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ON THE OPTIMAL CONTROL PROBLEM OF LASER SURFACE

HARDENING
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Abstract. We discuss an optimal control problem of laser surface hardening

of steel which is governed by a dynamical system consisting of a semilinear par-

abolic equation and an ordinary differential equation with a non differentiable

right hand side function f+. To avoid the numerical and analytic difficulties

posed by f+, it is regularized using a monotone Heaviside function and the

regularized problem has been studied in literature. In this article, we establish

the convergence of solution of the regularized problem to that of the original

problem. The estimates, in terms of the regularized parameter, justify the ex-

istence of solution of the original problem. Finally, a numerical experiment is

presented to illustrate the effect of regularization parameter on the state and

control errors.
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1. Introduction

In this paper, we discuss an optimal control problem described by the laser surface
hardening of steel. The purpose of surface hardening is to increase the hardness
of the boundary layer of a workpiece by rapid heating and subsequent quenching
(see Figure 1). The desired hardening effect is achieved as the heat treatment
leads to a change in micro structure. A few applications include cutting tools,
wheels, driving axles, gears, etc. Let Ω ⊂ R

2, denoting the workpiece, be a convex,
bounded domain with piecewise Lipschitz continuous boundary ∂Ω, Q = Ω× I and
Σ = ∂Ω × I, where I = (0, T ), T < ∞. Following Leblond and Devaux[7], the
evolution of volume fraction of the austenite a(t) for a given temperature evolution
θ(t) is described by the initial value problem:

∂ta = f+(θ, a) =
1

τ(θ)
[aeq(θ)− a]+ in Q,(1)

a(0) = 0 in Ω,(2)

where aeq(θ(t)), denoted as aeq(θ) for notational convenience, is the equilibrium
volume fraction of austenite and τ is a time constant. The term [aeq(θ) − a]+ =
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Figure 1. Laser Hardening Process

(aeq(θ)− a)H(aeq(θ)− a), where H is the Heaviside function

H(s) =

{

1 s > 1
0 s ≤ 0,

denotes the non-negative part of aeq(θ) − a, that is,

[aeq(θ) − a]+ =
(aeq(θ)− a) + |aeq(θ)− a|

2
.

Neglecting the mechanical effects and using the Fourier law of heat conduction,
the temperature evolution can be obtained by solving the following energy balance
equation:

ρcp∂tθ −K △ θ = −ρL∂ta+ αu in Q,(3)

θ(0) = θ0 in Ω,(4)

∂θ

∂n
= 0 on Σ,(5)

where the density ρ, the heat capacity cp, the thermal conductivity K and the
latent heat L are assumed to be positive constants. Further, θ0 denotes the initial
temperature. The term u(t)α(x, t) describes the volumetric heat source due to
laser radiation and the laser energy u(t) is a time dependent control variable. Since
the main cooling effect is a self-cooling of the workpiece, a homogeneous Neumann
condition is assumed on the boundary.

To maintain the quality of the workpiece surface, it is important to avoid the
melting of the surface. In the case of laser hardening, it is a quite delicate problem
to obtain parameters that avoid melting but nevertheless lead to the right amount
of hardening. Mathematically, this corresponds to an optimal control problem in
which we minimize the cost functional defined by:

J(θ, a, u) =
β1

2

∫

Ω

|a(T )− ad|
2dx+

β2

2

∫ T

0

∫

Ω

[θ − θm]2+dxds +
β3

2

∫ T

0

|u|2ds(6)

subject to (1)− (5) in the set of admissible controls Uad,(7)

where Uad = {v ∈ U : ‖v‖U ≤ M, for fixed positive M} with U = L2(I), β1, β2

and β3 are positive constants and ad is the given desired fraction of the austenite.
The second term in (6) is a penalizing term that penalizes the temperature below
the melting temperature θm.

