (i = 1, · · · , q), and u1 = f . For
k = 1, 2, · · · , let

wk
ix =∇xuk

i + bk−1
ix , wk

iy = ∇yuk
i + bk−1

iy , for i = 1, · · · , q,(6)

tk =

√√√√
q∑

i=1

(wk
ix)2 + (wk

iy)2, sk = max(µtk, 1),(7)

bk
ix = wk

ix/sk, bk
iy = wk

iy/sk, for i = 1, · · · , q,(8)

uk+1
i = fi − µ

λ
(∇T

x bk
ix +∇T

y bk
iy), for i = 1, · · · , q.(9)

The proposed algorithm has very simple iteration steps, which will be favorable
to making code. Furthermore, in terms of the later experiments, the number of it-
erations to reach the solution is low, which gives a fast algorithm. In the following,
we give a simple deduction of the proposed algorithm.

Following [16], we demonstrate that the iterative scheme (6)-(9) is equivalent to
the following algorithm: set b0

ix = b0
iy = 0, v0

ix = v0
iy = 0(i = 1, · · · , q), and u1 = f .

For k = 1, 2, · · · , let

vk = arg min
v

{
‖v‖1 +

µ

2
‖v −∇uk − bk−1‖22

}
,(10)

bk
ix = bk−1

ix +∇xuk
i − vk

ix, for i = 1, · · · , q,(11)

bk
iy = bk−1

iy +∇yuk
i − vk

iy, for i = 1, · · · , q,(12)

and

uk+1 = arg min
u

{
1
2
‖B(u− f)‖22 − 〈B2(uk − f),u− uk〉

+
µ

2
‖vk −∇u‖22

}
,(13)

where B2u :=
(
(λ + µ∆)u1, · · · , (λ + µ∆)uq

)
, and the operator λ + µ∆ is positive

definite if 0 < µ/λ < 1/8.
Note that the minimization problem (10) with respect to v and the iterative

relationships of bix and biy (11)-(12) are the same with those in the split Bregman
iteration, but the proposed iterative scheme (6)-(9) derived from the equivalent
algorithm does not involve any difference equations.

Firstly, we deduce the iterative expressions of bix and biy, i.e., (8).
Following [28] (Lemma 3.3), we get the solution of minimization problem (10)

by vectorial shrinkage:

vk = max
(
|∇uk + bk−1| − 1

µ
, 0

) ∇uk + bk−1

|∇uk + bk−1| ,

where

|∇uk + bk−1| =
√√√√

q∑

i=1

(∇xuk
i + bk−1

ix )2 + (∇yuk
i + bk−1

iy )2.
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For each component of v, we have

vk
ix = max

(
|∇uk + bk−1| − 1

µ
, 0

) ∇xuk
i + bk−1

ix

|∇uk + bk−1| ,

vk
iy = max

(
|∇uk + bk−1| − 1

µ
, 0

) ∇yuk
i + bk−1

iy

|∇uk + bk−1| .

From (11) and (12), we get

bk
ix = bk−1

ix +∇xuk
i − vk

ix

= bk−1
ix +∇xuk

i −max
(
|∇uk + bk−1| − 1

µ
, 0

) ∇xuk
i + bk−1

ix

|∇uk + bk−1|

=
bk−1
ix +∇xuk

i

max(µ|∇uk + bk−1|, 1)
,

bk
iy = bk−1

iy +∇yuk
i − vk

iy

= bk−1
iy +∇yuk

i −max
(
|∇uk + bk−1| − 1

µ
, 0

) ∇yuk
i + bk−1

iy

|∇uk + bk−1|

=
bk−1
iy +∇yuk

i

max(µ|∇uk + bk−1|, 1)
.

Therefore, we obtain the iterations of bix and biy (8) for i = 1, · · · , q.
Secondly, we demonstrate the equality (9) is actually the solution of the mini-

mization problem (13). Note that the minimization problem (13) is equivalent to
the following ones:

uk+1
i = arg min

ui

{
1
2
‖Bi(ui − fi)‖22 − 〈B2

i (uk
i − fi), ui − uk

i 〉

+
µ

2
(‖vk

ix −∇xui‖22 + ‖vk
iy −∇yui‖22

)}
, for i = 1, · · · , q,

where B2
i = λ + µ∆. Each one of the above minimization problems is the same as

that in [16]. Thus, from Lemma 2 in [16], we can obtain the solution of (13), i.e.,
(9).

