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THE LOCAL DISCONTINUOUS GALERKIN METHOD
FOR OPTIMAL CONTROL PROBLEM GOVERNED BY
CONVECTION DIFFUSION EQUATIONS

ZHAOJIE ZHOU AND NINGNING YAN

Abstract. In this paper we analyze the Local Discontinuous Galerkin (LDG)
method for the constrained optimal control problem governed by the unsteady
convection diffusion equations. A priori error estimates are obtained for both
the state, the adjoint state and the control. For the discretization of the control
we discuss two different approaches which have been used for elliptic optimal

control problem.
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1. Introduction

In this paper, we consider the following linear-quadratic optimal control prob-
lems for state variable y and the control variable u involving pointwise control
constraints:

(1) uEmKiréX{;/OT/Q(y(:mt)—yd(:v,t))dedt—I—g/OT /QU u(w,t)gd:vdt}

subject to
Y+ V- (By—eVy)=f+Bu, ze€Q, te(0,T],
(2) (Ey —eVy) =7 on 09y,
eVy-n=0 on 00,
y(z,0) = yo(x), x € Q.

Here Q and Qg are bounded open sets in R? with boundaries 9 and 0Q; K € X
is bounded convex set. The details will be specified in the next section.

Although the a priori error estimates for finite element discretization of optimal
control problem governed by elliptic equations and parabolic equations have been
discussed in many publications, see, e.g., [1], [7], [13], [16], there are very few results
on the a priori error estimates of optimal control problem governed by convection
diffusion equations. Some related work can be find in, e.g., [2], [3], [5], [18].

In the optimal control problem (1)-(2), the state equation is a convection dif-
fusion equation. It is well known that the standard finite element discretizations
applied to the convection diffusion problem (2) lead to strong oscillation when
¢ is small. There are some effective discretization schemes which are introduced
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to improve the approximation properties of standard Galerkin method and to re-
duce the oscillatory behavior, see, e.g., [4], [11], [12]. Recently, a new discretization
scheme was proposed in [6] for the convection diffusion equation, which is called Lo-
cal Discontinuous Galerkin method. The analysis of Local Discontinuous Galerkin
method has been extended to many equations, such as, elliptic equation, nonlinear
convection diffusion equation, oseen equations and stokes equations .

In this paper, we use the Local Discontinuous Galerkin method to approxi-
mate the state equation in the optimal control problem (1)-(2). For the control
discretization we discussed two different methods. The first is the classic finite
element discretization. The control variable is discretized by piecewise constant
and piecewise linear finite element spaces, respectively. The second is a variational
approach proposed in [10], where no explicit discretization of the control variable
is used and the discrete control variable is achieved by projecting the discrete ad-
joint state variable on the admissible control set. For above LDG scheme, a priori
error estimates of the semi-discrete and fully-discrete approximation schemes for
the state, the adjoint state and the control are derived. To our best knowledge, the
similar results has not yet been reported in the open literature.

This paper is organized as follows: In Section 2, we introduce the model prob-
lem for the optimal control problem governed by the unsteady convection diffusion
equations and present the LDG approximation scheme of the model problem. In
Section 3, we prove a priori error estimate of the semi-discretization scheme for
the optimal control problem. In Section 4, a priori error estimate of the full dis-
cretization scheme for the optimal control problem is derived. In the last section,
we briefly summarize the method used, the results obtained and possible future
extensions and challenges.

2. LDG scheme for the optimal control problem

Let us introduce some standard notations. We adopt the notation W™9(2)
for Sobolev spaces on €, with a norm || - || ¢,0 and a semi-norm | - |, ¢0. For
q=2, we denote H™(Q) = W™2(Q) and || - ||m=] - |lm.2. Furthermore, we set
Wyl() = {v € Wh4(Q) : v |go= 0}, where o is the trace of v on the boundary
0. The inner products in L?(Qy) and L?(Q) are indicated by (-,-)y and (-,"),
respectively. For p € [1,00), the internal [0,7] C R and the Banach space A with
norm || - |4, we denote by L”(0,T; A) the set of measurable functions y : [0, 7] — A

such that fOT || v |I% dt < oo. The norm on LF(0,T; A) is defined by

T 1
(Jo Ty@®) % d)», 1<p<oco,
[ y@) [[Lro,m2)={ ess sup || y(t) |la, p= .
t€[0,T]

In addition ¢ and C denote generic constants.

In this section we provide a numerical scheme to approximate the distributed
convex optimal control problem governed by evolutionary convection diffusion equa-
tions. We shall take the control space X = L2(0,T;U) with U = L?(Qy) to fix the
idea.

Consider the following constrained optimal control problem governed by evolu-
tionary convection diffusion equations:

3) uemKigx{;/oT/Q(y(m,t)—yd(x,t))zdxdt+(;/OT /QU u(x,t)2dxdt}



LDG METHOD FOR OPTIMAL CONTROL OF CONVECTION DIFFUSION EQUATIONS 683

subject to
Y+ V-(By—eVy)=f+Bu, xeQte(0,T]
(4) (Ey —eVy)-i=79, on 09y,
Vy -7 =0, on 090,
y(x,0) = yo(x), z € Q.