The mathematical model for the laser surface hardening of steel has been studied
in [4] and [7]. For an extensive survey on mathematical models for laser material
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treatments, we refer to [9]. In this article, we follow the Leblond-Devaux model
[7]. In [1], [4], the mathematical model for the laser hardening problem is discussed
and results on existence, regularity and stability are derived. In [3], the authors
have investigated two different methods of surface hardening: laser and induction
hardening and then for numerical approximation, they have applied finite volume
method for space discretization and finite difference for temporal discetization of
the regularised problem. In [5], the optimal control problem is analyzed and related
error estimates for the regularised state system are derived using proper orthogonal
decomposition (POD) Galerkin method. In [12], a nonlinear conjugate gradient
method has been used to solve the optimal control problem and a finite element
method has been used for the purpose of space discretization. Recently in [10],
the authors have derived a priori error estimates for the regularized laser surface
hardening problem.

The presence of the term [aeq−a]+ in the right hand side of (1) creates a problem
in developing analytical results and finding numerical solution. In order to overcome
this difficulty, the function f+ = 1

τ(θ) [aeq − a]+ is regularized using a regularized

Heaviside function in literature (see [3]-[6], [12]). Although the numerical schemes
in [3]-[6] and [12] are discretizations of the regularized problem, there are hardly
any convergence results available which establish the fact that the solution of the
regularized problem converges to that of the original problem as the regularization
parameter ǫ tends to zero. In this paper, it is shown that the error between the
solution of regularized problem and that of the original problem is of order O(ǫ) and
a convergence analysis for the regularized laser surface hardening of steel problem
is discussed.

The outline of this paper is as follows. In Section 2, we describe the regularized
optimal control problem of laser surface hardening of steel and its weak formulation
with results of existence and uniqueness of solution, which are already available in
the literature. A stability result for the temperature is also established. In Section
3, the existence of a unique solution for (1)-(5) is proved for a fixed control u
and then the convergence of the solution of the regularized problem to that of the
original problem is proved. Finally, Section 4 gives numerical results, which justifies
the theoretical results obtained in Section 3.

2. The Regularized Problem

In this section, we first present a regularized problem and recall some related
results on existence, uniqueness and regularity.

With ǫ > 0 as regularization parameter, we replace the Heaviside function by a
regularized function Hǫ ∈ C1,1(R), where Hǫ is a monotone approximation of the
Heaviside function satisfying Hǫ(x) = 0 for x ≤ 0. Thus, we arrive at the following
regularized problem:

min
uǫ∈Uad

J(θǫ, aǫ, uǫ) subject to(1)

∂taǫ = fǫ(θǫ, aǫ) in Q,(2)

aǫ(0) = 0 in Ω,(3)

ρcp∂tθǫ −K △ θǫ = −ρL∂taǫ + αuǫ in Q,(4)

θǫ(0) = θ0 in Ω,(5)

∂θǫ
∂n

= 0 on Σ,(6)
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where

J(θǫ, aǫ, uǫ) =
β1

2

∫

Ω

|aǫ(T )− ad|
2dx+

β2

2

∫ T

0

∫

Ω

[θǫ − θm]2+dxds+
β3

2

∫ T

0

|uǫ|
2 ds,

and

fǫ(θǫ, aǫ) =
1

τ(θǫ)
(aeq(θǫ)− aǫ)Hǫ(aeq(θǫ)− aǫ).

We now make the following assumptions [5]:

(A1) aeq(s) ∈ (0, 1) for all s ∈ R and ‖aeq‖C1(R) ≤ ca;
(A2) 0 < τ ≤ τ(s) ≤ τ̄ for all s ∈ R and ‖τ‖C1(R) ≤ cτ ;

(A3) θ0 ∈ H1(Ω), θ0 ≤ θm a.e. in Ω, where the constant θm > 0 denotes the
melting temperature of the steel;

(A4) α ∈ L∞(I, L∞(Ω));
(A5) u ∈ L2(I);
(A6) ad ∈ L∞(Ω) with 0 ≤ ad ≤ 1 a.e. in Ω.
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Figure 2. Regularized Heaviside(Hǫ) and Heaviside(H) Functions

Below, we discuss the weak formulation corresponding to the regularized prob-
lem (1)-(6). Let X = {v ∈ L2(I;H1(Ω)) : vt ∈ L2(I;H−1(Ω))}. The Hilbert
space H1(Ω) and its dual H−1(Ω) build a Gelfand triple H1(Ω) →֒ L2(Ω) →֒
H−1(Ω). The duality pairing between H1(Ω) and H−1(Ω) is denoted by < ·, · >=
< ·, · >H−1(Ω)×H1(Ω). Let the inner product and norm in L2(I) be denoted by
(·, ·)L2(I) and ‖ · ‖L2(I), respectively. Now the weak formulation corresponding to
the regularized problem (1)-(6) is given by

min
uǫ∈Uad

J(θǫ, aǫ, uǫ) subject to(7)