Finally, we prove the following theorem.

Theorem. The equivalent algorithm (10)-(13), and hence the proposed algorithm
(6)-(9) converges to the solution of original minimization problem (1) if 0 < µ/λ <
1/8.

Proof. Let F (u) =
λ

2
‖u − f‖22, G(v) = ‖v‖1 and H(u,v,b) =

µ

2
‖v − ∇u − b‖22,

then the problem (10) can be rewritten as

vk = arg min
v

{
G(v) + H(uk,v,bk−1)

}
,

Note that −µ(vk − ∇uk − bk−1) ∈ ∂G(vk), where ∂ denotes the subdifferential
symbol, and from the equivalent algorithm (11) and (12), we know that

bk = bk−1 +∇uk − vk.

Then,
µbk ∈ ∂G(vk).

On the other hand,
∂F (u) = λ(u− f).
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According to the definition of the subgradient, for any w ∈ Rq, we have

(14) ‖vk +∇w‖1 − ‖vk‖1 − 〈µbk,∇w〉 ≥ 0,

and

F (uk+1 + w)− F (uk+1)− 〈λ(uk+1 − f),w〉 ≥ 0.

From (9), the above inequality is equivalent to

(15) F (uk+1 + w)− F (uk+1) + 〈µbk,∇w〉 ≥ 0.

Adding (14) and (15), we obtain

(16) ‖vk‖1 + F (uk+1) ≤ ‖vk +∇w‖1 + F (uk+1 + w).

Then, similar to the proof given by Jia and Zhao in [16], we can prove that there
exists a convergent subsequence {ukj} of {uk} and ũ, such that

lim
j→∞

ukj+1 = lim
j→∞

ukj = ũ.

Moreover,

lim
j→∞

vkj = ∇ũ.

Replacing k by kj in (16) and letting j →∞, we get

‖∇ũ‖1 + F (ũ) ≤ ‖∇ũ +∇w‖1 + F (ũ + w).

That is to say, ũ is a solution of the vectorial TV model. Since the solution of the
vectorial TV model is unique [3], then we have

ũ = u?,

if we suppose u? is the unique solution. Furthermore, limj→∞ ukj = u?. ¤

Remark. The proof is a little different from that in Jia and Zhao’s paper [16]
because our problem is the vectorial isotropic TV model. For scalar anisotropic TV
model, the corresponding theorem and proof were given by Jia and Zhao [16].

For q = 3, we can apply the algorithm to color image restoration. In the following
section, we will show the applications of the algorithm to color denoisings with the
RGB and CB color representations, CB-based colorization and image inpainting by
vectorial TV-based models.

3. Applications to vectorial TV-based models for image restoration

In this section, we first apply the proposed algorithm and its variants to color
image denoisings with the RGB and CB color representations by vectorial TV-
based models in Subsection 3.1; then the application to CB-based colorization will
be presented in Subsection 3.2; finally, in Subsection 3.3, we will show the algorithm
for TV-based inpainting. We want to mention that all experiments in this paper
are implemented by Matlab on an Intel 1.66 GHz computer with Intel Core 2 Duo
processor.
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3.1. Color image denoising. In this section, we apply the algorithm to the
vectorial TV-based denoising models for color images in the RGB and CB repre-
sentations [1, 8]. The RGB color representation is a linear color model, and the CB
color representation is a nonlinear one. Each one of the two color models has its
advantages. The classical processing models based on RGB color model are easy to
work with, while the CB-based models show better color control. Here, we mainly
focus on the applications of the proposed algorithm rather than the comparison
between the different color models.

In the RGB representation, a color image is a mapping:

u : {1, · · · ,M} × {1, · · · , N} → (u1, u2, u3),

where u1, u2 and u3 represent color intensities for the three channels (red, green
and blue) of the color image u.

The vectorial TV model for this color representation, which had been introduced
in [1], is exactly the minimization problem (1) if q = 3. Consequently, we can
directly apply the iterative scheme (6)-(9) to the RGB-based TV denoising model.
The results are presented in Figure 1. We compare the split Bregman method
proposed by Goldstein and Osher [14] and the vectorial dual method proposed by
Bresson et al. [3] with our algorithm. It shows that our algorithm is faster and the
ratio of signal to noise (SNR) is higher for color TV denoising. In this paper, the
SNR is defined by the following formula:

SNR =
‖u− ū‖22
‖η − η̄‖22

,

where u denotes the clean image, η denotes the noise, and ū and η̄ denote the
means of the clean image and noise.

