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NUMERICAL CALCULATION OF EFFECTIVE PERMEABILITY

BY DOUBLE RANDOMIZATION MONTE CARLO METHOD

DMITRY KOLYUKHIN AND MAGNE ESPEDAL

Abstract. The paper is devoted to solving the boundary value problems with random parame-
ters. We consider flows in a porous medium with random permeability field or random boundary
conditions. The Monte Carlo method with double randomization is suggested to compute the
statistical properties of the flow. The paper focuses on the calculating of media’s effective perme-
ability. The method is compared with a standard Monte Carlo approach. Numerical tests show
that double randomization gives high accuracy and can improve computational efficiency.
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1. Introduction

Many problems in natural science, industry and finance are naturally described
by stochastic models. For instance, such models are used in simulation of turbulent
transport [5] or evaluation of the elastic properties of composite materials [14, 25].
In [8] the transport in a random magnetic field is studied. The stochastic modeling
of bacterial population dynamics is considered in [16, 28].

The main purpose of this paper is to develop an effective numerical method
for solving the problems described by partial differential equations with random
parameters. In such equations coefficients, right side or boundary conditions can
be considered as random functions. Certainly, in statistical approach we are able
to evaluate only some averaged flow characteristics.

One of the most important applications of this method is a simulation of the flow
in porous media. In many articles permeability is approximated by random field [3,
10, 11]. In this paper we address the calculation of effective permeability used for
the solution of filtration problems [21, 22]. In particular, the developed method can
be used to study the influence of deformation bands distribution on fluid flow in
fault damage zone [13]. Several approaches are developed for solving such problems.
The small perturbation expansion method [2, 10, 27] is computationally efficient
but it is restricted by values of permeability fluctuations. The applicability of the
spectral model derived under the assumption of small hydraulic conductivity fluc-
tuations is studied in [12]. In [30] the mean and covariance of hydraulic head for
saturated flow in randomly heterogeneous porous media is calculated by using the
Karhunen-Loeve decomposition, polynomial expansion, and perturbation method.
The uncertainty analysis of flow in random porous media is explored in [17] by prob-
abilistic collocation method. These techniques have relatively low computational
cost but it also requires the Karhunen-Loeve decomposition for covariance function
of permeability random field. A vast review devoted to stochastic computations
presented in [29].
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The most general and popular approach is as follows:
1. the ensemble of realizations of the random parameter is sampled;
2. the deterministic equation for each realization of parameters is solved numer-

ically.
Then the desired averaged flow characteristics are evaluated by using ensemble

averaging. Further we will call this procedure as a ”standard approach”. Un-
fortunately, this method may be very time consuming. In this work we use the
”double randomization” method [19, 24] to overcome this difficulty. As a standard
approach, this technique also has no restrictions on the permeability distribution.
We consider a standard Monte Carlo approach and the Monte Carlo method, which
uses the double randomization for calculating the effective permeability of coarse
grid block. The method’s efficiency is compared by using two different models of
permeability distributions.

2. Formulation of the problem

We consider a steady flow through a saturated porous medium. For a stationary
2D flow, we solve the following Darcy law and the continuity equation:

(1) q = − 1

µ
K∇p,

(2) ∇ · q = 0

where q is the Darcy velocity, p is the pressure, µ is the dynamic viscosity (constant
in all the simulations, µ = 1Pa · s) and K is the permeability. Here and below in
the paper we use bold font for vector variables and matrixes.

Due to the strongly irregular structure of the media, we assume that the perme-
ability field is a random field. Then any flow characteristic ξ (flow rate, velocity,
effective permeability etc.) also becomes random function defined as solution of
(1), (2). Certainly, this approach allows us to compute averaged flow characteris-
tics only. Having the ensemble of the random fields realizations sampled according
to the correspondent distribution, we can calculate the value of the flow character-
istic ξi for each realization, as well as the effective properties by using the following
statistical averaging:

(3) Eξ = 〈ξ〉 ≈ 1

N

N
∑

i=1

ξi

where N is the number of realizations. Here 〈〉 means the ensemble averaging.
We solve equations (1), (2) in the domain Ω = {0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly}.