(∂taǫ, w) = (fǫ(θǫ, aǫ), w),(8)

aǫ(0) = 0,(9)

ρcp(∂tθǫ, v) +K(∇θǫ,∇v) = −ρL(∂taǫ, v) + (αuǫ, v),(10)

θǫ(0) = θ0,(11)
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for all (w, v) ∈ L2(Ω)×H1(Ω), a.e. in I, where fǫ(θ, a) =
1

τ(θ)(aeq(θ)−a)Hǫ(aeq(θ)−

a). The following theorem ([12], Theorem 2.1) ensures the existence and uniqueness
of solution of the regularized problem (8)-(11).

Theorem 2.1. Suppose that assumptions (A1)-(A6) are satisfied. Then, for a
given uǫ ∈ Uad the system (8)-(11) has a unique solution

(θǫ, aǫ) ∈ H1,1(Q)×W 1,∞(I;L∞(Ω)),

where H1,1 = L2(I;H1(Ω)) ∩H1(I;L2(Ω)). Moreover, aǫ satisfies

0 ≤ aǫ < 1 a.e. in Q.

Remark 2.1. Due to (A1)-(A2) and nature of the regularized Heaviside function,
there exists a constant cf > 0 independent of θǫ and aǫ such that

max(‖fǫ(θǫ, aǫ)‖L∞(Q), ‖
∂fǫ
∂a

(θǫ, aǫ)‖L∞(Q), ‖
∂fǫ
∂θ

(θǫ, aǫ)‖L∞(Q)) ≤ cf

for all (θǫ, aǫ) ∈ L2(Q)× L∞(Q).

The existence of a global solution to the optimal control problem (1)-(6) is guar-
anteed by the following theorem ([12], Theorem 2.3).

Theorem 2.2. Suppose that the assumptions (A1)-(A6) are satisfied. Then the
optimal control problem (1)-(6) has at least one(global) solution.

The next lemma shows the stability result for the temperature θǫ when
aǫ ∈ W 1,∞(I, L∞(Ω)).

Lemma 2.1. Suppose that the assumptions (A1)-(A6) are satisfied. Then, for a
fixed uǫ ∈ Uad, the first component of the solution (θǫ, aǫ) ∈ H1,1×W 1,∞(I, L∞(Ω))
of (4)-(6), satisfies

‖θǫ‖L∞(I,H1(Ω)) ≤ C,

where C > 0 is a finite constant.

Proof. Set v = θǫ in (10) to obtain

ρcp
2

d

dt
‖θǫ‖

2 + ‖∇θǫ‖
2 = −ρL(∂taǫ, θǫ) + (αuǫ, θǫ)

Integrating from 0 to t, using Cauchy-Schwarz and Young’s inequality, we find that

‖θǫ(t)‖
2 +

∫ t

0

‖∇θǫ‖
2dt ≤ C

(

‖θ0‖
2 +

∫ t

0

(‖∂taǫ‖
2 + |uǫ|

2)dt

+

∫ t

0

‖θǫ‖
2dt

)

.(12)

Using Gronwall’s Lemma, it follows that

‖θǫ(t)‖
2 ≤ C

(

‖θ0‖
2 +

∫ t

0

(‖∂taǫ‖
2 + |uǫ|

2)dt

)

.(13)

Now, multiply (4) with ∂tθǫ, integrate over Ω and use Cauchy-Schwarz and Young’s
inequality to obtain

ρcp‖∂tθǫ‖
2 +

1

2

d

dt
‖∇θǫ‖

2 ≤ C

(

‖∂taǫ‖
2 + |uǫ|

2

)

+
ρcp
2

‖∂tθǫ‖
2.
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Hence, integrating from 0 to t, we arrive at
∫ t

0

‖∂tθǫ‖
2dt+ ‖∇θǫ(t)‖

2 ≤ C

(

‖∇θ0‖
2 +

∫ t

0

(

‖∂taǫ‖
2 + |uǫ|

2

)

dt

)

