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ERROR ESTIMATES OF MORLEY TRIANGULAR ELEMENT

SATISFYING THE MAXIMAL ANGLE CONDITION

SHIPENG MAO, SERGE NICAISE, AND ZHONG-CI SHI

(Communicated by Xue-Cheng Tai)

Abstract. In this paper, we establish the convergence of a nonconforming

triangular Morley element for the plate bending problem on degenerate meshes.

An explicit bound for the interpolation error is derived for arbitrary triangular

meshes without any assumptions. The optimal convergence rates of the moment

error and rotation error are derived for triangular meshes satisfying the maximal

angle condition. Our results can also be extended to the three dimensional

Morley element presented recently in [41]. Finally, some numerical results are

reported that confirm our theoretical results.
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1. Introduction

It is well known that the regularity assumption on the meshes [13, 16], i.e.,
bounded ratio between outer and inner diameters, leads to the convergence of stan-
dard finite element methods. However the above conventional mesh condition is
a severe restriction for some particular problems of recent interests. For instance,
for problems for which the solution may have anisotropic behavior in some parts
of the domain, that is to say, the solution varies significantly only in certain direc-
tions. Such problems are frequently encountered in singularly perturbed convection-
diffusion-reaction equations where boundary or interior layers appear or problems
set on domains with edges where edge singularities may occur. In such cases, regu-
lar meshes are inappropriate or may even fail to give satisfactory results, hence the
use of degenerate (or anisotropic) meshes is recommended.

The early mathematical consideration of anisotropic elements goes back to the
seventies [11, 21]. Since the end of the eighties, anisotropic elements have been
extensively studied. In particular, we refer to Apel et al [4-9], Chen et al [15, 27-

29], Durán et al [1-3, 17, 18], Formaggia et al [19, 20], Kr̆íz̆ek [22, 23], Kunert

[24, 25], Shenk [36], Z̆enisek [43, 44] and references therein. As applications of
anisotropic finite elements, let us quote for example, the investigation of Laplace
type problems in domains with edges [5, 7, 8], layers in some singularly perturbed
problems [6, 18, 25], anisotropic phenomena in the solution of Stokes and Navier-
Stokes problems [9], and anisotropic a posteriori error estimates [20, 24, 25]. From
these papers, it is now well known that the regularity assumption on the meshes
can be considerably weakened. However, all these references are mainly restricted
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to second order problems. For fourth order problems, the plate bending problem
for example, only some rectangular elements have been considered, see [15, 33, 29].
But as far as we know, up to now, there are no results for general anisotropic
triangular plate elements.

Triangular plate elements, especially nonconforming ones are very popular. Such
elements have more advantages over their rectangular counterparts since they can
be better adapted to complex boundaries. The main goal of this paper is to provide
error estimates of the well-known nonconforming Morley triangular element under
a weak angle condition.

The Morley element is particularly attractive for fourth order problems, because
of its simple structure and since it has low degrees of freedom. However, since
the continuity of Morley element is very weak (non-C0 element), even for regular
meshes, error analysis is not easy, see [30, 26, 34, 10, 37]. In this paper, by using
special properties of the shape function space of Morley element and Poincaré in-
equality (we refer to [12, 32]), we derive an explicit bound of its interpolation error
for arbitrary triangular meshes. As usual, the consistency error for plate bending
problems involves some boundary residual integrals. The standard arguments to
bound these terms make use of scaling arguments and trace theorems, thus the
regularity assumption on the mesh can not be avoided. Our essential idea in the
estimate of the consistency error is to transform some boundary integrals to some
element’s ones, while some approximation properties are still retained. To this end,
we firstly rearrange these nonconforming terms. Then motivated by the ideas from
[2], we derive an optimal estimate of the consistency error (cf. section 3 for details)
with the aid of the lowest order Raviart-Thomas interpolation operator [35]. Fur-
thermore, the optimal convergence rate of the rotation error (discrete H1-norm) is
also obtained for convex polygonal domains. The analysis carried out in this paper
is made for two dimensional Morley elements, the extension to three dimensional
Morley elements from [41] is also valid following the same types of arguments.

The outline of the paper is as follows. In the next section, after introducing the
nonconforming Morley element approximation of the plate bending problem, we de-
rive the interpolation error for arbitrary triangular meshes. In section 3, we mainly
discuss the moment error and angular error of Morley element on meshes satisfy-
ing the maximal angle condition. In order to verify the validity of our theoretical
analysis, some numerical experiments are carried out in section 4.