In the CB representation, u can be separated into the brightness component
B := |u| =

√
(u1)2 + (u2)2 + (u3)2, and the chromaticity component C := u/|u| =

u/B = (C1, C2, C3). The brightness B can be treated as a gray image; thus any
scalar denoising model can be applied, for example scalar TV model. However,
the chromaticity component C stores the color information, and takes values on
the unit sphere S2, i.e., |C(m,n)| = 1 (for keeping consistency with some relevant
references [3, 18, 20], we simply write it as |C| = 1); we need to apply the vectorial
TV-based methods for its denoising. After denoising brightness and chromaticity
components separately, we assemble the two components to get the restored image:

u = B ×C.

Therefore, in the CB color representation, we have the following denoising mod-
els:

min
B
‖∇B‖1 +

λ1

2
‖B −B0‖22,(17)

max
α

min
C
‖∇C‖1 +

λ2

2
‖C−C0‖22 +

1
2
〈α, |C|2 − 1〉,(18)

where B0 and C0 are the brightness and chromaticity components of a color noisy
image f , the last term of (18) is a constrained term for |C| = 1, and α is a Lagrange
multiplier.

In order to solve (18) using the proposed algorithm, we regularize it by adding
an auxiliary variable U as follows:

(19) max
α

min
C,U

‖∇C‖1 +
λ2

2
‖C−C0‖22 +

β

2
‖U−C‖22 +

1
2
〈α, |U|2 − 1〉.
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Then solving (19) provides an approximation to the solution of (18) when β is
sufficiently large. Since the above objective functional is convex, its solution can be
obtained by minimizing it with respect to C and U and maximizing it with respect
to α separately. Thus, we have two minimization subproblems and a maximization
subproblem:

min
C
‖∇C‖1 +

λ2

2
‖C−C0‖22 +

β

2
‖U−C‖22

⇔min
C
‖∇C‖1 +

λ2 + β

2
‖C− ( λ2

λ2 + β
C0 +

β

λ2 + β
U

)‖22,(20)

(21) min
U

β

2
‖U−C‖22 +

1
2
〈α, |U|2 − 1〉,

and

(22) max
α

1
2
〈α, |U|2 − 1〉.

Obviously, for (20), we can use the algorithm proposed in Section 2.2. The rest
two subproblems have closed-form solutions. By direct computation, the solution
of minimization problem (21) is given by:

(23) U =
βC

α + β
.

In order to find the saddle point of the objective functional, maximizing the func-
tional in (22) with respect to the Lagrange multiplier α gives:

|U|2 − 1 = 0.

Then making inner product on the both side of (23) with U, we have the solution
of (22):

α = β〈C,U〉 − β.

In conclusion, we have the following iterative schemes:

(i) For brightness component B: set b0
x = 0, b0

y = 0, and B1 = B0. For k = 1, 2, · · · ,
let

wk
x =∇xBk + bk−1

x , wk
y = ∇yBk + bk−1

y ,

tk =
√

(wk
x)2 + (wk

y)2, sk = max(µ1t
k, 1),

bk
x = wk

x/sk, bk
y = wk

y/sk,

Bk+1 = B0 − µ1

λ1
(∇T

x bk
x +∇T

y bk
y).
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(ii) For chromaticity component C: set b0
ix = 0, b0

iy = 0 (i = 1, 2, 3), α1 = 1 and
C1 = C0. For k = 1, 2, · · · , let

wk
1x =∇xCk

1 + bk−1
1x , wk

1y = ∇yCk
1 + bk−1

1y ,

wk
2x =∇xCk

2 + bk−1
2x , wk

2y = ∇yCk
2 + bk−1

2y ,

wk
3x =∇xCk

3 + bk−1
3x , wk

3y = ∇yCk
3 + bk−1

3y ,

tk =

√√√√
3∑

i=1

(wk
ix)2 + (wk

iy)2, sk = max(µ2t
k, 1),

bk
1x = wk

1x/sk, bk
1y = wk

1y/sk,

bk
2x = wk

2x/sk, bk
2y = wk

2y/sk,

bk
3x = wk

3x/sk, bk
3y = wk

3y/sk,

Uk =
βCk

αk + β
,

αk+1 = β〈Ck,Uk〉 − β,

Ck+1 =
λ2

λ2 + β
C0 +

β

λ2 + β
Uk

− µ2

λ2 + β

(
∇T

x bk
1x +∇T

y bk
1y,∇T

x bk
2x +∇T

y bk
2y,∇T

x bk
3x +∇T

y bk
3y

)
.