.(14)

Since aǫ ∈ W 1,∞(I, L∞(Ω)) and uǫ ∈ Uad, using (A3), (13) and (14) we obtain the
desired result. This completes the proof. �

3. Convergence Analysis

Below, we first present the weak formulation corresponding to the (6)-(7):

min
u∈Uad

J(θ, a, u) subject to(1)

(∂ta, w) = (f+(θ, a), w),(2)

a(0) = 0,(3)

ρcp(∂tθ, v) +K(∇θ,∇v) = −ρL(∂ta, v) + (αu, v),(4)

θ(0) = θ0,(5)

for all (w, v) ∈ L2(Ω)×H1(Ω) a.e. in I, where f+(θ, a) =
1

τ(θ)(aeq(θ)−a)H(aeq(θ)−

a).
In this section, we prove that for a fixed control u ∈ Uad, solution to the problem

(8)-(11) converges to the solution of (2)-(5). Then we discuss the existence of
solution of the optimal control problem and finally, convergence of the regularized
problem as the regularized parameter tends to zero.

Theorem 3.1. Let the assumptions (A1)-(A6) hold true. Then, for a fixed u ∈ Uad,
there exists a unique solution (θ, a) to (2)-(5) and for all ǫ ∈ (0, 1), t ∈ I, the
following estimate holds:

(6) ‖a(t)− aǫ(t)‖+ ‖θ(t)− θǫ(t)‖ ≤ C(Ω, T )ǫ,

where C(Ω, T ) is a positive constant and (θǫ, aǫ) is the solution to the problem
(8)-(11) for the fixed u ∈ Uad.

Proof. From Theorem 2.1, the sequence {(θǫ, aǫ)} is uniformly bounded in H1,1 ×
W 1,∞(I, L∞(Ω)), and from Lemma 2.1, the sequence {θǫ} is uniformly bounded
in L∞(I,H1(Ω)). Therefore, using weak and weak∗ compactness arguments and
H1(Ω) being compactly imbedded in L2(Ω) , we obtain

θǫ −→ θ strongly in C(I, L2(Ω)),(7)

θǫ −→ θ weakly in H1,1,(8)

aǫ −→ a weak∗ in W 1,∞(I, L∞(Ω)).(9)

For θ ∈ C(I, L2(Ω)) and f+ being globally Lipschitz continuous, (2)-(3) has a
unique solution a (say). Now subtracting (8) from (2), putting w = a − aǫ and
using Cauchy-Schwarz’s and Young’s inequality, we obtain

d

dt
‖a− aǫ‖

2 ≤ ‖fǫ(θǫ, aǫ)− f+(θ, a)‖
2 + ‖a− aǫ‖

2.

Now integrating from 0 to t, it follows that

‖(a− aǫ)(t)‖
2 ≤ C

(
∫ t

0

‖fǫ(θǫ, aǫ)− f+(θ, a)‖
2dt+

∫ t

0

‖a− aǫ‖
2dt

)

.(10)

Note that using triangle inequality, we arrive at

‖fǫ(θǫ, aǫ)− f+(θ, a)‖
2 ≤ C

(

‖fǫ(θǫ, aǫ)− fǫ(θ, a)‖
2 + ‖fǫ(θ, a)− f+(θ, a)‖

2

)

.(11)
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For the first term on the right hand side of (11), use Remark 2.1 to obtain

‖fǫ(θǫ, aǫ)− fǫ(θ, a)‖
2 ≤ C

(

‖θǫ − θ‖2 + ‖aǫ − a‖2
)

.(12)

For the second term on the right hand side of (11), using the assumption (A2), we
find that

‖fǫ(θ, a)− f+(θ, a)‖
2

≤
1

τ
‖(aeq(θ)− a)H(aeq(θ)− a)− (aeq(θ)− a)Hǫ(aeq(θ)− a)‖2

=
1

τ

∫

Ω

(aeq(θ)− a)2(H(aeq(θ)− a)−Hǫ(aeq(θ) − a))2dx.