For simplicity, the effective permeability will be calculated by using the upscaling
procedure in one direction described in [6, 7]. On two opposite boundaries, the
pressures are fixed to constant values p(0, y) and p(Lx, y), whereas no flow boundary
conditions apply to the other borders. The flow calculated numerically allows us to
estimate the effective permeability Keff of a coarse upscaled block Ω from equation
[22]

(4) 〈q〉 = − 1

µ
〈∇p〉.
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N realizations of random field K are sampled according to the procedure described
below. Then the mean values for the flow rate and mean pressure gradient 〈∇p〉
are estimated by using an extended local upscaling method [7]. Finally, Keff is
calculated.

Though there are no restrictions on the permeability distribution in the consid-
ered methods, in numerical experiments we use two models of random permeability:
lognormal random field [9] and fractal permeability distribution [4].

2.1. Lognormal permeability. We consider the hydraulic log-permeability
f = ln(K) as a statistically homogeneous random field with gaussian distribution
N(mf , σf ). Here mf = 〈f〉 and σf is a standard deviation. In our calculations we
choose mf = 3.4012, KG = exp(mf ) = 30m2).

We assume that f is statistically homogeneous and isotropic with the spectrum
[11]:

(5) Sff (k) =
σ2
fγ

2

π(γ2 + k2)2
, k =| k | .

The corresponding covariance function

Cff (r) = 〈f(X)f(X+ r)〉 = σ2
fγrK1(γr), r =| r |, γ = 1.65/If

where k = (k1, k2) is the wave number vector, r = (r1, r2) is the position vector, K1

is the modified Bessel function, and If is the log-permeability correlation length.

2.1.1. Random field simulation. Now we present simulation formulae in the
case of scalar real-valued isotropic homogeneous gaussian random field with the
spectral tensor Sff(k) (see [24]). Let p(k) be an arbitrary density function defined
on the same wave number space. Sample k according to p(k), and let ζk and
ηk be mutually independent random variables with zero mean and unit variance,
independent of k. Generally, p(k) may be chosen as an arbitrary density function.
In this paper we take

p(k) =
Sff (k)

∫ ∫

R2 Sff(k)dk

as it is recommended in [24].
Then we construct the normal random field in the point X = (x1, x2)

f(X) = mf +
σf√
Nh

N
∑

i=1

(ζki cos(ki ·X) + βki sin(ki ·X)).

Here all of ki are sampled independently according to the density p(k).
The central limit theorem ensures, under some general assumption [15], that f

converges to a gaussian random field with the spectral tensor Sff (k), as long as
Nh → ∞. By default in our calculations Nh = 100.

2.1.2. Finite difference approximation. To construct the solution of the equa-
tions (2), (3) for a chosen sample of K(X) and satisfying the boundary conditions
like in [1] we use the following centered finite difference scheme in the interior nodes

[Ki−0.5j +Ki+0.5j +Kij−0.5 +Kij+0.5] pij −Ki−0.5j pi−1j

−Ki+0.5j pi+1j −Kij−0.5 pij−1 −Kij+0.5 pij+1

In order to check the accuracy of this approximation, we compute the error for
conservation law. In Figure 1 we show that the relative error does not exceed for
100 realization of the permeability random field. σf = 2, If = 0.5m and If = 2.5m,
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Figure 1. Relative error for the conservation law: 100 realization
of lognormal permeability random field K from 2.1.1. The relative
error does not exceed 8 · 10−11. σf = 2, If = 0.5m (solid line) and
If = 2.5m (dashed line).

〈∇p〉 = 0.1Pa ·m−1, Lx = Ly = 5m. By default, a rectangular grid contains 80×80
nodes for one upscaled block.