The restored image is u = B × C. Figure 2 presents the application of the
proposed iterative schemes, whose speed is faster than the dual method.

3.2. TV-based colorization based on CB color model. In this section, we
present an algorithm of TV-based colorization based on CB color model [18].

Let Ω := {1, · · · ,M} × {1, · · · , N} be the image domain and the measurable
subset D denote the inpainting domain where we wish to colorize. Let Dc = Ω\D
be the complement of D in Ω, where the color is given. The colorization task can be
understood as inpainting the colors in D. We consider the following minimization
problem depending on chromaticity:

(24) min
C,|C|=1

‖∇C‖1 +
λ̂

2
‖C−C0‖22,

where C0 is the chromaticity component of a given image, and

λ̂ =
{

λ, (m,n) ∈ Dc,
0, (m,n) ∈ D,

1 ≤ m ≤ M and 1 ≤ n ≤ N .
By Lagrange multiplier method, we transform the constrained problem (24) to

the following unconstrained one:

(25) max
α

min
C
‖∇C‖1 +

λ̂

2
‖C−C0‖22 +

1
2
〈α, |C|2 − 1〉,

where α is a variable which can be updated automatically.
Since λ̂ = 0 if (m,n) ∈ D, the iterative scheme (6)-(9) cannot be applied directly.

By adding an auxiliary variable U as Li et al. [20], the above energy can be
approximated by:

(26) max
α

min
U,C

‖∇U‖1 +
1
2θ
‖U−C‖22 +

λ̂

2
‖C−C0‖22 +

1
2
〈α, |C|2 − 1〉,
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(a) (b)

(c) (d) (e)

Figure 1. Color denoising based on RGB color model. Im-
age size is 303 × 250. (a) Original image. (b) Noisy image
(SNR=6.0751). (c) Result of proposed algorithm (SNR=41.4922),
iter=10, t=0.991s; µ = 0.003, λ = 0.03. (d) Result of split Breg-
man algorithm (SNR=41.4884), iter=20, t=1.877s. (e) Result of
dual algorithm [3] (SNR=39.6822), iter=50, t=5.456s.

where θ is chosen to be small enough so that U is close to C in the sense of `2
norm.

In [20], the authors had proven that the approximate problem (26) and the orig-
inal problem (24) exist minimizers respectively and the solution of the approximate
problem converges to the solution of the original problem (24).

According to Lagrange multiplier method, the solution can be computed by
minimizing the functional in (26) with respect to U, C and maximizing it with
respect to α separately, and iterating until convergence. Thus, the following three
subproblems are considered:
(i) C and α being fixed, we search for U as a solution of:

(27) min
U
‖∇U‖1 +

1
2θ
‖U−C‖22,

(ii) U and α being fixed, we search for C as a solution of:

(28) min
C

1
2θ
‖U−C‖22 +

λ̂

2
‖C−C0‖22 +

1
2
〈α, |C|2 − 1〉,

(iii) U and C being fixed, we search for α as a solution of:

(29) max
α
〈α, |C|2 − 1〉.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2. Color denoising based on CB color model. Image size
is 256× 256. (a) Original image. (b) Noisy image (SNR=5.1574).
(c) The brightness component of noisy image. (d) The chromatic-
ity component of noisy image. (e) Denoising result of bright-
ness component using proposed algorithm (iter=10). (f) Denois-
ing result of chromaticity component using proposed algorithm
(iter=10). (g) Denoising result of noisy image using proposed algo-
rithm (SNR=29.8560), t=1.147s; µ1 = 0.008, λ1 = 0.065, µ2 = 2,
λ2 = 10, β = 10. (h) Denoising result based on RGB color model
using proposed algorithm (SNR=29.5145), iter=10, t=0.878s; µ =
0.004, λ = 0.04. (i) Denoising result of brightness component us-
ing dual method [3] (iter=50). (j) Denoising result of chromaticity
component using dual method [3] (iter=50). (k) Denoising result
of noisy image using dual method [3] (SNR=28.2305), t=6.971s.
(l) Denoising result based on RGB color model using dual method
[3] (SNR=29.3835), iter=50, t=4.663s.

