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LOCAL PROJECTION FINITE ELEMENT STABILIZATION FOR

DARCY FLOW

KAMEL NAFA

Abstract. Local projection based stabilized finite element methods for the

solution of Darcy flow offer several advantages as compared to mixed Galerkin

methods. In particular, the avoidance of stability conditions between finite

element spaces, the efficiency in solving the reduced linear algebraic system,

and the convenience of using equal order continuous approximations for all

variables. In this paper we analyze the pressure gradient method for Darcy

flow and investigate its stability and convergence properties.

Key Words. Stabilized finite elements, Darcy equations, convergence, error

estimates.

1. Introduction

Numerical methods for Darcy equations are traditionally-based on a primal sin-
gle field formulation for the pressure or on the mixed two field velocity-pressure
formulation. It is well known that the choice of the finite element spaces, for the
mixed formulation, is subject to the inf-sup stability condition ([10]). This has
lead to the use of classical mixed Raviart-Thomas and Brezzi-Douglas-Marini finite
elements ([10]). This approach though giving good accuracy for both velocity and
pressure ([20]) has its draw back complexity.

It has been a few years since stabilized finite element methods have been ex-
tended to the Darcy equations (see, [23], [5], [6], and [12]). Despite the fact that
such methods are well established for fluid flow problems based on Stokes-like op-
erator (see, [19], [17], [32], [7], [3], [16], [21], and [22]). In [23] a term based on the
residual of Darcy law is added to the classical Galerkin formulation making the for-
mulation stable for all combination of conforming continuous velocity-pressure ap-
proximations. Another class of stabilized methods has been derived using Galerkin
methods enriched with bubble functions (see, [1] and [2]). Alternative stabilization
techniques based on a least squares formulation have been proposed by ([5]), and
([6]).

Recently, local projection methods that seem less sensitive to the choice of pa-
rameters and have better local conservation properties were proposed for Stokes
problem (see, [14], and [4]). The two-level pressure gradient method with a projec-
tion onto a discontinuous finite element space of a lower degree defined on a coarser
grid has been analyzed in [4], [8], [25], [26], and [12]. We note that although the
two-level pressure gradient stabilization method gives a slightly bigger discretisa-
tion stencil, the drawback is not severe because the pressure-gradient unknowns
can be eliminated locally.
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In this paper we analyze the pressure gradient stabilization method for the Darcy
equations. As in [29], [30], [27] and [28], the stability of the pressure-gradient
method is proved by constructing an interpolant with additional orthogonality prop-
erty with respect to the projection space. As a result, optimal rates of convergence
are found for the velocity and pressure approximations.

2. Variational formulation

Let Ω be a bounded open region of R2 with piecewise smooth boundary ∂Ω.
Darcy’s law for the flow of a viscous fluid in a permeable medium, and conservation
of mass are written as follows

u+∇p = 0 in Ω(1)

∇ · u = f in Ω(2)

u · n = 0 on ∂Ω(3)

where, u is the Darcy velocity vector, p is the pressure, and n the outward normal
vector.

Let

V = H0(div,Ω) =
{

v ∈
[

L2(Ω)
]2

: ∇ · v ∈ L2(Ω), u · n = 0 on ∂Ω
}

Q = H1(Ω) ∩ L2
0(Ω)

where L2
0(Ω) denotes the set of square integrable functions with null average.

Define the forms

A(u, p;v, q) = (u,v)− (p,∇ · v) + (q,∇ · u)(4)

and

F (v, q) = (f,q),(5)

for all (v, q) ∈ V ×Q, with (·, ·), as usual, denoting the L2−inner product on the
region Ω.