Here the bounded open set Q C R? is convex polygon with piecewise smooth
boundary 99, Qy C R? is a bounded domain with Lipschitz boundary 0Q; B is a
bounded linear operator from X to L?(0,7;Y"); a > 0 is positive constant. In this
paper, we set
K={veX:v>0 ae in Qu x[0,7T]}.
For the data of the above equations we assume:
(i) f, ¢ are given functions, and € > 0 is a constant.
(ii) B denotes a velocity ficld. We assume that it belongs to (W>())2 and
satisfies the incompressible condition, i.e., V - ,g =0.
(iii) For boundary conditions, let 7 denote the unit outward normal to 9§2. We
write
00 ={zecd:f-7<0},
and
0o = {x € dN: 7> 0}
In order to define the Local Discontinuous Galerkin approximation scheme for
the optimal control problem (3)-(4), we introduce a new variable vector:

—

g=—c2Vy.
Then the optimal control problem

(5) uemKirclx{;AT/fz(y(x,t)—yd(:v7t))2dxdt+S/OT /QU u(w,t)gd:vdt}

(3)-(4) can be rewritten to

subject to
y+ V- (By+e2d) = f + Bu, x e, te(0,T],
qd= —E%Vy, x e, te(0,T],
(6) (By +e2q)-ii=4g, on 0%,
q-n=0, on 090,
y(z,0) = yo(x), x €.

To obtain the weak formulation for the state equation, we simply multiply the above
equations by smooth test functions w, v and integrate on 2. Then we have

(ye, w) — (By + 2, Vw) + (yii - 5,
(7,)

where

w>590
- (:%V ' (5%6)) + <y75%17 ﬁ)aﬂ = 07

= (f “rB’LL{lU) — <g],w>agn

<w,v >p= / wods
L

describes the integral on part of the boundary or edge of the element. Thus the

weak formulation of the optimal control problem (5)-(6)

i { / / z,t) — yq(x,t))’dedt + = / / u(zx,t) }dmdt
ueKCX Qu

(7) min

can be expressed as follows
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subject to: ¥V (w, @) € HY(Q) x (H*(Q))?,

1 2 _
(8) (yta ) (By +ez2 ?v ) < B >aﬂo = (f + BU,’LU) - <y?w>591a
(9) (@) = (y, V- (£29)) + (y,£27 - W)on = 0,
(10)  y(,0) = yo(x), =€

It can be derived by the standard technique (see, e.g., [9] and [15]) that the
control problem (7)-(10) has a unique solution (y, q,u), and that a triple (y, q,u)
is the solution of (7)-(10) if and only if there is adjoint state (z,p), such that
(y,(j’,z P, u) satisfies the following optimality conditions: for V (w,?) € H'(Q) x

L()2, Y (¢,4) € HY(Q) x (HY(Q))? and ¥V 5 € K C U,

31

m\»-A

(H
(11) (g1, w) — <Ey+e%qiw> (it B.won, = (f +Bu,w) — (i, w)on,
(12) (@0 — (4, V (e20) + (y,e20 iiJon = 0,
(13) —(21,0) + (Bz +€25,V) — (271 - B, d)aq, = (¥ —ya,9),
(14) @)+ (2,V - (e29)) — (2,670 - il)oq = O,
T
(15) /(au—i—B*zﬁ—u)Udt > 0,
0
(16) y(x,0) = yo(z), =2(x,T)=0, x € Q.

Here B* is the adjoint operator of B.
To describe the Local Discontinuous Galerkin procedure, we need introduce the
finite element mesh partition on the domain €. Let 7" be the regular triangulation

of Q, so that Q = U,cpné. Let h = max h,, where h. denotes the diameter of the
ecTh

element e. Moreover, let E! and Ed denote the sets of internal and external edges,
respectively.
For any function w € H'(e), e € T", let | denote an edge in the mesh, and 7i; a
unit vector normal to the edge I, with 7; = 77 on 0f). Set
t(p) = ki -
wT(x) = lim w(x + tn),
() = limy w(z + i)

w™(x) = lim w(z + 7).

t—0—
Then we define
w] = w —wT,
{w} = (w"+w7)/2.

Therefore for any function w € Hl(e), ¥ € (H'(e))?, we obtain the following
formulations by multiplying the equations (6) by test functions w, ¢ and integrate
on every element e:

(o w)e — (By+e2q,Vw)e + {(By +€2q) - fle, w)oer00
(17) + (B fie, wYaenone = (f + Bu,w)e — (§, w)aenan,
(18) @) — V- (20)e + (y,e37 - fi)oe = 0.

Let Wy, . C H'(e) denote the set of all polynomials of degree at most r on e, and
VP = {v € L?(Q),v|. € Wj}. The Local Discontinuous Galerkin approximation
scheme for the state equation can be obtained by simply discretizing the above
systems by discontinuous Galerkin method. We approximate y by y, € V", and ¢
by @ € (V")2. Then we have terms involving y and ¢ on de. Since y;, and g, are
discontinuous across these edges, we must provide the definition for approximating
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these terms. According to [8], we approximate the value of y,, in (17) by the upwind
value defined as follows:

R y[—?7 ﬁe : E > Oa

. {zm,ﬁfﬁgu
The value of g, on de\ 9N is approximated by {g,}. The approximation of the value
of yn on de\ N in (18) is chosen as {yp, }. Finally, the value of y5 on ININe C Oe
in (17) and on [N 9N C de in (18) is simply approximated by y, . Incorporating

these edge approximations and summing (17)-(18) over all elements, we can derive
that

neswn)  — > Byn +e2 G Vwn)e + Y ((Bin + 2 {gi}) - iy, [wn]):
+ ) By wahineao = (f + Bun,wn) — (5, wh)oq,
leE?
(@ T) = D (n V- (E200)e + D ({yn} €2 [Ba] - ),
e leE;}
+ > Yy €2 0n - ininon =0,
leE?