For (27), we can make use of the vectorial algorithm proposed in Section 2.2.
By variational calculus of (28) with respect to C, we have

(30)
1
θ
(C−U) + λ̂(C−C0) + αC = 0,
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then, the solution of the minimization problem (28) is given by

C =
U + λ̂θC0

1 + λ̂θ + αθ
.

In order to get α, variation of (29) with respect to α gives

|C|2 − 1 = 0.

Then, making inner product with C on the two side of (30) and using the equality
|C|2 = 1, we get

(31)
1
θ

(
1− 〈U,C〉) + λ̂

(
1− 〈C0,C〉

)
+ α = 0.

Hence,

α =
1
θ
〈U,C〉+ λ̂〈C,C0〉 − 1

θ
− λ̂.

To sum up, we have the following iterative algorithm: set b0
ix = 0, b0

iy = 0 (i =
1, 2, 3), and C1 = C0, U1 = C1. For k = 1, 2, · · · , let

wk
1x =∇xUk

1 + bk−1
1x , wk

1y = ∇yUk
1 + bk−1

1y ,

wk
2x =∇xUk

2 + bk−1
2x , wk

2y = ∇yUk
2 + bk−1

2y ,

wk
3x =∇xUk

3 + bk−1
3x , wk

3y = ∇yUk
3 + bk−1

3y ,

tk =

√√√√
3∑

i=1

(wk
ix)2 + (wk

iy)2, sk = max(µtk, 1),

bk
1x = wk

1x/sk, bk
1y = wk

1y/sk,

bk
2x = wk

2x/sk, bk
2y = wk

2y/sk,

bk
3x = wk

3x/sk, bk
3y = wk

3y/sk,

Uk+1 = Ck − µθ
(∇T

x bk
1x +∇T

y bk
1y,∇T

x bk
2x +∇T

y bk
2y,∇T

x bk
3x +∇T

y bk
3y

)
.

αk+1 =
1
θ
〈Uk+1,Ck〉+ λ̂〈Ck,C0〉 − 1

θ
− λ̂,

Ck+1 =
Uk+1 + λ̂θC0

1 + λ̂θ + αk+1θ
.

Figures 3 and 4 show the results of the algorithm for TV colorization with CB
color model. Figures 3(c) and 4(c) are the given images in which the color only
appears in certain small region Dc and most region needs to be colorized. Here
we define a mask with the same size as the image domain Ω such that the color is
maintained in the given region Dc. The computational time is about 0.7 seconds
for Figure 3 and 2 seconds for Figure 4, which is faster than the split Bregman
method and the dual method.

3.3. TV-based inpainting. In this section, we employ the proposed algorithm
for TV-based inpainting model. Assume Ω := {1, · · · ,M} × {1, · · · , N} be the
image domain and f : {1, · · · ,M}× {1, · · · , N} → R3 be the observed color image.
Let D be the inpainting domain and Dc = Ω\D be the complement of D in Ω,
where the intensities are given. The inpainting task is filling-in unknown data in a
known region D of an image. The TV-based inpainting model is

(32) min
u
‖∇u‖1 +

λ̂

2
‖u− f‖22,
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i)

Figure 3. TV-based colorization results. Image size is 100 × 75.
(a) Original image. (b) Chromaticity component. (c) Given image.
(d) Result of proposed algorithm, iter=70, t=0.726s; θ = 0.05, µ =
6, λ = 10. (e) Result of chromaticity component using proposed
algorithm. (f) Result of split Bregman algorithm, t=2.353s. (g)
Result of chromaticity component using split Bregman algorithm.
(h) Result of dual method in Li et al. [20], iter=300, t=2.917s. (i)
Result of chromaticity component using dual method.