Then, the weak formulation of (1)-(3) reads in compact notation as

A(u, p;v, q) = F (v, q) , ∀(v,q) ∈ V ×Q.(6)

A natural norm for the above problem is

‖(u, p)‖D = ‖u‖
2
0,Ω + ‖∇.u‖

2
0,Ω + ‖p‖

2
0,Ω .(7)

Let Vh and Qh be finite dimensional subspaces of V and Q, respectively. Then,
the classical Galerkin discrete problem reads

Find (uh, ph) ∈ Vh ×Qh such that:

A(uh, ph;v,q) = F (v, q) , ∀(v, q) ∈ Vh ×Qh.(8)

Note that formulation (8) is stable and accurate only for velocity and pressure
approximations satisfying the inf-sup condition (see, for example [10]). In particu-
lar, this condition rules out low equal-order C0 approximations of the pressure and
velocity.
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3. Local projection stabilization

Let ζh be a shape regular partition of the region Ω into quadrilateral elements
K (see, for example [9]). Denote by hK the diameter of element K and by h the
maximum diameter of the elements K ∈ ζh. The coarser mesh partition ζ2h of
macro-elements M is obtained by grouping sets of neighbouring four elements of
ζh. In order to guarantee stability and converge of the following method, we assume
that for elements K ⊂ M ∈ ζ2h we have hK ∼ hM .

We then define the equal order continuous finite element spaces

Vh = V ∩ (Qk
h)

2(9)

and

Qh = Q ∩Qk
h ,(10)

where, Qk
h denotes the standard continuous isoparametric finite element functions

defined by means of a mapping from a reference element. On the reference quadri-
lateral the approximation functions are polynomials of degree less than or equal
to k in each variable. We shall also use P k

h to denote the space of polynomials of
degree less than or equal to k over ζh.
Additionally, we define the pressure-gradient finite element space by

Y2h = Y 2
2h = ⊕

M∈ζ2h

(Qk−1
2h (M))2.

where, Y2h = Q
k−1,disc
2h (respectively P

k−1,disc
2h ) denote the finite element spaces of

discontinuous functions across elements of ζ2h.
Define the local projection operator πM : L2(M) → Qk−1

2h (M) by

(11) (w − πMw, φ)M = 0, ∀φ ∈ Qk−1
2h (M)

which generates the global projection πh : L2(Ω) → Y2h defined by

(12) (πhw) pM= πM (w pM ), ∀M ∈ ζ2h , ∀w ∈ L2(Ω).

The fluctuation operator κh : L2(Ω) → L2(Ω) is given by

(13) κh = I − πh

where, I denotes the identity operator on L2(Ω). For simplicity, we shall use the
same notation I , πM , πh, and κh for vector-valued functions. Thus, κh∇p is to be
inderstood as acting on each component of ∇p seperately.
Now, we are ready to introduce the stabilizing term

(14) S(p, q) =
∑

K∈ζh

αK(κh∇p,∇q)0,K =
∑

K∈ζh

αK(κh∇p, κh∇q)0,K ,

where, αK are element parameters that depend on the local mesh size.
Thus, our stabilized discrete problem reads as:

Find (uh, ph) ∈ Vh ×Qh such that:

(15) Ah(uh, ph;v,q)) = F (v, q) , ∀(v, q) ∈ Vh ×Qh.

with

(16) Ah(u, p;v, q) = A(u, p;v,q) + S(p, q).

In order to investigate the properties of the bilinear form Ah(u, p;v,q) on the prod-
uct space Vh ×Qh, we introduce the mesh dependent norm

(17) ‖(v,q)‖
2
Dh

= ‖v‖
2
0,Ω + ‖∇.v‖

2
0,Ω + ‖q‖

2
0,Ω + S(q, q).
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4. Stability

The main idea in the analysis of local projection methods is the construction of
an interpolation operator jh : H1(Ω) → Y2h with jhv ∈ H1

0 (Ω) for all v ∈ H1
0 (Ω),

satisfying the usual approximation property
(18)
‖v − jhv‖0,K + hK |v − jhv|1,K ≤ Chs

K ‖v‖s,w(K) , ∀v ∈ Hs(w(K)), 1 6 s 6 k + 1

where, w(K) denotes a certain local neighbourhood of K.
With the additional orthogonal property

(19) (v − jhv, φ) = 0 , ∀φ ∈ Y2h, ∀v ∈ H1(Ω).