Next, let us consider the discretization of the control variable. Let T; g be another

regular triangulation of g, so that Qp = Ueperhu- Let hy = max he, , where
ev €Ty

he,, denotes the diameter of the element er;. In this paper, we consider the piecewise
constant finite element space:

Ul = {un, € U, up, |¢, = constant, Yey € Tg},
or the piecewise linear finite element space:
UM = {u, € U, up |ey € Pri(ev), Yey € T}

Set K" = UM N K. It is easy to see that K" C K.
Then the semidiscrete Local Discontinuous Galerkin approximation scheme for

optimal control problem (5)-(6) can be written as follows: for V (wy,,v5) € V? x
(V"2

. e 9 a [T 9
(19) uhemlg’rbch{Q/o /Q(yh(x,t) —ya(z, 1)) dzdt + 5/0 /QU up(z,1) d;vdt}

subject to

(Wneswn) = > (Byn +2Gn, Vun)e + > (Bin + 2 {qi}) - 7ir, [wn))i

e leE;}

(20) + D By wainone = (f + Bun,wi) = (5w,
leE?

(@) — 3 (Vo (2 0)e + Y {un} e (3] - i)

e leE;}
— 1, -
(21) + > (Y €20 iinoa = 0,
leE?

(22) yn(2,0) = yp(a),
where yf € V" is the approximation of yq.
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Again, it can be shown that the control problem (19)-(22) has a unique solution
(Yn, qh,un), and that a triple (yp, Gh,ur) is the solution of (19)-(22) if and only
if there is adjoint state (zp,Dh), such that (yn, qh, 2n, Ph, un) satisfies the following
optimality conditions: for ¥V (wp, @) € V* x (V)2 ¥V (¢, vn) € VP x (V)2 and
Yo € Kh,

(neswn) = > (Byn +22@n, Vwn)e + > ((Bim +22{qi}) -, [wnl)s

e B},
(23) + > By whinoae = (f + Bun,wa) — (. wh)aq,,
leE?
(@, 5) — D (V- EF))e + D ({unh, 2o - iy
e leE;}
(24) + Z <y;,€%17h ) inoa = 0,
leE?
—(eneadn) + > (Ben+ 2P, Von)e — O ((Bzn + 2 {pi}) - i, [onl
e =
(25) — Y Bz bnhinoas = (Yn — Ya. bn),
leE?
B tn) + D (e Vo (3 n))e — > ({an} e [dn] - i)y
e leE},
(26) - > (21 €2 0n - )inon = 0,
leE?
T
(27) / (auh —+ B*Zh,’f)h — uh)Udt >0,
0
(28) yh(xvo) :yg(x)v zh(va) :07

where y' € V" is the approximation of yg, and

+
v Zp
Zh = -
Zh’

Next, let us consider the full discretization scheme of the Local Discontinuous
Galerkin approximation for above optimal control problem by using the backward
Euler scheme in time. Let 0 = tg < t; < --- <ty_1 <ty = T, ki =t; — ti_1,t =

1,2,---N, k= n[lla%] ki. For i = 1,2,--- , N, constructing finite element spaces V;»
i€ll,

with the mesh T}*. Similarly, we construct the finite element spaces U} with the
mesh (T});. Let K ¢ U N K. Then the full discretization approximation scheme
for the optima control problem (5)-(6) is to find (y},u}) € Vi* x KI' such that for
Y (wn, ) € Vi x (V)2

St S

e'g Oa

>
<

N
1 4 , .
29 min {— k; Lt 12 o || wd |2
(29) u;er{Q ; (Il Y — ya ”O,Q (| uf, HO,QU)}
subject to
Yh— Y 20, b Foi 4 A
(= ) = 32+ 22k Vande + 3 (3 + D) - i, fonl)
! € leE}lL
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(30) + Z <ﬁ ﬁlyli—b_vwh>lﬂaﬂo = (fl + Bu;mwh) - <giawh>aQu 1= 172a "'aNa

leE?
, - 1 1,
((ﬁwvh) 7Z(y;ﬂv( 2Un))e + Z {yh}vgz wh] nl>l
e leEz’
B1)  + Z(yz_,fé Up - fi)inon = 0, i=1,2,..., N,
leE?

(32) yh(x) =y (2).
Similar to the semi-discrete case, we can derive the following optimality conditions:

i _ 41 o 1
(e i) = 3B+ 2 Ve + Y (B + kD) - fwnl)

ks
e IeE;

(33) 4+ > (B whhinoao = (f' + Buj,wn) = (§, wh)inoa,, Ywn € Vi,
leE?

(q;imgh) 7Z(yﬁnv 2 et Z {yh}ﬂ % >

I€E}

[\J»—A

(34) + Z <y2_;€% _’h : ﬁl>lﬁ8ﬂ = 07V17h S (‘/ih)Qai = 172a "'aNa

Zi_ _Z’L = 1 ==
( L L. h7¢h)+2(ﬂzz 1+€;ﬁ2 lav¢h)e_ Z<Z}ZL 1 B'nl,¢h>lmagl

leE?
(35) = > AP e B ) A [enlh = (W, — vl dn), Yo € V),
l€E}
B 0n) + Y (VR 00)e — Y (e Y e ] - )
¢ IeE]
(36) = (m et M)inon = 0,¥0n € (V)2 i=N,..,2,1,
leE?