2. Discretization of the model problem and the interpolation error

We consider the plate bending problem:







△2u = f, in Ω,

u =
∂u

∂n
= 0, on ∂Ω,

(2.1)

where Ω denotes a plane polygonal domain, f ∈ L2(Ω) is the applied force, n =
(nx, ny) is the unit outward normal vector along the boundary ∂Ω. The related
variational form is :

{

Find u ∈ H2
0 (Ω), such that

a(u, v) = (f, v), ∀v ∈ H2
0 (Ω),

(2.2)



ERROR ESTIMATES OF MORLEY TRIANGULAR ELEMENT 641

where

a(u, v) =

∫

Ω

A(u, v)dxdy,

A(u, v) = △u△v + (1 − σ)

(

2
∂2u

∂x∂y

∂2v

∂x∂y
−

∂2u

∂x2

∂2v

∂y2
−

∂2u

∂y2
∂2v

∂x2

)

,

(f, v) =

∫

Ω

fvdxdy,

H2
0 (Ω) = {v ∈ H2(Ω), v =

∂v

∂n
= 0, on ∂Ω}

and σ is the Poisson ratio, 0 < σ < 1
2 .

Clearly, the above bilinear form a(·, ·) is bounded and coercive :
{

|a(v, w)| ≤ (1 + σ)|v|2,Ω|w|2,Ω, v, w ∈ H2
0 (Ω)

a(v, v) ≥ (1− σ)|v|22,Ω, v ∈ H2
0 (Ω).

(2.3)

Throughout this paper, we adopt the standard conventions for Sobolev norms and
seminorms of a function v defined on an open set G:

‖v‖m,G =





∫

G

∑

|α|≤m

|Dαv|2





1

2

,

|v|m,G =





∫

G

∑

|α|=m

|Dαv|2





1

2

.

We shall also denote by Pl(G) the space of polynomials on G of degrees no more
than l.

Let Jh be an arbitrary triangulation of Ω, each element K being an open triangle
of diameter hK , and h = max

K∈Jh

hK . On this triangulation we construct the so-called

Morley element (cf. [30]):

Vh = {vh ∈ L2(Ω) : vh|K ∈ P2(K), vh is continuous at each vertex,
∫

F

[
∂vh
∂n

]ds = 0, ∀ F ⊂ ∂K,K ∈ Jh, vh(a) = 0, a ∈ ∂Ω},
(2.4)

where we denote faces of elements by F and by [v] the jump of the function v on
the faces F . For boundary faces we identify [v] with v.

We note that Vh is not a subspace of H1(Ω) (non C0 conforming element). The
discrete problem of (2.2) then reads as

{

Find uh ∈ Vh, such that

ah(uh, vh) = (f, vh), ∀vh ∈ Vh,
(2.5)

where ah(uh, vh) =
∑

K∈Jh

∫

K

A(uh, vh)dxdy.

The discrete norms are defined as

‖ · ‖m,h =

(

∑

K∈Jh

| · |2m,K

)
1

2

.

It is easy to prove that ‖ · ‖2,h is a norm of Vh, so the discrete problem (2.5) has
a unique solution by the Lax-Milgram Lemma.
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Let u and uh be the solutions of (2.1) and (2.5), respectively, by the second
Strang’s Lemma [13,16], we have

‖u− uh‖2,h ≤ C

(

inf
vh∈Vh

‖u− vh‖2,h + sup
vh∈Vh,vh 6=0

|ah(u, vh)− (f, vh)|

‖vh‖2,h

)

, (2.6)

where the first term is the approximation error and the second one is the consistency
error. Throughout this paper, the positive constant C will be used as a generic
constant, which is independent of the diameter hK and of the aspect ratio hK

ρK

,

where ρK is the supremum diameter of the inscribed circle of K. In this section
we only consider the approximation error, the consistency error will be discussed
in the next section.

The Morley’s interpolant Πh : H2(Ω) −→ Vh is defined by Πh|K = ΠK , ∀K ∈ Jh

with






ΠKu(a) = u(a), ∀ vertex a ∈ K,
∫

F

∂ΠKu

∂n
ds =

∫

F

∂u

∂n
ds, ∀F ⊂ ∂K.

(2.7)

The following result is the classical Poincaré inequality that can be found in [12,
32].
Lemma 2.1 Let G be a bounded convex domain and let w ∈ H1(G) be a function

with vanishing average, then

‖w‖0,G ≤
d

π
|w|1,G (2.8)

where d is the diameter of G.

Remark 2.1 It is very interesting to remark that the constant in the Poincaré
inequality can be taken explicitly and independent of the shape (i.e., depending only
on the diameter) for a general convex domain. However, the proof in [32] contains a
mistake, and recently [12] gave a modified proof, fortunately, the optimal constant
d
π in the Poincaré inequality remains valid.