2.2. Fractal permeability. In the second case we consider fractal permeability
distribution. We assume that point permeability can equal one of two discrete
values (K(1) = 1m2,K(2) = 0.001m2). Let χ be fraction of the total area of media
with permeability K(2) to the total area of Ω.

2.2.1. Permeability field simulation. We use the algorithm described in [4] for
the sampling of fractal density distribution. The spatial distribution is completely
defined by the infinite set Dq = {D0 ≥ D1 ≥ ... ≥ D∞} called a multifractal
spectrum. The algorithm is based on the iterative fragmentation of Ω (for first and
second iterative steps the procedure is illustrated in Figure 2). On iteration’s step
each subdomain is divided in 4 equal parts and the corresponding probability is
defined for each resulting subdomain. As it is shown in Figure 2, if the probability
of original subdomain equals P , then the probabilities of resulting subdomains are
PP1, PP2, PP3, PP4(in random order). After n iterations Ω is devided in 4n

subdomains. The basic probabilities P1, P2, P3, P4 are defined from equations:

∑

k=1,4

P q
k

(1/2)(q−1)Dq
= 1.

Thus we need to know D1, D2, D3, D4 to define P1, P2, P3, P4. In this work we
just consider the example where P1 = 0.5, P2 = 0.25, P3 = 0.15, P4 = 0.1.

The iteration procedure can be repeated infinitely but, in our simulations, we
used a number of iterations T = 6. Thus the total grid contains 64 × 64 cells,
Lx = Ly = 1m, 〈∇p〉 = 1Pa · m−1. When the final probability distribution is
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Figure 2. Hierarchical simulation of multifractal random field.
T = 1 and T = 2.

constructed, we sample each low-pemeability sell randomly in one of the subdomains
according to the corresponding probabilities.

2.2.2. Finite volume approximation. Because of the discontinuity of perme-
ability K, the finite volume method (FVM) with a rectangular grid was used for
solving the problem. Integrating equations (1), (2) over the small volume surround-
ing each node point on a mesh and applying Gauss’s theorem, we get the following
equation:

(6)

∫ ∫

Vk

div[K∇p]dVk =

∫

Sk=Gk1

⋃
Gk2

⋃
Gk3

⋃
Gk4

K
∂p

∂n
dSk = 0.

where Vk is the volume of the k-th cell, Sk is the surface of the k-th cell, and Gk1,
Gk2, Gk3 and Gk4 represent the cell boundaries.

We approximate the flow rate through boundary Gk4 in (2) by formula [18]:

(7) Qk−0.5 =

∫

Gk4

K
∂p

∂n
dSk =

pk − pk−1
∫

[Xk−1,Xk]
1
K
dx

Hk−1k.

whereHk−1k is the length of Gk4, [Xk−1,Xk]⊥Gk4, pk, is the pressure in the middle
of the cell k and Qk−0.5 is the flow rate through Gk4.

Thus we have a so called dual-grid structure (Figure 3). The first grid consists
of a set of Sk - boundaries for control volumes Vk. The second grid consists of a set
of Xk - centers of control volumes Vk. For correct flow simulation we choose these
grids so that each cell has constant permeability in our computations. In our model
the integral on the right side of equation (7) is precisely computed. This ensures
high accuracy of this method.
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Figure 3. Method of calculation based on the finite volume
method. Sketch of k-th cell with center point Xk, volume Vk,
surface Sk and pressure pk at Xk. Gk1, Gk2, Gk3 and Gk4 are the
boundaries of the k-th cell.

3. Monte Carlo method for solving problem with random parameters

By using the approximation (7) we can construct a system of linear algebraic
equations (SLAE) to compute the pressure

(8) Lx = b.