(37) (o, + B2, of —uh)y >0, Vo € KI', i=1,2,..,N,
(38) yn(z) =yo(x), 2 (x) =0, z € Q.
3. A priori error estimates for semi-discrete scheme

In this section we will derive a priori error estimates for the semi-discrete scheme.
In order to do it, we make the following definitions.
Firstly, we define the element integral averaging operator 7, : U — Uy, such
that for all w € U,
Jrp @

Trhﬂ’lTU = f
U

Then we have the following approximation property (see, e.g., [14]):
(39) | @ — 7hit ||s,00< Chy ® | 1,00, $=0,1, @€ HY Q).
Moreover, noting that
K={veX:v>0 ae in Qu x[0,T]},
we divide the domain 2y into three parts:

Q$ ={Ury : v C Qu,uly, >0},
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Q(()J = {U’TU Ty C QU,’LL|TU = 0},
Ql = Qu\(QF UQD).
In this paper we assume that v and T}t are regular such that meas(Q?) < Chy.
Furthermore, set
QO ={z € Qu :u(z,t) >0}
Then it is easy to see that Qf; C QF.
For simplicity, we define:

ay(yn, @iwn) = Y (Byn +2Gn, Vun)e — Y (Bin + 2 {qh}) - 7ir, [wnli,

¢ leE}
az(zn, Pn; on) = Z(Ezh + &3, Von)e — Z ((Bzn + e {pi}) - ia, (b)),
€ lEE}
b(yn,Th) = Z(y’“V - (20n))e — Z ({yn}, €2 [On] - i)y
N o
- Z (Y €3 0n - Yinons
leEy?
Ey(yn,wn) = Y By, s wnhinooe, B=(zn, ¢n) = Y (B iz, , éninocs,
leE] leE?
F(up,wp) = (f + Bup,wr) — (G, wrn)oa,, GYn, dn) = (Yn — Yd, Pn)-

Then the optimality condition (23)-(27) can be rewritten as:
(Ynts wn) — ay(Yn, Gn; wn) + Ey(yn, wp) = Flup,wy),  Vwp € VI
(@, Tn) — b(yn, Tn) =0, Vij € (Vh)2,
—(2nt> &) + @z (2, P On) — Bz (20, 00) = Glyn, o),  Yon € VP,
(B Pn) + b(zn, ¥n) =0, Voo € (V)2

T
/ (auh + B*zp, 0y — uh)U >0, Yoy, € Kh,
0

yn(z,0) = yg(z)7 zp(x, T) =0, x€Q.

In order to do the error analysis for the optimal control problems, we derive the
following error estimates for the auxiliary problems using the technique as in [8].

Lemma 3.1. Let (y, §) be the solution of the equation (11)-(12). Let (yn(u), @n(u))
be the solution of the following system:

(40) (Z/ht (u)a wh) - ay(yh(u)7 Jh (u)v wh) + Ey (yh (u)7 U)h) = F(U, ’LUh),
(41) (th(u)v Uh) - b(yh(u)7 17h) =0,
(42) yn(u)(@,0) = yg (x).
Assume that z € H™(Q) and y € H™™1(Q). Then we have the following estimate
(43) Il (v = yn(w). = Gn(u)) [[[«< CR7,
where r is the order of the finite element space, and
2 g 2
— 2 . —
a1 = g (0 1+ [ 1 P de

o2 [ 0B on + 34 Bl

l€eE;
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Proof. 1t is easy to see that (yn(u), gn(u)) is the LDG approximation of (y, 7). Thus,
according to [8], the estimate (43) holds. O

Corollary 3.2. Let (y,q, 2, p,u) and (Yn, @h, 2h, Ph, un) e the solutions of the equa-
tions (11)-(16) and (23)-(28), respectively. Assume that the conditions of Lemma
3.1 hold. Then

(44) Il (¥ = yn, @ = Gn) |[[+< Ch" + Cllu — uh||L2(0,T;L2(QU)-

Proof. Recall that (yp, @) is the solution of (23)-(24). Subtracting (40)-(41) from
(23)-(24), we have that

(Ynt — Yne(w), wn) — ay(yn — yn(uw), Gh — Gn(w);wn) + Ey(yn — yn(u), wi) = F(up — u, wp),
(@h — qn(u), ) — b(yn — yn(u),vn) = 0.

Then setting wy, = yp, — yn(u), U = ¢h — ¢n(u) and using the stability property of

LDG method (see, e.g., [6], [8]), we can derive that

(45) (@ = @n(u), yn — yu(w) [[+< C [l w = un [[2(0,7;02(00)) -

Combining Lemma 3.1 and (45) yields (44). O

Next we will consider the error estimate of ||| (z — zp,7 — Pr) |||s. Similar to
Lemma 3.1, we can obtain the following estimate:

Lemma 3.3. Let (y,q, z,p,u) be the solution of the equations (11)-(16), and let
(zn(u), pr(w)) be the solution of following equations:

(46) —(zne(w), on) + az(zn(u), Pr(w); on) — Ex(2n(u), ¢n) = G(yn(u), ¢n),
(47) (B (), D) + bz (w),9n) = 0,
(48) zp(u)(z,T) =0,

where yp,(u) is the solution of the system (40)-(42). Assume that z € H™TY(Q) and
y € H™™Y(Q). Then

I (z = zn(w), P — pu(u)) [[[«< CR".

Proof. Let (zn(y),Pr(y)) be the solutions of following equations:

(49) —(2nt(y); 8n) + az(z(y), P (y); on) — E=(2n(y), ¢n) = G(y, on),
(50) (Bh (), Pn )+b(zh( ), ¥n) =0,

(51) zn(y) (2, T) =

Comparing (49)-(51) to ( 3) (14), it is easy to see that (zx(y),pr(y)) is the LDG
approximation solution of (z,§), then by the result of LDG method (see, e.g., [6],
[8]) we have that
(52) I (z = 2n(y), 0= Ph(y)) [lls< CR".

Recall that (zp(u), pr(u)) is the solution of (46)-(48). By the stability estimates
of LDG method we obtain that
(53) I (zn(w) = 2n(y), Dr(w) = Pu()) [+< C ||y = yn(w) 20, 1:22()) -
Using the result of Lemma 3.1 and combining (52)-(53) leads to the theorem result.