Now, we will derive the optimal interpolation error estimate under arbitrary
triangular meshes.
Theorem 2.1 Let u ∈ H3(Ω), then there holds

inf
vh∈Vh

‖u− vh‖2,h ≤ ‖u−Πhu‖2,h ≤
2

π
h|u|3,Ω. (2.9)

Proof. We only need to prove the following result

|u−ΠKu|2,K ≤
2

π
hK |u|3,K , ∀K ∈ Jh. (2.10)

Firstly, let us consider α = (2, 0), denote the unit tangent vector to ∂K by s.
Since DαΠKu is constant, then by Green’s formula, the relation





∂
∂x

∂
∂y



 =





nx − ny

ny nx









∂
∂n

∂
∂s



 ,

and the definition of Morley’s interpolant, we have
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DαΠKu =
1

|K|

∫

K

DαΠKudxdy =
1

|K|

∑

F⊂∂K

∫

F

∂ΠKu

∂x
nxds

=
1

|K|

∑

F⊂∂K

∫

F

(

∂ΠKu

∂n
nx −

∂ΠKu

∂s
ny

)

nxds

=
1

|K|

∑

F⊂∂K

∫

F

(

∂u

∂n
nx −

∂u

∂s
ny

)

nxds

=
1

|K|

∑

F⊂∂K

∫

F

∂u

∂x
nxds

=
1

|K|

∫

K

Dαudxdy.

(2.11)

Therefore, (Dαu − DαΠKu) has vanishing mean value on the element K, it
follows from Lemma 2.1 that

‖Dαu−DαΠKu‖0,K ≤
hK

π
|Dαu|1,K . (2.12)

By the same argument, we can obtain the same result as (2.11) for α = (0, 2) and
α = (1, 1), which implies (2.10). The proof of the theorem is completed.

3. Error estimates

In this section, we will focus on the ideas for the estimation of the consistency
error. Let the triangulation Jh be a union of triangles satisfying the maximal angle
condition. That is to say, there is a constant σ < π (independent of h and K) such
that the maximal interior angle θ of any element K ∈ Jh is bounded by σ, i.e.,
θ < σ.

In view of (2.6), our aim is to derive an estimate for

sup
vh∈Vh

|ah(u, vh)− (f, vh)|

‖vh‖2,h
.

If we start in the usual way, the well known result [26, 37, 38] gives

ah(u, vh) = −
∑

K∈Jh

∫

K

∇△u · ∇vhdxdy + E1(u, vh) + E2(u, vh), (3.1)

where






















E1(u, vh) =
∑

K∈Jh

∫

∂K

(

△u− (1− σ)
∂2u

∂s2

)

∂vh
∂n

ds,

E2(u, vh) =
∑

K∈Jh

∫

∂K

(1− σ)
∂2u

∂s∂n

∂vh
∂s

ds.

(3.2)

The classical method to estimate E1(u, vh) and E2(u, vh) [26, 37, 38] is based on
the estimate of the following identity:

∫

F

(v − P0,F v)(w − P0,Fw)ds, F ⊂ ∂K, v, w ∈ H1(K), (3.3)

where P0,F v = 1
|F |

∫

F vds, together with the coordinate transformation, through

∂K → ∂K̂ → K̂ → K, interpolation theory and trace theorem. But with this
method, the regularity assumption on the mesh can not be avoided. Hence we
rearrange the nonconforming term ah(u, vh)− (f, vh) in the following way:
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Lemma 3.1 Let v ∈ H1
0 (Ω), then we have

ah(u, vh)− (f, vh) =

4
∑

i=2

Ri(u, vh) +R1(u, vh, v) +R5(f, vh, v), (3.4)

where










































































R1(u, vh, v) = −
∑

K∈Jh

∫

K

∇△u · ∇(vh − v)dxdy,

R2(u, vh) = −(1− σ)
∑

K∈Jh

∫

∂K

curl

(

∂u

∂x

)

· n
∂vh
∂y

ds,

R3(u, vh) = (1 − σ)
∑

K∈Jh

∫

∂K

curl

(

∂u

∂y

)

· n
∂vh
∂x

ds,

R4(u, vh) =
∑

K∈Jh

∫

∂K

△u∇vh · nds,

R5(f, vh, v) = −(f, vh − v),

(3.5)

with the curl operator defined as

curlφ =

(

−
∂φ

∂y
,
∂φ

∂x

)

.