Let Ω1 = {x ∈ Ω : aeq − a ≤ 0 or aeq − a ≥ ǫ} and Ω2 = {x ∈ Ω : 0 < aeq − a < ǫ}.
Since Ω = Ω1

⋃

Ω2, we arrive at

‖fǫ(θ, a)− f+(θ, a)‖
2

≤
1

τ

∫

Ω1

(aeq(θ)− a)2(H(aeq(θ)− a)−Hǫ(aeq(θ) − a))2 dx

+
1

τ

∫

Ω2

(aeq(θ) − a)2(H(aeq(θ)− a)−Hǫ(aeq(θ)− a))2 dx.

From Figure 2, it follows that

‖fǫ(θ, a)− f+(θ, a)‖
2 ≤

1

τ

∫

Ω2

ǫ2dx ≤ C(Ω)ǫ2.(13)

Substituting (13) in (11), we obtain

‖fǫ(θǫ, aǫ)− f+(θ, a)‖
2 ≤ C

(

‖θǫ − θ‖2 + ‖aǫ − a‖2 + ǫ2
)

.(14)

Substituting (14) in (10), we find using Gronwall’s lemma that

‖a− aǫ‖
2 ≤ C(Ω, T )

(
∫ t

0

‖θ − θǫ‖
2dt+ ǫ2

)

Using (7), we arrive at

aǫ −→ a strongly in L∞(I, L2(Ω)).(15)

From (14), using (7), (15), we obtain as ǫ −→ 0

(16) fǫ(θǫ, aǫ) −→ f+(θ, a).

Now letting ǫ → 0 in (8)-(11) and using (7)-(9), (15), (16), we obtain the existence
of solution of (2)-(5). For proving uniqueness we proceed as follows. If possible, let
(θ1, a1) and (θ2, a2) be two different solutions of (2)-(5). Therefore, from (4), we
obtain

ρcp(∂t(θ1 − θ2), v) +K(∇(θ1 − θ2),∇v) = −ρL(f+(θ1, a1)− f+(θ2, a2), v).(17)

Setting v = θ1 − θ2 in (17), use Young’s inequality to obtain

d

dt
‖θ1 − θ2‖

2 + ‖∇(θ1 − θ2)‖
2 ≤ C

(

‖f+(θ1, a1)− f+(θ2, a2)‖
2 + ‖θ1 − θ2‖

2

)

(18)

Similarly from (2), we arrive at

d

dt
‖a1 − a2‖

2 ≤ C

(

‖f+(θ1, a1)− f+(θ2, a2)‖
2 + ‖a1 − a2‖

2

)

.(19)
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Adding (18) and (19), using Lipschitz continuity of the functions aeq, f+, integrating
from 0 to T and finally using Gronwall’s lemma, we obtain

‖θ1 − θ2‖
2 + ‖a1 − a2‖

2 ≤ 0,

which proves uniqueness.
To prove (6), subtract (8) from (2), put w = a − aǫ, use Cauchy-Schwarz and

Young’s inequality to find that

d

dt
‖a− aǫ‖

2 ≤

(

‖f+(θ, a)− fǫ(θǫ, aǫ)‖
2 + ‖a− aǫ‖

2

)

.(20)

Now integrating from 0 to t, we obtain

‖a(t)− aǫ(t)‖
2 ≤

(
∫ t

0

‖f+(θ, a)− fǫ(θǫ, aǫ)‖
2dt+

∫ t

0

‖a− aǫ‖
2dt

)

.(21)

Similarly, for a fixed u ∈ Uad and uǫ = u, subtract (10) from (4), substitute
v = θ − θǫ, integrate from 0 to t and use (20) to arrive at

‖θ(t)− θǫ(t)‖
2 +

∫ t

0

‖∇(θ − θǫ)‖
2dt

≤ C

(
∫ t

0

‖f+(θ, a)− fǫ(θǫ, aǫ)‖
2dt+

∫ t

0

‖a− aǫ‖
2dt

+

∫ t

0

‖θ − θǫ‖
2dt

)

.(22)

Adding (21) and (22), we find that

‖a(t)− aǫ(t)‖
2 + ‖θ(t)− θǫ(t)‖

2

≤ C

(
∫ t

0

‖f+(θ, a)− fǫ(θǫ, aǫ)‖
2dt+

∫ t

0

‖a− aǫ‖
2dt

+

∫ t

0

‖θ − θǫ‖
2dt

)

.(23)

Using (14), we now obtain

‖a(t)− aǫ(t)‖
2 + ‖θ(t)− θǫ(t)‖

2 ≤ C(Ω, T )

(

ǫ2 +

∫ t

0

(‖θ − θǫ‖
2 + ‖a− aǫ‖

2)dt

)

.