Lemma 1. Let ih : H1(Ω) → Vh be an interpolation operator such that ihv ∈ H1
0 (Ω)

for all v ∈ H1
0 (Ω) with the error estimate

(20) ‖v − ihv‖0,K+hK |v − ihv|1,K ≤ Chs
K ‖v‖s,w(K) , ∀v ∈ Hs(Ω), 1 6 s 6 k+1

Further, assume that the local inf-sup condition

(21) inf
qh∈Y2h(K)

sup
vh∈Vh(K)

(vh, qh)K
‖vh‖0,K ‖qh‖0,K

> β1

holds for all K ∈ ζ2h, with a positive constant β1 independent of the mesh size.
Then, there exists an interpolation operator jh : H1(Ω) → Y2h with the properties
(18) and (19).

For the construction of the interpolation operator jh we refer to Theorem 2.2 in
([24]).

Remark 2. Note that condition (21) can be checked using Stenberg’s technique

on macro-elements M ∈ ζ2h which are equivalent to a reference element M̂. The
inf − sup condition holds if the the null space NM is such that

(22) NM =
{

qh ∈ Y2h(M) : (vh, qh)M = 0, ∀vh ∈ Vh(M) ∩H1
0 (M)

}

= {0} .

Note also that the fluctuation operator κh satisfies the approximation property

(23) ‖κhq‖0,M ≤ Chl
M |q|l,M , ∀q ∈ H l(M), ∀M ∈ ζ2h, 0 6 l 6 k.

Since, The L2- local projection πM : L2(M) → Y2h(M) becomes the identity for
the space Qk−1(M) ⊂ H l(M), and the kernel of κh contains P k−1(M) ⊂ Qk−1(M).
Then, the Bramble-Hilbert Lemma gives the approximation properties stated in
assumption (23).

Remark 3. The justification that the pair (Vh, Y2h) = (Qk
h, Q

k−1,disc
2h ), for

k > 1, satisfy (21) follows from (22) using the one-to-one property of the mapping

FM : M̂ → M combined with a positive bilinear function corresponding to the
central node of M̂ (see, [24] and [18]). Further, using the same argument we can

show that (Vh, Y2h) = (Qk
h, P

k−1,disc
2h ) gives also a stable approximation.

Assume that for elements K ⊂ M ∈ ζ2h we have hK ∼ hM . Then, the following
theorem guaranties stability and converge of the method.

Theorem 4. Let properties (18), (19), and (23) hold and the parameters αK be
such that αK = Ch2

K , for each element K ∈ ζh. Then, the bilinear form of the
local projection stabilized method satisfies

sup
(z,r)∈Vh×Qh

(z,r) 6=0

Ah((v, q) ; (z, r))

‖(z, r)‖Dh

≥ β ‖(v, q)‖Dh
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for some positive constant β independent of the mesh parameter h.

Proof. The spaces Vh and Qh do not satisfy the inf-sup condition. However, by
coarsening the mesh or taking polynomials of lower degree ( see, ([31]), and ([11])),

we obtain Q̃h ⊂ Qh such that the velocity pressure pair (Vh, Q̃h) is stable. Hence,

Fortin’s interpolant ΠFv ∈ Vh exists for all q ∈ Q̃h, and all v ∈ (H1
0 (Ω))

2 such
that

(∇ · v, q) = (∇ ·ΠFv, q), and ‖ΠFv‖1,Ω 6 ‖v‖1,Ω .(24)

Since q ∈ L2
0(Ω), then there exists w ∈ (H1

0 )(Ω))
2 such that

∇ ·w = q(25)

and

‖w‖1,Ω 6 ‖q‖0,Ω .(26)

Then, using the linearity of Ah(·, ·) we get

(27) Ah(v, q;v, q) = ‖v‖
2
0,Ω +

∑

K∈ζh

αK ‖κh∇q‖
2
0,K .