Here L, b may depend on permeability distribution and problem boundary condi-
tions. x is vector of pressure values in the grid nodes. We assume that we have
a sufficiently good approximation of our boundary value problem constructed by
FDM or FVM. Then we should solve the constructed system of linear algebraic
equations (6), where L, b can depend on a random parameter λ (where λ may be
a random scalar variable, random vector or random field).

3.1. Statistical error and efficiency. Note that in the Monte Carlo methods,
the evaluation of the statistical error ν(ξ) is essential. The standard estimation has
the following form [23]:

(9) ν(ξ) = α(β)
σξ√
N

where α is a coefficient depending on the confident coefficient β. For example,
α(0.997) = 3 and α(0.95) = 1.96. Here σξ is a standard deviation of random value
ξ. The product

(10) S = tσ2
ξ

may be considered as computational complexity and (tσ2
ξ )

−1 may be considered as
computational efficiency. Here t is the time required for evaluating one realization
of ξ. Thus, the first method is more efficient than the second if S1 < S2.
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3.2. Solving a system of linear equations by the Monte Carlo method.

Introducing matrix A = I− L, where I is an identity matrix, we rewrite (8) as

(11) x = Ax+ c.

Consider the problem of finding the inner product J = (h,x). For example if we
take h = (0, . . . , 0, 1, 0, . . . , 0) with sole nonzero k-th element then J = xk.

We evaluate J by using the Monte Carlo method with absorbing Markov chains
ω = {ω1, ω2, ..., ωN} (or Markov chains with absorbing state [23]). The probability
distribution of Markov chains is completely defined by following probabilities:

pi > 0, if hi 6= 0,

Pij > 0, if aij 6= 0,

n
∑

i=1

pi = 1, pi ≥ 0,

Pij ≥ 0, gi = 1−
n
∑

j=1

Pij ,

where n is the size of matrix A.
We start to simulate each ωj by choosing the initial state i0 according to proba-

bilities {pi}. Then the chain will either stop in i0 with probability gi0 or will extend
to state i1 with probability Pi0i1 . Thus the Markov chain

i0 → i1 → i2 → . . . → iM

has probability
pi0Pi0i1Pi1i2 . . . PiM−1iM giM .

Define

ξ =
hi0

pi0
W

ciM
hgM

where

W =
ai0i1ai1i2 . . . aiM−1iM

Pi0i1Pi1i2 . . . PiM−1iM

.

It is known [23] that Eξ = (h,x) = J if spectral radius of matrix A is less than
unity.

For numerical solution of (1), (2) in Ω we set

pi = 0, if hi = 0,

Pij = 0, if aij = 0.

gi = 1 for nodes on the boundary with Dirichlet boundary conditions,
gi = 0 otherwise.

Due to low accuracy, described method is seldom applied for solving of the
deterministic problems. But it can be useful if:

- matrix A has a very large size
- only one component of the solution vector is interesting
- a rough estimation of the solutions is sufficient.
The basic approaches to reduce the estimation variance by using optimal proba-

bilities {pi}, {Pij} and branching Markov chains are described in [19, 20]. Another
optimization approach is to use global Monte Carlo methods where one Markov
chain may be used for the solution’s estimation in several nodes of computational
grid [20].
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3.3. Double randomization method. Now we assume that L, b in (8) depend
on a random parameter λ. If we sample one realization of λ then we can compute
J(λ) by solving the equation (8) with L(λ), b(λ). It is possible to solve (6) by one
of the standard methods or to construct the Monte Carlo estimation

Eω[ξ(ω, λ) | λ] = J(λ),

where ω is the trajectories (Markov chains) used in the Monte Carlo method.
Consider the problem of calculating the mean and covariance

J = Eλ[J(λ)], J = Eλ[J1(λ)J2(λ)].

The simplest algorithm to estimate these mathematical expectations is to solve
equation (8) N times for different realizations of the permeability random field,
then to compute N values of J(λ), and finally to estimate a mean value by using
(4). A number of Markov chains necessary for a sufficiently precise J estimation
can be rather large. Therefore, the standard methods for solving a system of linear
equations are preferable here. Nevertheless, the computational cost of this approach
may be too high.