where

λ̂ =
{

λ, (m,n) ∈ Dc,
0, (m,n) ∈ D,

1 ≤ m ≤ M and 1 ≤ n ≤ N .
Similar to the TV-based colorization model, we add an auxiliary variable v, then

the above energy can be approximated by

(33) min
u,v

‖∇v‖1 +
1
2θ
‖v − u‖22 +

λ̂

2
‖u− f‖22,

where θ should be chosen small enough in the numerical implementation so that
v is close to u sufficiently. Thus, we solve v and u by minimizing the following
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(a) (b) (c)

(d) (e) (f) (g)

Figure 4. TV-based colorization results. Image size is 128× 128.
(a) Original image. (b) Chromaticity component. (c) Given image.
(d) Result of proposed algorithm, iter=100, t=2.121s; θ = 0.1,
µ = 1, λ = 5. (e) Result of chromaticity component using proposed
algorithm. (f) Result of dual method in Li et al. [20], iter=300,
t=7.160s. (g) Result of chromaticity component using dual
method.

functionals respectively,

(34) min
v
‖∇v‖1 +

1
2θ
‖v − u‖22,

(35) min
u

1
2θ
‖v − u‖22 +

λ̂

2
‖u− f‖22.

Finally, the iterative scheme is given by: set b0
ix = b0

iy = 0 (i = 1, 2, 3), u1 = f
and v1 = u1. For k = 1, 2, · · · , let

wk
ix =∇xvk

i + bk−1
ix , wk

iy = ∇yvk
i + bk−1

iy , for i = 1, 2, 3,

tk =

√√√√
3∑

i=1

(wk
ix)2 + (wk

iy)2, sk = max(µtk, 1),

bk
ix = wk

ix/sk, bk
iy = wk

iy/sk, for i = 1, 2, 3,

vk+1
i = uk

i − µθ(∇T
x bk

ix +∇T
y bk

iy), for i = 1, 2, 3,

uk+1
i =

vk+1
i + λ̂θfi

1 + λ̂θ
, for i = 1, 2, 3.

When i = 1, we may use the algorithm for gray-scale image inpainting.
Figures 5 and 6 present the inpainting results for gray and color images. The

given images, which are created by defining two appropriate masks in which the
intensities in inpainting domains D are one and others are zero, are shown in Figures
5(a) and 6(a). We compare our algorithm with the augmented Lagrangian method,
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(a) (b)

(c) (d)

Figure 5. TV-based inpainting results for gray image. Image
size is 202 × 241. (a) Image with mask. (b) Result of proposed
algorithm, iter=80, t=1.701s; θ = 0.03, µ = 4, λ = 100. (c) Result
of augmented Lagrangian method, iter=20, t=2.64s. (d) Result of
dual method, iter=200, t=3.753s.

the split Bregman iteration and the dual method. The results show our algorithm
is more efficient and faster, which can be seen from Figures 5(b) and 6(b).

4. Conclusion

In this paper, a simple and efficient algorithm was presented to solve the vecto-
rial TV-based models. We first extended Jia and Zhao’s algorithm [16] to vectorial
version, and then extended the proposed vectorial algorithm to some applications
besides image denoising. We would like to emphasize that the proposed vectorial
algorithm can be used in many problems which need the `1 regularization. In com-
parison with the split Bregman iteration and the augmented Lagrangian method,
our algorithm does not involve any differential equations or difference equations,
which will save the computation. Moreover, the algorithm is convergent to the
solution of original vectorial TV minimization problem if 0 < µ/λ < 1/8. The
experiments on some image restoration tasks, such as color denoisings based on
RGB and CB color models, CB-based colorization and gray and color image in-
painting, indicated that our algorithm is more efficient and faster. In particular,
it is faster than the dual method, the split Bregman iteration and the augmented
Lagrangian method, which are also very fast and efficient algorithms relatively.
Of course, the proposed algorithm also outperforms the classical algorithms, for
example the explicit gradient descent flow. Besides the computational speed, the
restoration qualities are better by using the proposed algorithm. In a word, the
proposed algorithm is efficient for vectorial TV-based models.
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(a) (b)

(c) (d)

Figure 6. TV-based inpainting results for color image. Image
size is 256 × 384. (a) Image with mask. (b) Result of proposed
algorithm, iter=100, t=11.646s; θ = 0.05, µ = 2, λ = 100. (c)
Result of augmented Lagrangian method, iter=20, t=13.684s. (c)
Result of split Bregman algorithm, iter=100, t=18.690s.
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