Ah(v, q;−ΠFw, q) = (v,−ΠFw)− (q,∇ · −ΠFw)

+(q,∇ · v) +
∑

K∈ζh

αK ‖κh∇q‖
2
0,K .(28)

Ah(v, q;v,∇ · v) = ‖v‖
2
0,Ω − (q,∇ · v) + (∇ · v,∇ · v)

+
∑

K∈ζh

αK(κh∇q, κh∇(∇ · v))0,K .(29)

Ah(v, q;−ΠFw,∇ · v) = (v,−ΠFw)− (q,∇ · −ΠFw) + (∇ · v,∇ · v)

+
∑

K∈ζh

αK(κh∇q, κh∇(∇ · v))0,K .(30)

Setting (z, r) = (v − δΠFw, q + δ∇ · v) we obtain

Ah(v, q; z, r) = Ah(v, q;v, q) + δAh(v, q;−ΠFw, q)

+δAh(v, q;v,∇ · v) + δ2Ah(v, q;−ΠFw,∇ · v).(31)

Hence,

Ah(v, q; z, r) = ‖v‖20,Ω +
∑

K∈ζh

‖κh∇q‖20,K + δ[(v,−ΠFw) + (q,∇ ·ΠFw)

+
∑

K∈ζh

‖κh∇q‖
2
0,K + ‖v‖

2
0,Ω + (∇ · v,∇ · v)

+
∑

K∈ζh

(κh∇q, κh∇(∇ · v))0,K ] + δ2[(v,−ΠFw) + (q,∇ · ΠFw)

+ (∇ · v,∇ · v) +
∑

K∈ζh

(κh∇q, κh∇(∇ · v))0,K ].
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i.e.

Ah(v, q; z, r) = (1 + δ)[‖v‖
2
0,Ω +

∑

K∈ζh

αK ‖κh∇q‖
2
0,K ]

+δ(1 + δ)[−(v,ΠFw) + (q,∇ ·ΠFw)

+(∇ · v,∇ · v) +
∑

K∈ζh

(κh∇q, κh∇(∇ · v))0,K ].(32)

The sixth term of (32) is estimated by taking αK = Ch2
K and using the continuity

of κh and the inverse inequality.

‖S(q,∇ · v)‖ 6





∑

K∈ζh

αK ‖κh∇q‖
2
0,K





1
2




∑

K∈ζh

αK ‖κh∇(∇.v)‖
2
0,K





1
2

6





∑

K∈ζh

αK ‖κh∇q‖20,K





1
2




∑

K∈ζh

αKC2
1h

−2
K ‖κh(∇.v)‖20,K





1
2

6 C
1
2C1





∑

K∈ζh

αK ‖κh∇q‖
2
0,K





1
2

‖κh(∇ · v)‖0,Ω

6 C
1
2C1C2 ‖∇ · v‖0,Ω





∑

K∈ζh

αK ‖κh∇q‖
2
0,K





1
2

.

where C1 is the inverse inequality constant and C2 the continuity constant of κh.

i.e.

|S(q,∇.v)| 6 C3 ‖∇.v‖0,Ω





∑

K∈ζh

αK ‖κh∇q‖
2
0,K





1
2

(33)

Thus, using Young’s inequality we obtain

S(q,∇ · v) > −C3





1

2ǫ1
‖∇ · v‖

2
0,Ω

ǫ1

2

∑

K∈ζh

αK ‖κh∇q‖
2
0,K



 .(34)

Using (26) and (30) we also have

−(v,ΠFw) > −‖v‖0,Ω ‖ΠFw‖1,Ω > −‖v‖0,Ω ‖q‖0,Ω ,(35)

and (q,∇ ·ΠFw) = (q,∇ ·w) = (q, q) = ‖q‖
2
0,Ω .

It follows that

Ah(v, q;w, r) > (1 + δ)[‖v‖
2
0,Ω +

∑

K∈ζh

αK ‖κh∇q‖
2
0,K − δ ‖v‖0,Ω ‖q‖0,Ω

+δ ‖q‖
2
0,Ω + δ(∇ · v,∇ · v) + δ

∑

K∈ζh

(κh∇q, κh∇(∇ · v))0,K ],

which by Young’s inequality gives

Ah(v, q; z, r) > (1 + δ)[(1 −
δ

2ǫ2
) ‖v‖

2
0,Ω + (1−

δǫ1C3

2
)
∑

K∈ζh

‖κh∇q‖
2
0,K

+ δ(1−
ǫ2

2
) ‖q‖

2
0,Ω + δ(1 −

C3

2ǫ1
) ‖∇ · v‖

2
0,Ω].(36)
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Where, δ, ǫ1, and ǫ2 are choosen such that ǫ1 > C3

2 , ǫ2 < 2, and

δ < min
{

2ǫ2,
2

ǫ1C3

}

.