Proof. The proof is based on Green’s formula. By the equation (2.1) we can derive
∫

Ω

fvdxdy =

∫

Ω

△2uvdxdy = −

∫

Ω

∇△u · ∇vdxdy, ∀v ∈ H1
0 (Ω), (3.6)

together with
∫

K

△u△vh = −

∫

K

∇△u · ∇vhdxdy +

∫

∂K

△u∇vh · nds, (3.7)

and
∫

K

(

2
∂2u

∂x∂y

∂2vh
∂x∂y

−
∂2u

∂x2

∂2vh
∂y2

−
∂2u

∂y2
∂2vh
∂x2

)

dxdy

=

∫

∂K

∂2u

∂x∂y

∂vh
∂y

nxds−

∫

∂K

∂2u

∂x2

∂vh
∂y

nyds

+

∫

∂K

∂2u

∂x∂y

∂vh
∂x

nyds−

∫

∂K

∂2u

∂y2
∂vh
∂x

nxds

= −

∫

∂K

curl

(

∂u

∂x

)

· n
∂vh
∂y

ds+

∫

∂K

curl

(

∂u

∂y

)

· n
∂vh
∂x

ds,

(3.8)

we can complete the proof.
The following theorem contains the main results of this paper.
Theorem 3.2 Let Jh satisfy the maximal angle condition and suppose that

f ∈ L2(Ω) and that the solution u ∈ H2
0 (Ω) of (2.2) has the additional regularity

u ∈ H3(Ω), then we have

‖u− uh‖2,h ≤ Ch (|u|3,Ω + h‖f‖0,Ω) . (3.9)

Moreover if the domain Ω is a convex polygonal domain, then for a data f ∈ L2(Ω),
the solution u ∈ H2

0 (Ω) of (2.2) satisfies u ∈ H3(Ω) and we further have

‖u− uh‖1,h ≤ Ch2 (|u|3,Ω + h‖f‖0,Ω) . (3.10)
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Proof. We firstly prove (3.9). In view of (2.6) and (3.4), one only needs to bound the
different terms of (3.5). Taking v = Π1vh in (3.4), where Π1 is the usual interpolant
of conforming linear finite element, we have

R1(u, vh, v) ≤
∑

K∈Jh

‖∇△u‖0,K |vh −Π1vh|1,K ≤ Ch|u|3,Ω‖vh‖2,h (3.11)

and

R5(f, vh, v) ≤
∑

K∈Jh

‖f‖0,K‖vh −Π1vh‖0,K ≤ Ch2‖f‖0,Ω‖vh‖2,h. (3.12)

Note that we have used the anisotropic interpolation result of linear conforming
element (cf. [4], [11], [21]) in the inequality (3.11).

Now we come to the estimate of R2(u, vh), which involves some boundary in-
tegrals. The first objective of the method is to avoid the usage of some trace
theorems. The basic idea is to subtract a constant function in every boundary
integral and then transform them to some elementwise integrals, while some ap-
proximation properties are still retainable. To this end, and motivated by [2], we
introduce the interpolant of the lowest order H(div) element RT (cf. [35]), which
is defined as

∫

F

(v−RT(v)) · nds = 0, ∀F ⊂ ∂K,K ∈ Jh (3.13)

on every element K and F are the three edges of K. It is clear that RT
(

curl
(

∂u
∂x

))

make sense. Moreover, from the definition of RT
(

curl
(

∂u
∂x

))

, we know that

RT
(

curl
(

∂u
∂x

))

· n is a constant vector along each edge, which is continuous across
the edges of elements and vanishes on the boundary of Ω, together with the fact
that

∫

F
[∂vh∂y ]ds =

∫

F

([

∂vh
∂n

]

ny +
[

∂vh
∂s

]

nx

)

ds = 0, so we can derive

R2(u, vh)

= −(1− σ)
∑

K∈Jh

∫

∂K

[

curl

(

∂u

∂x

)

−RT

(

curl

(

∂u

∂x

))]

· n
∂vh
∂y

ds

= −(1− σ)
∑

K∈Jh

∫

∂K

[

curl

(

∂u

∂x

)

−RT

(

curl

(

∂u

∂x

))]

· n

(

∂vh
∂y

− P0,K
∂vh
∂y

)

ds

= −(1− σ)
∑

K∈Jh

∫

K

−div

[

RT

(

curl

(

∂u

∂x

))](

∂vh
∂y

− P0,K
∂vh
∂y

)

dxdy

− (1− σ)
∑

K∈Jh

∫

K

[

curl

(

∂u

∂x

)

−RT

(

curl

(

∂u

∂x

))]

∇

(

∂vh
∂y

)

dxdy,

(3.14)

where the div operator is defined as divv = ∂v1
∂x + ∂v2

∂y and P0,K : L1(K) −→ P0(K)

is the averaging operator on the element K which preserves polynomials of degree
zero and is defined as P0,Kv = 1

|K|

∫

K
vdxdy.
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Thanks to the fact that div
[