Using Gronwall’s lemma, we arrive at

‖a(t)− aǫ(t)‖+ ‖θ(t)− θǫ(t)‖ ≤ C(Ω, T )ǫ.(24)

This completes the proof. �

Remark 3.1. Using (24) in (22), we obtain

‖θ − θǫ‖L2(I,H1(Ω)) ≤ C(Ω, T )ǫ.

Below, we discuss existence of solution to the optimal control problem (1)-(5).
For u∗ ∈ Uad, let (θ

∗, a∗) be a solution of (2)-(5). Now, the existence of a unique
solution to the state equations (2)-(5) ensures the existence of a control-to-state
mapping u 7→ (θ, a) = (θ(u), a(u)) through (2)-(5). By means of this mapping, we
introduce the reduced cost functional j : Uad −→ R as

(25) j(u) = J(θ(u), a(u), u).
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Then the optimal control problem can be equivalently reformulated as

(26) min
u∈Uad

j(u) subject to the dynamical system (2)− (5).

Theorem 3.2. (1)-(5) has at least one solution (θ∗, a∗, u∗) ∈ X ×X × Uad.

Proof. Let l = inf
u∈Uad

j(u) and {un}n∈N ⊂ Uad be a minimizing sequence such that

(27) j(un) −→ l in R.

Since Uad is bounded, the sequence {un} is bounded uniformly in L2(I). Therefore,
one can extract a subsequence {un}(say), such that

un −→ u∗ weakly in L2(I).

Since the admissible space Uad is a closed and convex subset of L2(I), it is weakly
closed in L2(I) and hence, u∗ ∈ Uad. Corresponding to each un, we obtain (θn, an) ∈
H1,1 ×W 1,∞(I, L∞(Ω)) satisfying (2)-(5), and θn ∈ L∞(I,H1(Ω)). Therefore, we
can extract a subsequence {(θn, an)}( again say) such that

θn −→ θ∗ weakly in H1,1

θn −→ θ∗ strongly in C(I, L2(Ω))

an −→ a∗ weak∗ in W 1,∞(I, L∞(Ω))

an −→ a∗ strongly in L∞(I, L2(Ω)).

Now letting n → ∞ in the following problem

(∂tan, w) = (f+(θn, an), w) ∀w ∈ V,

an(0) = 0

ρcp(∂tθn, v) +K(∇θn,∇v) = −ρL(∂tan, v) + (αun, v) ∀v ∈ V,

θn(0) = θ0,

we obtain (θ∗, a∗) as a unique solution of (2)-(5) corresponding to the control
u∗ ∈ Uad and hence, (θ∗, a∗, u∗) is an admissible solution. Now we claim that it is
an optimal solution. Since j is lower semi-continuous,

j(u∗) ≤ lim inf
n→∞

j(un)

and using (27), we obtain

j(u∗) ≤ l.

Thus, u∗ is a minimizer of the cost functional j and (θ∗, a∗, u∗) is an optimal
solution. This completes the rest of the proof. �

3.1. Convergence of the Control Function.

Theorem 3.3. Let u∗
ǫ be the optimal control of (7)-(11), for 0 < ǫ < 1. Then,

lim
ǫ→0

u∗
ǫ = u∗ exists in L2(I) and u∗ is an optimal control of (1)-(5).