Thus, for (v, q) ∈ Vh ×Qh we have found (z, r) such that

Ah(v, q; z, r) > C ‖(v, q)‖
2
Dh

.(37)

where, C is a positive constant defined by:
C = (1 + δ)min{1− δ

2ǫ2
, 1− δǫ1C3

2 , δ(1− ǫ2
2 ), δ(1 −

C3

2ǫ1
)}.

The norm of (z, r) = (v − δΠFw, q + δ∇ · v) is estimated by

‖(z, r)‖2Dh
6 (‖v‖0,Ω + δ ‖ΠFw‖0,Ω)

2 + (‖q‖0,Ω

+δ ‖∇ · v‖0,Ω)
2 + (‖∇ · v‖0,Ω + δ ‖∇ ·ΠFw‖0,Ω)

2

+(
∑

K∈ζh

αK ‖κh∇q‖0,K + δ ‖κh∇(∇ · v‖0,Ω)
2.(38)

Hence, Young’s inequality with the continuity of κh and the inverse inequality as
used in (33) give

‖(z, r)‖
2
Dh

6 2(1 + δ)[‖v‖
2
0,Ω + ‖ΠFw‖

2
0,Ω + ‖q‖

2
0,Ω + ‖∇ · v‖

2
0,Ω

+ ‖∇ · ΠFw‖20,Ω +
∑

K∈ζh

αK ‖κh∇q‖20,K + C2
3 ‖∇ · v‖20,Ω].(39)

which by (35), and (36), implies

‖(z, r)‖
2
Dh

6 2(1 + δ)[ ‖v‖
2
0,Ω + 3 ‖q‖

2
0,Ω + (1 + C2

3 ) ‖∇ · v‖
2
0,Ω

+
∑

K∈ζh

αK ‖κh∇q‖
2
0,K ].

It follows that

‖(z, r)‖
2
Dh

6 C4 ‖(v, q)‖
2
Dh

.(40)

Where, C4 = 2(1 + δ)max{3, 1 + C2
3}.

Thus, (37) and (40) yield the required stability result

(41) sup
(z,r)∈Vh×Qh

(z,r)6=0

Ah(v, q; z, r)

‖(z, r)‖
Dh

≥ β ‖(v, q)‖Dh
.

�

Note that the above theorem guaranties unique solvability of the stabilized dis-
crete problem (15). However, unlike the residual-based stabilization schemes ([19],
[17]), here, we do not have Galerkin orthogonality. As a consequence a consistency
estimate is given by the following lemma (see, [18], [29], and [30]).

5. Error Analysis

5.1. consistency.

Lemma 5. Assume that the fluctuation operator κh satisfies (23). Let (u, p) ∈
V×(Q∩H l+1(Ω)) be the solution of the Darcy problem (6) and (uh, ph) ∈ Vh×Qh
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the solution of the stabilized problem (15). Then, the consistency error can be
estimated by

A(u− uh, p− ph;v, q) 6 C





∑

K∈ζh

αKh2l
K |p|

2
l,K





1
2

for all (v, q) ∈ Vh×Qh.

5.2. Error estimates. As a consequence of the above stability and consistency
results we obtain the following error estimates.

Theorem 6. Assume that the solution (u, p) of (8) belongs to V ∩ (Hs+1(Ω))2 ×
(Q ∩H l+1(Ω)), 1 ≤ s, l ≤ k. Then, the following error estimate holds

‖u− uh‖0,Ω + ‖∇ · (u− uh)‖0,Ω + ‖p− ph‖0,Ω ≤ C(hs+1 ‖u‖s+1,Ω + hl+1 ‖p‖l+1,Ω).

Where, C is a positive constant independent of h.