RT
(

curl
(

∂u
∂x

))]

is constant function and the error
estimate of the interpolation of RT has been derived in [2], we have

R2(u, vh) = C
∑

K∈Jh

∫

K

[

curl

(

∂u

∂x

)

−RT

(

curl

(

∂u

∂x

))]

∇

(

∂vh
∂y

)

dxdy

≤ C
∑

K∈Jh

∥

∥

∥

∥

curl

(

∂u

∂x

)

−RT

(

curl

(

∂u

∂x

))∥

∥

∥

∥

0,K

∣

∣

∣

∣

∂vh
∂y

∣

∣

∣

∣

1,K

≤ C
∑

K∈Jh

hK

∣

∣

∣

∣

curl

(

∂u

∂x

)∣

∣

∣

∣

1,K

∣

∣

∣
vh

∣

∣

∣

2,K

≤ Ch
∣

∣u
∣

∣

3,Ω

∥

∥vh
∥

∥

2,h
.

(3.15)
Similarly, we can prove that

R3(u, vh) ≤ Ch
∣

∣u
∣

∣

3,Ω

∥

∥vh
∥

∥

2,h
. (3.16)

Concerning R4(u, vh), since the Morley interpolant reproduces both the normal
derivative (c.f. (2.4)) and the tangential derivative as used in (2.11), following the
same idea, it can be estimated as

R4(u, vh) =
∑

K∈Jh

∫

∂K

△u(∇vh −RT(∇vh)) · nds

=
∑

K∈Jh

∫

∂K

(△u− P0,K△u)(∇vh −RT(∇vh)) · nds

=
∑

K∈Jh

∫

K

(△u− P0,K△u)(△vh − P0,K(△vh))dxdy

+
∑

K∈Jh

∫

K

∇△u(∇vh −RT(∇vh))dxdy

=
∑

K∈Jh

∫

K

∇△u(∇vh −RT(∇vh))dxdy

≤ Ch|u|3,Ω‖vh‖2,h,

(3.17)

where we have used the fact that
∫

F [RT(∇vh)) ·n]ds = 0 on the first line of (3.17).
A collection of (3.11)-(3.17) and Theorem 2.1 implies (3.9).
Now, we are in a position to prove (3.10). To this end, we adopt the technique

developed in [37]. Set e = u− uh and let

g = −△(Π1(Πhe)), in H−1(Ω). (3.18)

Consider the following auxiliary variational problem:

{

Find φ ∈ H2
0 (Ω), such that

a(φ, v) =< g, v >, ∀v ∈ H2
0 (Ω).

(3.19)

When Ω is a convex polygonal domain, we have the regularity φ ∈ H3(Ω) as well
as the estimate [14, Theorem 2]

‖φ‖3,Ω ≤ C‖g‖−1,Ω. (3.20)
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Let D(Ω) be the linear space of infinitely differentiable functions, with compact
support in Ω. By Green’s formula, there holds

< g, v > = − < △(Π1(Πhe)), v >

=

∫

Ω

∇(Π1(Πhe))∇vdxdy, ∀v ∈ D(Ω).
(3.21)

Since D(Ω) is dense in H1
0 (Ω), the above Green’s formula is still valid for any

v ∈ H1
0 (Ω). Noticing that Π1(Πhe) ∈ H1

0 (Ω), we have

| < g, v > | ≤ |Π1(Πhe)|1,Ω|v|1,Ω, (3.22)

< g,Π1(Πhe) >= |Π1(Πhe)|
2
1,Ω. (3.23)

Then
‖φ‖3,Ω ≤ C‖g‖−1,Ω

= C sup
v∈H1

0
(Ω),v 6=0

< g, v >

|v|1,Ω
≤ C|Π1(Πhe)|1,Ω.

(3.24)

On the other hand,

|Π1(Πhe)|
2
1,Ω =< g,Π1(Πhe) >=< △2φ,Π1(Πhe) >

= −

∫

Ω

∇△φ · ∇(Π1(Πhe))dxdy

=
∑

K∈Jh

∫

K

∇△φ · ∇(Πhe−Π1(Πhe))dxdy

+
∑

K∈Jh

∫

K

∇△φ · ∇(Πhe)dxdy

= A1 +A2.

(3.25)

By virtue of (3.9) and the interpolation result (2.9), we get that

‖Πhe‖2,h = ‖Πhu− uh‖2,h

≤ ‖u− uh‖2,h + ‖Πhu− u‖2,h

≤ Ch (|u|3,Ω + h‖f‖0,Ω) .