(]

Corollary 3.4. Let (y,q, z,p,u) and (Yn, Gh, 2h, Ph, upn) be the solutions of the equa-
tions (11)-(16) and (23)-(28), respectively. Assume that the conditions of Lemma
3.3 hold. Then the following error estimate holds

I (z =20, 0= Pn) I« < Ch" 4+ Cllu—unllL20,1:22(00))-
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Proof. Subtracting (46)-(48) from (25)-(26), it is deduced that
(2nt(u) = 2nt, n) + az(2n — zn(w), Ph — Ph(w); ¢n) — Ex(2n — 2n(uw), dn)
= G(yn — yn(u), ¢n),
(Bh — Ph(w), ) + b(zn — 2n(w),9p) = 0,
Let ¢, = 2, —zn(u), 1/7h = pnp—Dr(u), then by the stability estimate of LDG method

and (45) we can obtain that

I (zn = 2n(w), Ph — Pr(w) I« < Cllyn —yn(w) lL2(0,1:22(0))
<

(54)
Summing up, it follows from (54) and Lemma 3.3 that

C || U — Up ||L2(0,T;L2(QU)) .
I (z = 20,0 =pn) [lx < Ch" 4+ Cllu—upll20,1:22(020))-

3.1. Finite element discretization for the control u.

Theorem 3.5. Let (y,q, z,0,u) and (Yn, Gh, 2h, Dh, un) be the solutions of the equa-

tions (11)-(16) and (23)-(28), respectively. Assume that u € WH°(Qp), u|q+ €
H2(Q1), ze WH°(Q) N H™Y(Q), and y € H™TY(Q). Then we have

I = z2om2200) + I @ = ya@— @) e + 1 (2 = 2505 — B) llle < (a2 + 17,

where h and hy are the sizes of the meshes T" and Tg, respectively, m =0 or 1 s
the order of the finite element space for control variable, and r is the order of the
finite element space for the state and the adjoint state.

Proof. Let
(Jn(uw),v —u)y = (au + B*z,(u),v — u)y,
where zp,(u) is the solution of (46)-(48). Note that
(J;,(v),v —uw)y — (Jj,(u),v —u)y = (a(v —u),v —u)y + (B 2n(v) — B*zp(u),v — u)y.
Moreover, it follows from (40)-(42) and (46)-(48) that
(Ynt (V) = Yne(u), wn) — ay(Yn(v) — yn(w), Gu(v) — gn(u); wa)
+Ey(yn(v) — yn(u),wn) = (B(v — u), wp),
(G (v) = Gi(u), Tn) = blyn(v) — yn(u), dn) = 0,
and
(znt(u ) — 2nt(v), dn) + az(2n(v) — 2n(w), Ph(v) — Pr(w); dn)
E.(2n (Ul— zn(u), ¢n) = G(yn(v) — yn(u), ¢n),

(Br(v) — P (), ) + b(zn(v) — 21 (w),4p) = 0,

Taking wy, = 2z,(v) — 2n(u), U = Pp(v) — Pr(w) and ¢ = yn(v) — ya(u), Yn =
dn(v) — @n(u) in above equalities, we have that

(55) (B*zn(v) = B zp(u),v — u)u = (yn(v) = yn(w), yn(v) — yn(u)) > 0.
Then (55) imply that
(56) (Jh (), v —w)y — (Jp(w),v —w)y = a|v—ufq, -

Let Qnu € K" be an approximation of u, then it follows from (15), (27) and (56)
that

ol u—up H%Z(O,T;m(ﬂu))
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T
!/ !
< / (Jn(w) = Jp(un), u — up)udt
0
T T
= / (au+ B*z,u — up)ydt + / (B*zp(u) — B*z,u — up)ydt
0 0

T T
+/ (aup, + B*zp, up — Qpu)ydt + / (qup + B*zp, Qpu — u)ydt
0 0

IN

T T
/ (B*zp(u) — B z,u — up)udt + / (aup, + B*zp, Qpu — u)pdt.
0 0

Note that

T
/ (qup + B*zp, Qpu — u)ydt
0

T T
= / (au+ B*z, Qpu — u)ydt + / (qup, — au, Qpu — u)dt
0 0

T T
—|—/ (B*(zn — zn(u)), Qpu — uw)dt + / (B*(zn(u) — 2), Qru — u)dt
0 0
T
< / (au+ B*z,Qpu — u)ydt + C(0) | Qru —u H%Z(O,T;L2(QU))
0
+C6 || au — auy, ||2Lz(o,T;L2(QU)) +C6 || B* (21 — 2n(u)) ||2L2(0,T;L2(QU))
+C0 || B*(2 — 21 (u)) ||%2(O,T;L2(QU))>
where § is an arbitrarily small positive number. Therefore,
| w—up ||%2(O,T;L2(QU))
T
< C/ (au + B*z, Qpu — U)Udt + C(5) H Qru —u ”%,Z(O,T;LZ(QU))
0
+C6 || u—up ||2L2(0,T;L2(QU)) +C0 || B* (2 — 2n(u)) H%Z(O,T;L2(Qu))
+C6 || B*(z = 21(w)) | 720.7:02(000)) -
Then using Lemma 3.3 and (54) we get that
| u—up ||i2(o,T;L2(QU))
T
< C/ (au+ B*2,Qpu —u)ydt + C || Qpu — u ||%2(0)T;L2(QU))
0
(57) +C || B* (2 = zn(w)) 1120712 (020))
T
< C/ (au + B*z, Qpu — U)Udt +C || Qpru —u ||%2(O,T;L2(QU)) +Ch?".
0

In the following argument we shall consider the error estimates for the control
variable under different finite element spaces. Firstly, let us consider the case that
U" is the piecewise constant finite element space. Let Quu € U" be the element
integral average of u. Using the property of the operator @y, we can derive that

(au+ B2 Quu—wy = (au+ Bz — Qulau+ B'2),Quu — u)y
(58) < Chi(||lu | %.0)-
Therefore, it follows from (57)-(58) that
(59) | w—wunll20,1:22(00)) < Chu+Ch".