Proof: Since u∗
ǫ is an optimal control, we obtain

‖u∗
ǫ‖L2(I) ≤ M, 0 < ǫ < 1,

that is, {u∗
ǫ}0<ǫ<1 is uniformly bounded in L2(I). Thus, it is possible to extract a

subsequence say {u∗
ǫ}0<ǫ<1 in L2(I) such that

(28) u∗
ǫ −→ u∗ weakly in L2(I).
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Since the admissible space Uad is a closed and convex subset of L2(I), it is weakly
closed in L2(I) and hence, u∗ ∈ Uad. Now corresponding to each u∗

ǫ , there exists
solution (θ∗ǫ , a

∗
ǫ ) to (8)-(11). Also from Theorem 3.1, we observe that

θ∗ǫ −→ θ∗ weakly in H1,1,(29)

θ∗ǫ −→ θ∗ strongly in C(I, L2(Ω)),(30)

a∗ǫ −→ a∗ weak∗ in W 1,∞(I, L∞(Ω)),(31)

a∗ǫ −→ a∗ strongly in L∞(I, L2(Ω)).(32)

Using the arguments as in the proof of Theorem 3.1, we note that

(33) fǫ(θ
∗
ǫ , a

∗
ǫ ) −→ f+(θ

∗, a∗) strongly in L∞(I, L2(Ω)).

Now passing limit as ǫ → 0 and using (29)-(32), (33) in the following problem;

(∂ta
∗
ǫ , w) = (fǫ(θ

∗
ǫ , a

∗
ǫ ), w) ∀w ∈ L2(Ω), a.e. in I,

a∗ǫ (0) = 0,

ρcp(∂tθ
∗
ǫ , v) +K(∇θ∗ǫ ,∇v) = −ρL(∂ta

∗
ǫ , v) + (αu∗

ǫ , v) ∀v ∈ H1(Ω), a.e. in I,

θ∗ǫ (0) = θ0,

we obtain that (u∗, θ∗, a∗) is an admissible solution for the optimal control problem
(1)-(5). It now remains to show that (u∗, θ∗, a∗) is an optimal solution.

Let (ū∗, θ̄∗, ā∗) be another optimal solution of (1)-(5). Now, consider the auxil-
iary problem:

(∂taǫ, w) = (fǫ(θǫ, aǫ), w),(34)

aǫ(0) = 0,(35)

ρcp(∂tθǫ, v) +K(∇θǫ,∇v) = −ρL(∂taǫ, v) + (αū∗, v),(36)

θǫ(0) = θ0,(37)

for all (w, v) ∈ L2(Ω)×H1(Ω) and a.e. in I. Then by Theorem 2.1, there exists a
solution to (34)-(37), say (θ̄ǫ, āǫ) ∈ H1,1 ×W 1,∞(I, L∞(Ω)). Similar to (29)-(32),
we arrive at

θ̄ǫ −→ θ̄ weakly in H1,1,(38)

θ̄ǫ −→ θ̄ strongly in C(I, L2(Ω)),(39)

āǫ −→ ā weakly in W 1,∞(I, L∞(Ω)),(40)

āǫ −→ ā strongly in L∞(I, L2(Ω)).(41)

Now letting ǫ → 0 in (34)-(37), we obtain that (θ̄, ā) is a unique solution of (2)-(5)
with respect to the control ū∗. Since the solution to (2)-(5) for a fixed control is
unique, we find that θ̄ = θ̄∗ and ā = ā∗.

Since u∗
ǫ is the optimal control for (7)-(11), we have

(42) j(u∗
ǫ ) ≤ j(ū∗).

Now letting ǫ → 0 in (42) and using (28), we obtain

(43) j(u∗) ≤ j(ū∗).

(43) indicates that if ū∗ is another optimal control, then j(ū∗) will be greater than
or equal to j(u∗), which shows that u∗ is an optimal solution. The equality sign
in (43) shows the possibility of non- unique optimal control.

Next we need to show that lim
ǫ→0

‖u∗
ǫ − u‖L2(I) = 0. Since u∗

ǫ −→ u∗ weakly in

L2(Ω), it is enough show that lim
ǫ→0

‖u∗
ǫ‖L2(I) = ‖u∗‖L2(I).
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Using Theorem 3.1 and (28), we find that

lim
ǫ→0

β3

2
‖u∗

ǫ‖
2
L2(I) = lim

ǫ→0

(

J(θ∗ǫ , a
∗
ǫ , u

∗
ǫ )−

β1

2
‖a∗ǫ(T )− ad‖

2 −
β2

2
‖[θ∗ǫ − θm]+‖

2
I,Ω

)

= J(θ∗, a∗, u∗)−
β1

2
‖a∗(T )− ad‖

2 −
β2

2
‖[θ∗ − θm]+‖

2
I,Ω

=
β3

2
‖u∗‖2L2(I).