(3.26)

Then A1 can be estimated as

A1 =
∑

K∈Jh

∫

K

∇△φ · ∇(Πhe−Π1(Πhe))dxdy

≤
∑

K∈Jh

‖∇△φ‖0,K‖∇(Πhe−Π1(Πhe))‖0,K

≤ Ch|φ|3,Ω‖Πhe‖2,h

≤ Ch2|φ|3,Ω (|u|3,Ω + h‖f‖0,Ω) .

(3.27)

In view of (3.7) and (3.8), and after some rearrangements, A2 can be written as

A2 =
∑

K∈Jh

∫

K

∇△φ · ∇(Πhe)dxdy

= −ah(φ,Πhe) +

4
∑

i=2

Ri(φ,Πhe).

(3.28)
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The terms Ri(φ,Πhe), i = 2, 3, 4 can be bounded in the same way as (3.15)-(3.17),
which leads to

∣

∣

∣

∣

∣

4
∑

i=2

Ri(φ,Πhe)

∣

∣

∣

∣

∣

≤ Ch|φ|3,Ω‖Πhe‖2,h

≤ Ch2|φ|3,Ω (|u|3,Ω + h‖f‖0,Ω) .

(3.29)

Now, let us consider ah(φ,Πhe), which is decomposed as

ah(φ,Πhe) = ah(φ,Πhu− u) + ah(φ, u− uh)

= ah(φ,Πhu− u) + ah(φ−Πhφ, u − uh) + ah(Πhφ, u − uh)

= A21 +A22 +A23.

(3.30)

By the definition of ah(·, ·), and thanks to the fact that (see (2.11))

DαΠhu = P0,K(Dαu), ∀α, |α| = 2,

we can derive that

A21 = ah(φ,Πhu− u) = −
∑

K∈Jh

[∫

K

(△φ− P0,K△φ)(△u− P0,K△u)dxdy

+(1− σ)

∫

K

(

2

(

∂2φ

∂x∂y
− P0,K

∂2φ

∂x∂y

)(

∂2u

∂x∂y
− P0,K

∂2u

∂x∂y

)

−

(

∂2φ

∂x2
− P0,K

∂2φ

∂x2

)(

∂2u

∂y2
− P0,K

∂2u

∂y2

)

−

(

∂2φ

∂y2
− P0,K

∂2φ

∂y2

)(

∂2u

∂x2
− P0,K

∂2u

∂x2

))

dxdy

]

≤ Ch2|φ|3,Ω|u|3,Ω.

(3.31)

For A22, it can be estimated as

A22 = ah(φ−Πhφ, u− uh)

≤ C‖φ−Πhφ‖2,h‖u− uh‖2,h

≤ Ch2|φ|3,Ω (|u|3,Ω + h‖f‖0,Ω) .

(3.32)

Due to the symmetry of ah(·, ·), (2.2) and (3.4), A23 can be written as

A23 = ah(Πhφ, u− uh)

= ah(u,Πhφ) − ah(uh,Πhφ)

= ah(u,Πhφ) − (f,Πhφ)

=

4
∑

i=2

Ri(u,Πhφ) +R1(u,Πhφ, v) +R5(f,Πhφ, v),

(3.33)

for all v ∈ H1
0 (Ω). Since

4
∑

i=2

Ri(u, φ) +R1(u, φ, v) +R5(f, φ, v) = a(u, φ)− (f, φ) = 0,
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then we have

A23 =

4
∑

i=2

Ri(u,Πhφ− φ) +R1(u,Πhφ− φ, v) +R5(f,Πhφ− φ, v)

≤ Ch (|φ|3,Ω + h‖f‖0,Ω) ‖Πhφ− φ‖2,h

≤ Ch2|φ|3,Ω (|u|3,Ω + h‖f‖0,Ω) .

(3.34)

A collection of (3.30)-(3.34) gives

ah(φ,Πhφ) ≤ Ch2|φ|3,Ω (|u|3,Ω + h‖f‖0,Ω) . (3.35)

Substituting the above inequality and (3.29) into (3.28) yields

A2 ≤ Ch2|φ|3,Ω (|u|3,Ω + h‖f‖0,Ω) . (3.36)

Putting (3.27) and (3.36) into (3.25), by (3.24), we get

|Π1(Πhe)|1,Ω ≤ Ch2 (|u|3,Ω + h‖f‖0,Ω) . (3.37)

Then recalling (3.26), we can derive

‖Πhe‖1,h ≤ ‖Πhe−Π1(Πhe)‖1,h + |Π1(Πhe)|1,Ω

≤ Ch‖Πhe‖2,h + Ch2 (|u|3,Ω + h‖f‖0,Ω)

≤ Ch2 (|u|3,Ω + h‖f‖0,Ω) .