%,QU + 1 2
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Next, let us consider the case that U” is the piecewise linear finite element
space (which can be continuous or discontinuous). Set Qnu € U" be the standard
Lagrange interpolation of u such that Qru(z) = u(z) for all vertices x. Then it is
easy to see that Qnu € K". Note that u € W1>°(Qy) and u|g+ € H?(QF). We get

lw— Quu g gz < ChE g [l —Qut llg,oe.ct, < Chos | u

1,00,9%7

and hence,

|u—Qnu |

bor = [ w—@us [ Qe+ | (-

b
U U QU

(60) < Chi |l u ||§’Q$ +0+Ch¥ || u ”?,ooﬂ‘,’j meas()
< Ohy | ullygp +Ch 1w o gy,
< Chi(lulzor + 1wl s,) < Chi.

Moreover, it follows from (15) that au + B*z = 0 on ;. It is easy to see that
Qpru—u=0on Q?]. Note that for all element T(l} C Ql{], there is zg € T(l} such that
u(zo) > 0, and hence (au + B*2)(zg) = 0. Then

o+ B2l e, = llovs + B2 — (0t + B*2)(20) ooy < Choslls + B2l o .
Thus,

(au+ B*z,Qpu—u)y = /+ (au+ B*2)(Qpru — u) + / (ou+ B*2)(Qnru — u)

Qy Q
—|—/ (au + B*2)(Qpru — u)
Qy
(61) = 0+0+/ (ou + B*2)(Qpu — u)
2

IN

Il o+ B2 Jlo oo, | 4 = @nt llg 0,01, meas(Qy)
Ch3,.
Combining (57) and (60)-(61) leads to

IN

3 N
(62) | w—wun 20,200y < Chg+Ch".

Therefore, the theorem result follows from (59), (62) and Corollary 3.2 and 3.4.
t

3.2. Variational discretization for the control w. In this section, we will in-

troduce a variational discrete concept for control u and a priori error estimates will
be derived.
Using a pointwise projection on the admissible set K,

(63) P :U — K, Pgv=max(0,v),

the optimal condition (16) can be expressed as follows:
1
= Pg(——(B*2)).
u= Pr(—~(B"2)

Similarly, employing the projection (63) the optimal condition (27) can be rewrit-
ten as follows:

Up = PK(fé(B*Z}I))

Here it should be pointed that u; € K and we make minimization on the infinite
dimensional space K instead of the finite element space. In general, uy, is not a finite
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element function corresponding to the mesh T[’}, especially on the element crossing
the discrete free boundary. This fact requires more care for the construction of the
algorithms for computing uy, see [10] for details.

Theorem 3.6. Let (y, q, 2,0, u) and (Yn, Gh, 21, Dh, ur) be the solutions of the equa-
tions (11)-(16) and (23)-(28), respectively, with K" displaced by K. Assume that
z € H™ Q) and y € H™1(Q). Then we have that

lw = 202 + I (0 = yns @ = @) [lls + || (F= Ph, 2 = 2n) [l+< CB,
where r is the order of the finite element space for the state and the adjoint state.

Proof. Let (J; (u),v—u)y = (au+B*z,(u),v—u)y, it has been proved in Theorem
3.5 that

(64) (Jh(),v = wo = (Jy (), v —wy > a | v-ullfq, -
Then it follows from (64), (15) and (27) that

ol u—up ”%2(0,T;L2(QU))

T
< / (J;L(u) —J,’L(uh),u—uh)ydt
0
T T
= / (au+ B*z,u — up)ydt + / (B*zp(u) — B*z,u — up)ydt
0 0
T
+/ (qup, + B*zp, up, — u)ydt
0
T
< 0+ / (B*zp(u) — B*z,u — up)ydt +0
0
<l zn(u) = 2 20, msz2@) | v = un |22 0,7522(Q0)) -
Therefore

| w—unllz20,7:200)) < Cll 20(w) = 2 [l 200,1522(0)) -
Using the result of Lemma 3.3, we can derive that
(65) | w—un ||L200,m50200)) < Ch".

Combining Corollary 3.2, Corollary 3.4 and (65) we can obtain the theorem result.
O

4. A priori error estimates for full discretization scheme

In this section, we will consider the error analysis of the fully discrete LDG
scheme for the optimal control problem. Similar to Section 3, we define:

abWh @iwn) = Y (Byh +e2dh, Vwn)e — Y (B9 + 22 {@'}) - 7, [wal)i,
e I€E;},
(2 Bhion) = D (Bah+e25, Von)e — D (B2 +e2{pi'}) - [on])1,
e l€E}
VW) = D WV (€200)e — > {yh e ] - i)y
e l€E}

- Z (yh ™ 2Ty - )ino0,
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E}(yhwn) = > (Bl whinoao, B2 (2h, én) = > (B 7uzh dnhinoas

leE? leE?
Fh(u;17wh) = (fl—’_Bu;mwh) - <gi7wh>BQI7Gh(y;Lu¢h) = (y;z _yél7¢h)
Then the optimality condition (33)-(38) can be rewritten as follows:
yi — yi71 . . . .
66) (BT ) (g wn) + D w) = F ),
(67) (q;wﬁh) - bh(y;ugh) = Oa
-1 i
z — 2z i—1 —i— i— 7
(68) (%,%) +al(zhmy s on) — EX (2t én) = G (yhs 9),
(69) (B o)+ (= dn) =0,
(70) (auj, + B* 2", 0y — uj)uo 2 0,
(71) vh(@) =yo(x), 2'(x) =0, ze
We define the discrete time-dependent norms:
N .
||| F HVZP(O,T;H'r(Q) = Zkl ” F* H?Qﬂ
i=1
N
-2 i 2 N2
@ 1 = s I+ 30k

N
1 - - (I
+5 Dkl - Bl (w' ) )oa + Y (it - Bl [w]*))-
i=1 leE;}
Using the techniques used in the proof of Lemmas 3.1 and 3.3 and Corollaries

3.2 and 3.4, it can be proved that for the full discretization scheme we have the
following estimates for the state and the adjoint state.