Therefore, we have lim
ǫ→0

‖u∗
ǫ‖L2(I) = ‖u∗‖L2(I) and lim

ǫ→0
‖u∗

ǫ−u∗‖ = 0. This completes

the rest of the proof. �

4. Numerical Experiment

In this section, we carry out a numerical experiment for the optimal control problem
using the non-linear conjugate gradient method [12].
The computational domain is chosen as Ω = (0, 5) × (−1, 0) and T is chosen
as 5.25. In (8)-(11), we consider the physical data as ρcp = 4.91 J

cm3K
, k =

0.64 J
cmKs

and ρL = 627.9 J
cm3 [12]. The regularized monotone functionHǫ is chosen

as

Hǫ(s) =







1 s ≥ ǫ
10( s

ǫ
)6 − 24( s

ǫ
)5 + 15( s

ǫ
)4 0 ≤ s < ǫ

0 s < 0

The initial temperature θ0 and the melting temperature θm are chosen as 20 and
1800, respectively. The pointwise data for aeq(θ) and τ(θ) are given by

θ 730 830 840 930
aeq(θ) 0 0.91 1 1
τ(θ) 1 0.2 0.18 0.05

We use a cubic spline interpolation to obtain approximations for the functions

aeq(θ) and τ(θ).The shape function α(x, y, t) = 4k1A
πD2 exp(−

2(x−vt)2

D2 )exp(k1y), where
D = 0.47cm, k1 = 60/cm,A = 0.3cm and v = 1cm/s. In the nonlinear conjugate
gradient method, tolerance is chosen as 10−7.Also, we choose β1 = 5000, β2 =
1000 and β3 = 10−3.The main aim of this experiment is to achieve a constant
hardening depth of 1mm, see Figure 3, with expected order of convergence O(ǫ) for
the approximation of (θ, a) and u. While applying the non-linear conjugate method
for the optimal control problem, we choose the initial control u0 as 1200. The finite
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Figure 3. Goal ad to be achieved for the volume fraction of austenite
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element a priori estimates developed in [10], yields the order of convergence

‖θǫ − θǫ,hk‖+ ‖aǫ − aǫ,hk‖ = O(h2 + k),

where (θǫ,hk, aǫ,hk) is the solution to (8)-(11) obtained after a finite element dis-
cretization, h and k being the space and time discretization parameters respectively.
Therefore using Theorem 3.1, we have

‖θ − θǫ,hk‖+ ‖a− aǫ,hk‖ = O(h2 + k + ǫ),

The mesh used for space discretization is much more refined near the area, where
hardness is desired. With the initial control as u0, we find that ‖a0ǫ,hk(T )− ad‖ =

0.239547, where a0ǫ,hk = 0.397440 corresponds to the austenite value for initial

control u0, which is being reduced to ‖aoptimal
ǫ,hk (T )− ad‖ = 0.069105 after applying

non-linear conjugate method. A comparison of Figure 3 and Figure 4 shows that
the goal of uniform hardening depth is nearly achieved. Also, the state constraint
that ‖θǫ,hk‖L∞(I,L∞(Ω)) < 1800 is satisfied, since ‖θǫ,hk‖L∞(I,L∞(Ω)) < 1000, see
Figure 5. Figure 6 shows the evolution of control variable (laser energy) with

 0
 1

 2
 3

 4
 5 -1

-0.8
-0.6

-0.4
-0.2

 0

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

"solution_a-299.gnuplot"

Figure 4. The volume fraction of the austenite at time t = T
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Figure 5. The temperature at time t = T

time. Figure 7 and 8 represents the L2 errors in temperature, austenite formation
and control, respectively, as a function of regularization parameter ǫ in the log-
log scale. For the purpose of implementation, the values of epsilon were taken as
{0.5, 0.10, 0.15, 0.20, 0.25}. The numerical results obtained confirms the theoretical
results obtained in Theorem 3.1.
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[5] D. Hömberg and S. Volkwein, Control of laser surface hardening by a reduced-order approach
using proper orthogonal decomposition, Math. Comput. Modelling, 37(2003) 1003-1028.
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