Proof. Let ũh = jhu and p̃h = ihp be the interpolants of the velocity and pressure,
respectively. Then, Theorem 1 implies the existence of (v, q)∈ Vh ×Qh such that

‖(v, q)‖Dh
6 C(42)

with

(43) ‖ũh − uh‖0,Ω+‖∇ · (ũh − uh)‖0,Ω+‖p̃h − ph‖0,Ω 6 ‖(ũh − uh, p̃h − ph)‖Dh
.

The right hand side satisfies

‖(ũ− uh, p̃h − ph)‖Dh
6

1

β

Ah(ũh − uh, p̃h − ph;v, q) + S(p̃h − ph, q)

‖(v, q)‖Dh

6
1

β

A(ũh − u, p̃h − p;v, q) + S(p̃h − p, q)

‖(v, q)‖Dh

+
1

β

A(u− uh, p− ph;v, q) + S(p− ph, q)

‖(v, q)‖Dh

.

(44)

Consequently, the consistency estimate of Lemma 1 for the method implies

A(u− uh, p− ph;v, q) + S(p− ph, q)

‖(v, q)‖Dh

6 Chl ‖p‖l,Ω .(45)

The Galerkin terms of A(ũh −u, p̃h − p;v, q) +S(p̃h − p, q) can be estimated using
the approximation properties of jh and ih. Hence, we get

(ũh − u,v) 6 ‖ũh − u‖0,Ω ‖v‖0,Ω 6 Chs+1 |u|s+1,Ω ‖(v, q)‖Dh
,(46)

‖(p− p̃h,∇ · v)‖ 6 C ‖p− p̃h‖0,Ω ‖∇ · v‖0,Ω 6 Chl+1 ‖p‖l+1,Ω ‖(v, q)‖Dh
.(47)

The divergence of the second Galerkin term is estimated by applying the orthogo-
nality property of jh and using αK = Ch2

K .

|(∇ · (ũh − u), q)| = |(ũh − u,∇q)| = |(ũh − u, κh∇q)|

6





∑

K∈ζh

α−1
K ‖ũh − u‖

2
0,K





1
2




∑

K∈ζh

αK ‖κh∇q‖
2
0,K





1
2

6 C





∑

K∈ζh

h2
K

αK

h2s
K ‖u‖

2
s+1,K





1
2




∑

K∈ζh

αK ‖κh∇q‖
2
0,K





1
2
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i.e.

(48) |(∇.(ũh − u), q)| 6 Chs+1 ‖u‖k+1,K ‖(v, q)‖Dh
.

The stability term is estimated using the L2−stability of the fluctuation operator
κh, the approximation properties of ih and αK = Ch2

K , hence we obtain

S(p̃h − p, q) =
∑

K∈ζh

αK(κh∇(p̃h − p), κh∇q)

6





∑

K∈ζh

αK ‖κh∇(p̃h − p)‖20,K





1
2




∑

K∈ζh

αK ‖κh∇q‖20,K





1
2

6 C1





∑

K∈ζh

C2h
2
K h2l

K ‖p‖
2
l+1,w(K)





1
2

‖(v, q)‖Dh

i.e.

S(p̃h − p, q) 6 Chl+1 ‖p‖l+1,Ω ‖(v, q)‖Dh
.(49)

Thus, using (45), (46), (48), and (49) we obtain the required error estimate

‖u− uh‖0,Ω + ‖∇.(u− uh)‖0,Ω + ‖p− ph‖0,Ω ≤ C(hk+1 ‖u‖k+1,Ω + hl+1 ‖p‖l+1,Ω).

�

Remark 7. We note that because of the stability of the Qk
h − P

k−1,disc
2h approxi-

mation ([24]) the stability of (15) and the above error estimates also hold for such
approximation.

Remark 8. The above error estimates hold also for equal order stabilized methods
by local projection onto a discontinuous space defined on the same mesh (see, [18]
and [27]).

6. Conclusion

In this paper we have analyzed the local projection method for solving steady
Darcy equations. By constructing a special interpolant and have proved stability
and convergence of the method. As a result, optimal rates of of convergence were
obtained for the velocity and pressure solutions.
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