Lemma 4.1. Let (y,q,2,p,u) and (y}l,(j};,zzfl,ﬁfl,um be the solutions of the
equations (11)-(16) and (33)-(38), respectively. Assume that z,y € HY(0,T; H™T1(£2))N
H?(0,T; L*(Q)), yg € H*(0,T; L*(Y)). Then we have

Il (= Ya(u), §— Qn(w) [ + [l (z = Zn(w), 7= Pa(w)) [||I< C(B" + k),
(= yn, @— @) Il + [l (z =25, 0= 1) IS C(R" + k+ ||| w—un [||z2(0,7;22(20)))
where h and r are the element size and the order of the finite element space, k is

the time step, and Yy (u), Q_’zh(u), Z 7 (w), ﬁ;fl(u) are the solutions of the following
equations:

B =T ) — (4, @i on) + BV, un) = F (),
(@), ) — V" (Vi) ) = 0,
) Z}Zz_l(u _Z}i(u)
ks
75) = GMY)
o
)

s6n) + al(Z37 (), By (w)i én) + B2 (2,7 (), én)

u)7¢h)7

Next we will discuss the convex property of the full discrete scheme.
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Lemma 4.2. Let (y,q,z,p,u) and (y}l,q'“;b,zzfl,ﬁfl,uZ) be the solutions of the
equations (11)-(16) and (33)-(38), respectively. Let

N
(Jh(w),v —w)y =Y ki(au’ + B*Z) " (u),v" — u')y,

i=1

where Z; 1 (u) is the solution of the equations (72)-(77). Then the following esti-
mate holds:

(Ji(v) = Jh(u), 0 =)o = a || v = u 720122000 ) -

Proof. Note that

(Jh(v) = Ji(w),0 = w)u
N N

= Z ki(aw® — au', vt — ut)y + Z ki(B*Zi (v) — B*Z 7 Hu), v — u')y
i=1 1=1
= allv—ullizoraou) + D ki(Zy H(0) = 2,7 (W), B’ —u)u.
i=1

Let Y = Yji(v) — z/ﬁ(u), Q' = Qi(v) — Qi(u), 27" = Zi 7 (v) — Zi  (u), and
pi-! P’ 1( ) — P~ !(u), then we have that
Yz 1
ki
Q’,vh) - b (YZ ﬁh) = 0
zi=1 _ 7i

@) (T - al (Y%, Q% wn) + B (Y wy) = (B(' —u'),wp),
(79)
(80) (T ) +al(ZL P ) + B2 6n) = GM(Y o),
(81) (P 171/)h)+bh(Zz ') = 0.

Set wy, = Z71, @, = P~ in (78)-(79) and ¢, = Y, ¢, = Q' in (80)-(81),
respectively. Similar to the semidiscrete case, it is easy to prove that

Zk Zi W) = Zi Y w), B! —ut))y > 0.

Then we can derive the theorem result. O

In the following, we will provide a priori error estimates for two different control
discretization approaches (finite element approximation and variational discretiza-
tion) described in section 3.

4.1. Finite element discretization for the control u.

Theorem 4.3. Let (y,q, z,p,u) and (yi,ﬁ,zz_l,ﬁ_l,UZ) be the solutions of the
equations (11)-(16) and (33)-(38), respectively. Suppose that the conditions of
Lemma 4.1 are valid. Moreover, we assume that u € L*(0,T; W1 (Q)), u|q+ €
L2(0,T; HX(Q1)), z € L*(0,T; Wh(Q)) N HY(0,T; L*()). Then we have

(= yn, @— @) [l + Il (2= 20,0 —Pn) |l + Il v —un [l 2200,1522(00)
< C(h" +hy™™? + k).
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Proof. Let IIu be an approximation of u. Following (15), (37) and Lemma 4.2 we
obtain that

a |l w—=wun L2020 ))

B (jl/z(u) — Jh(un), v —un)u
N N ‘
= Zki(au’ + B2 vt —up)u + Z ki(B*Z) M (u) — B*2' u' — uj)u
i=1 i=1
N N
+ Z ki(au) + B*z) L ' — ')y + Z i(aul, + B*z) b ul, — )y
i=1 i=1
N _ N '
< 0+ Z ki(B*Zy (u) — B2 u' —u)u + Z ki(auj, + B 2 pu’ — u')y +0
i=1 i=1
N ‘ N
= Z ki(B*Z  (u) — B2t ut — )y + Zki(B*zz_l — Bz vt —uy)u
i=1 i=1
N
+ Zki(auﬁl + B*z,zl_l,ﬂhul —u )y =Ty + T+ Ts.
i=1

Now we are in the position to estimate 77 ~ T3. It follows from Y oung's inequality
that

N N
T < CEO)Y kil 27" =2 W) 50 +C8 D> ki || v —uj, 1§,
=1 =1
< CO) |l == Zn(u) |||%2(O,T;L2(Q)) +C6 || w—up |||%2(0,T;L2(QU)) ‘
Note that

14 t;

) ) i Oz 1 i 0z 1

2 =2 = | | < kbGPt

¢, Ot ¢, Ot

Then we have

N N
I, < C() Zkz 2 =27 5o +C§Zk¢ | w' =, 1130
=1 =1
2 9% 2 2
< C@O)K | e 2200, 02(0)) TCO Il v —un 220,702 (00)) -

The estimate of T5 depends on the choice of the finite element space for the control
discretization.