(3.38)

Repeat applications of triangle inequality and using the fact that Π1Πhe = Π1e
yields

‖e‖1,h ≤ ‖e−Πhe‖1,h + ‖Πhe‖1,h

≤ ‖e−Π1e‖1,h + ‖Πhe−Π1(Πhe)‖1,h + ‖Πhe‖1,h

≤ Ch‖e‖2,h + Ch‖Πhu− uh‖2,h + ‖Πhe‖1,h

≤ Ch2 (|u|3,Ω + h‖f‖0,Ω) ,

(3.39)

where we have used the estimate that

‖e−Π1e‖1,h =

(

∑

K∈Jh

|e−Π1e|
2
1,K

)
1

2

≤ C

(

∑

K∈Jh

h2
K |e|22,K

)
1

2

≤ Ch‖e‖2,h,

then we obtain the desired estimate (3.10).

4. Numerical Experiments

In order to examine the numerical performance of the Morley element for narrow
triangular meshes, we carry out numerical tests to the following model problems
set on the unit square Ω = [0, 1]× [0, 1].

Model problem 1. The classical unit square plate bending problem with
clamped boundaries under a uniform load f = 1 and the Poisson ratio σ = 0.3
(cf. [40]). The analytic value of deflection at the center is 0.00126532, the an-
alytic value of bending moment at the center is 0.022905. This experiment is to
investigate the convergence for the classical plate bending problem with anisotropic
meshes.

Model problem 2. The biharnomic differential equation with f(x, y) = 8π4 cos(2πx)
cos(2πy)−8π4 cos(2πx) sin2(πy)−8π4 cos(2πy) sin2(πx) ∈ L2(Ω). It can be verified



650 S. P. MAO, S. NICAISE, AND Z. C. SHI

that the exact solution of problem (4.2) is u(x, y) = sin2(πx) sin2(πy). This experi-
ment is to investigate the optimal convergence property for the standard biharmonic
problem with anisotropic meshes.

Model problem 3. The following fourth order singular perturbation problems
taken from [31, 42]:







−ε2△2u+△u = f, in Ω,

u = g1,
∂u

∂n
= g2, on ∂Ω,

with the right hand side f(x, y) = 0 and g1, g2 chosen such that u(x, y) = (1 −
e−x(1−x)/ε)2(1 − e−y(1−y)/ε)2 (we refer to Figures 3 and 4 for some illustrations)
is the exact solution. This solution presents significant boundary layers for small
values of ε.

For the two first examples, the unit square Ω = [0, 1]× [0, 1] is subdivided in the
following two fashions:

mesh 1 : Each edge of Ω is divided into n segments with n + 1 points (1 −
cos( iπn ))/2, i = 0, 1, ..., n. The mesh obtained in this way for n = 16 is illustrated
at Figure 1, and the anisotropic triangular mesh is obtained by dividing each rect-
angular into two triangles.

mesh 2 : Each edge of Ω is divided into n segments with n+1 points sin( iπn )/2, i =

0, 1, · · · , n/2, (1−cos( iπn − π
2 ))/2, i = n/2+1, · · · , n. The mesh obtained in this way

for n = 16 is shown at Figure 2. Then the anisotropic triangular mesh is obtained
by dividing each rectangular into two triangles.

For model problem 1, the error of the deflection |(u − uh)(O)| and the error of
bending moment |(M−Mh)(O)| at the center of the unit square are shown in Table
4.1 and Table 4.2, from which the good convergence of the element for non regular
subdivisions can be seen.

For model problem 2, the numerical results of ‖u−uh‖1,h and ‖u−uh‖2,h are pre-
sented in Table 4.3 and Table 4.4, which validate the optimal order of convergence
rate of Morley elements with anisotropic meshes.

For model problem 3, we adopt the discretization method developed in [42]. The
energy norm Eh(u−uh) (cf. [42]) for regular triangular meshes (the triangular mesh
is obtained from a square partition built as the tensor product of uniform 1 − d
meshes) are computed and compared to that for Shishkin type meshes (cf. [39]).
Figure 5 shows that anisotropic meshes are more attractive than regular meshes.
This experiment is made in order to present the advantages of the use of anisotropic
meshes over regular meshes. It shows that it is worthy to give a detailed analysis
for singular perturbed problems, we refer to future works.