Firstly, let us consider the case that Uih is the piecewise constant finite element
space. Let I u’ € Uih be the the element integral average of u’. Then

N N
Ty = Zkzi(aui + B2 Tt — ')y + Z Ei(a(ul, —u?), Tpu' —u')y

i=1 i=1

N
+3 k(B (2 = 237 (w), Tut — )y
=1

+Y k(B2 () = 27, ' — )y
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N 5
(82) + Z Ei(B* (271 — 2, ' —u')y = ZI,-.
i=1 i=1
Now let’s derive the estimates of I; ~ I5, respectively. It follows the property of
II;, and Young’s-inequality that

N
L = Zki(aui + B2 — Hh(aui + B*zi), Iyut — ui)U
i=1
< Chy(ll w2070 @0y + 1 2 20,7 @)-
I < Collfup—wu |H%2(O,T;L2(Q)) +O(5)hr21 1KZ |H%2(0,T;H1(QU)) :
N 0z
Is < CZkf [ ot H%Q(O,T;L2(Q)) +Ch%r | |||2L2(07T;H1(QU)) :
i=1
Note that

lzn = Zn ()l < Clllu = unll|20,7:12(2))-
Using the approximation property of II; yields
I < Célllun—u |||%2(O,T;L2(Q)) +C(Cs)th [ |||%2(O,T;H1(QU))
and
I < Cf|l Zp(u) —= H|%2(O,T;L2(Q)) +ChQU [[] w |||2L2(0,T;H1(QU)) :

Summing up, inserting the estimates of I; ~ I5 into (82) results in
0z
T; < CF| 5% 1220220 +C Il Zn(w) = 2 [I7200,1,22(02))

+ C6|llun—u |||2L2(0,T;L2(Q)) +Ch (|| u |||2Lz(o,T;H1(QU)) + ] = |H2L2(0,T;H1(Q)))-
Combining the estimates of 77 ~ T3, and setting § small enough we have the
following error estimate:

Il w = un 1220, 752200))
0z
< Ck* | ot 1Z20.7:22(0)) +C Il Zn(w) = 2 17200,7.02 (0
(83) +Ch (||| w H|%2(O,T;H1(Qu)) + 1l = |||%2(07T;H1(Q)))'

Secondly, let us consider the case that U is the piecewise linear finite element
space. Set Il u? € U! be the standard Lagrange interpolation of u such that
I, u(z) = ui(x) for all vertices z. Then it is easy to see that II,u’ € K. Similar
to Section 3, using the property of Il it can be proved that the term T3 satisfies
the following estimate:

0z
Ts < CE | 5% 122072200 +C Il Zn(w) = 2 720, 7:220))

+ C6 ||| up —u |H%2(O,T;L2(Q)) +Chi.
Thus, combining the estimates of T} ~ T3 and setting § small enough we can derive
that
0z
Wl w=wunZ20702000)) < Ck* |l % 1% 20,72 ()
(84) +C || Zn(u) — = |||%2(O,T;L2(Q)) +Ch.

Summing up, the theorem result can be derived by combining (83), (84) and Lemma
4.1. U
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4.2. Variational discretization for the control w. Similar to Section 3.2, we
will derive the error estimates of the variational discretization for the control u
when the full discretization scheme is applied.

Similarly, employing the projection (63) the optimal condition (27) can be rewrit-
ten as

. 1 ,
ul, = PK(—a(B*z;L_l)).

Then it is easy to see that u’h € K.
Theorem 4.4. Let (y,q,z,p,u) and (yi,q,, 2, Py ' ul) be the solutions of the
equations (11)-(16) and (33)-(38), respectively, with K" replaced by K. Assume
that the conditions of Lemma 4.1 are valid. Then we have that

1w = s lzeomzzy + 1 @ = 0@ — @) [+ 1 5= Bz — 22) < CO + ).
Proof. Tt follows from (15), (37) and Lemma 4.2 that

all w—un 220 7:2(00))

< (Jnw) = Jp(un), u— up)
N . . . . N . . . .
= Z ki(ou' + B2 u* —up)u + Z ki(B*Z,  (u) — B 2 ut — i)y
i=1 i=1
N . . . .
+ Z ki(aul, + B 2t ul — vy
i=1
N . . . .
< 0+ ki(B*Zy () - B2 ut —uf )y +0
i=1
N . . . . N . . . .
= Z ki(B*Z (u) — B2 7wt — )y + Z k(B2 — B2t ut — b))y
i=1 i=1

Therefore, by Y oung's-inequality we get

Il w—up |||L2(0,T;L2(QU)) < Cl|l Zn(u) — =z |||L2(07T;L2(Q)) +Ck || % HL?(O,T;L‘Z(Q)) .
Using the result of Lemma 4.1 yields that

(85) | w—un |lz20,10200)) < C(R" +E).

Combing Lemma 4.1 and (85) leads to the theorem result. O

5. Discussion

In this paper, we discuss the local discontinuous Galerkin approximation for
the constrained optimal control problem governed by unsteady convection domi-
nated diffusion equations, where the control variation is discretized by finite element
method and variational discretization, respectively. The a priori error estimates are
derived for both semi-discrete and full-discrete schemes. The a posteriori error es-
timates and the numerical experiments will be addressed in the coming work. In
this area there are still many important issues to be addressed, such as optimal
control governed by nonlinear problems, the state constrained problems, and more
complicated practical problems.
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