Table 4.1. The errors |(u − uh)(O)| and |(M −Mh)(O)| (mesh 1 )

n× n 8× 8 16× 16 32× 32 64× 64 128× 128
|(u− uh)(O)| 0.001927 0.001475 0.001316 0.001278 0.001269
|(M −Mh)(O)| 0.021239 0.022532 0.022816 0.022883 0.022810

max
K∈Jh

hK 0.27060 0.13795 0.06931 0.03470 0.01735

max
K∈Jh

{hK/ρK} 7.10973 14.35875 28.7869 57.6087 115.235
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Figure 1. The initial rectangular mesh of mesh 1 for case n = 16

Figure 2. The initial rectangular meshes of mesh 2 for case n = 16

Table 4.2. The errors |(u − uh)(O)| and |(M −Mh)(O)| (mesh 2 )

n× n 8× 8 16× 16 32× 32 64× 64 128× 128
|(u− uh)(O)| 0.001855 0.001420 0.001304 0.001275 0.001268
|(M −Mh)(O)| 0.021641 0.022622 0.022837 0.0228883 0.022901

max
K∈Jh

hK 0.27060 0.13795 0.06931 0.03470 0.01735

max
K∈Jh

{hK/ρK} 7.10973 14.35875 28.7869 57.6087 115.235
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Figure 3. The exact solution u of model 3 for case ε = 0.01
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Figure 4. The exact solution u of model 3 for case ε = 0.00001

Table 4.3: The errors ‖u− uh‖2,h and ‖u− uh‖1,h for model 2 (mesh 1 )

n× n 8× 8 16× 16 32× 32 64× 64 128× 128
‖u− uh‖1,h 0.139968 0.036008 0.009060 0.002267 0.000567

α \ 1.958691 1.990684 1.998735 1.999862
‖u− uh‖2,h 3.896537 1.918543 0.955667 0.477393 0.238585

α \ 1.022181 1.005432 1.001330 1.000675
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Figure 5. The energy norm Eh(u− uh) for case ε = 0.00001

Table 4.4: The errors ‖u− uh‖2,h and ‖u− uh‖1,h for model 2 (mesh 2 )

n× n 8× 8 16× 16 32× 32 64× 64 128× 128
‖u− uh‖1,h 0.139002 0.035949 0.009061 0.002270 0.000568

α \ 1.951098 1.988121 1.99720 1.99956
‖u− uh‖2,h 3.805938 1.874348 0.933891 0.466539 0.233167

α \ 1.021863 1.005063 1.001256 1.000637

5. Conclusion

We have analyzed the nonconforming triangular Morley element on general tri-
angular meshes for the approximation of fourth order problems. An explicit bound
for the interpolation error is derived for arbitrary triangular meshes without any
assumptions. Optimal convergence rates of the moment error and angular error
are both derived for any triangular meshes satisfying the maximal angle condition.
This result, which is obtained for plate problems, agrees with the results obtained
with triangular elements for second order problems. Note that our analysis can
be extended to three dimensional Morley element [41] following the same types of
arguments. In a forthcoming paper we will analyze the use of anisotropic Morley
elements to some fourth order elliptic singular perturbed problems [31,42].

Acknowledgments. The authors would like to thank the anonymous referees
for their valuable suggestions and corrections, which contribute significantly to the
improvement of the paper.

References

[1] G. Acosta and R. G. Durán, Error estimates for Q1 isoparametric elements satisfying a weak
angle condition, SIAM J. Numer. Anal., 38(2000), 1073-1088.

[2] G. Acosta and R. G. Durán, The maximum angle condition for mixed and nonconforming
elements: Application to the Stokes equations, SIAM J. Numer. Anal., 37(1999), 18-36.

[3] G. Acosta, Lagrange and average interpolation over 3D anisotropic meshes, J. Comp. Appl.
Math., 135(2001), 91-109.



654 S. P. MAO, S. NICAISE, AND Z. C. SHI

[4] T. Apel and M. Dobrowolski, Anisotropic interpolation with applications to the finite element
method, Computing, 47(1992), 277-293.

[5] T. Apel, Anisotropic finite element: local estimates and applications, Stuttgart Teubner,
1999.

[6] T. Apel, G. Lube, Anisotropic mesh refinement in stabilized Galerkin methods, Numer.
Math., 74(1996), 261-282.

[7] T. Apel, S. Nicaise, The finite element method with anisotropic mesh grading for elliptic
problems in domains with corners and edges, Math. Methods Appl. Sic., 21(1998), 519-549.
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[9] T. Apel, S. Nicaise, J. Schöberl, A nonconforming finite elements method with anisotropic
mesh grading for the Stokes problem in domains with edges, IMA J. Numer. Anal., 21(2001),
pp. 843-856.

[10] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementa-
tion, postprocessing and error estimates, M2AN, 19(1985),7-32.

[11] I. Babuska and A. K. Aziz, On the angle condition in the finite element method, SIAM J.
Numer.Anal., 13(1976), 214-226.
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