More effective way is to use a so called method of double randomization. This
method is based on the following relations:

(12) J = Eλ[J(λ)] = EλEω[ξ(ω, λ)] = E(ω,λ)[ξ(ω, λ)],

(13) C = Eλ[J1(λ)J2(λ)] = E(ω1,ω2,λ)[ξ(ω1, λ)ξ(ω2, λ)]

where ω1, ω2 are mutually independent trajectories, sampled for the fixed λ. It is
seen from (12), (13) that it is sufficient to construct only one Markov chain for one
realization of λ to estimate J . To estimate C we should sample at least two Markov
chains for each realization of λ.

In practice it is reasonable to use the splitting method. In this modification the
N1 realizations of λ are sampled and then for each λi the N2 independent Markov
chains are constructed.

(14) J = E(ω,λ)[ξ(ω, λ)] ≈
1

N1

N1
∑

i=1

[

ξ
(N2)
i (λi)

]

=
1

N1

N1
∑

i=1





1

N2

N2
∑

j=1

ξj(λi)



 .

Here, ξ(N2) is an averaged sum of N2 independent ξ sampled for the fixed value of
λ. The optimization of this method is described in [19], however it can be difficult
to apply this method in practice. Below we will compare some results for different
N2.

4. Numerical results

In this section we compare numerically the efficiency of the standard approach
and the double randomization method.

First, we consider the lognormal permeability random field. In Table 1 we com-
pare the effective permeability calculated by both methods and their computational
complexity. By default, we use N = 103 realizations of the permeability random
field in the standard method and N1 = 4 · 103, N2 = 103 in the double random-
ization method. In the case of σf = 2, If = 0.5m we use N = 1600. Because of
a high variance of estimation in the case of , σf = 2, If = 2.5m we use N = 104,
N1 = 4 · 104, N2 = 103. As it is mentioned in [26], Keff depends on If . For very
small If values, Keff tends to KG . On the other hand, for large If values, Keff

tends to the arithmetic mean of K. It is seen from Table 1 that the double random-
ization method is more efficient even for this default parameters. For all numerical
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Table 1. Effective permeability and computational complexity of
the compared methods. S is the computational complexity given
in (10).

σf If (m) Keff , standard Keff , double S, standard S, double
approach randomization approach randomization

0.1 0.5 30.00 30.02 0.188 0.046
0.3 0.5 30.00 30.11 1.734 0.235
1 0.5 30.90 30.86 34.609 3.811
2 0.5 33.72 33.69 139.070 77.109
0.1 2.5 30.07 30.08 2.166 0.272
0.3 2.5 30.71 30.85 20.723 2.487
1 2.5 39.51 39.66 507.895 61.993
2 2.5 89.81 89.41 13402.288 4747.668

Table 2. Dependence of computational complexity S onN2. Log-
normal permeability distribution.

N2 σf Ifm t(N2, sec) σξ(N2) S, double
randomization

1 2 0.5 0.37 12.872 61.305
10 2 0.5 0.59 3.946 9.159
100 2 0.5 2.59 2.253 13.147
1000 2 0.5 22.9 1.835 77.109
1 2 2.5 0.29 44.449 572.957
10 2 2.5 0.37 26.953 268.792
100 2 2.5 1.17 24.519 703.382
1000 2 2.5 9.2 22.700 4747.668

computations in this paper we used Matlab R2008b. In standard approach the
SLAE was solved by direct solver using in Matlab by default.

In Table 2 we present the results for the computational complexity for the dif-
ferent values of N2. Here for N2 = 10, 102, 103 we use N1 = 4 · 104 and for N2 = 1
we use N1 = 105. t is the time required to estimate one value ξ(N2) (time needed
for the random field simulation and N2 Markov chains sampling). For the standard
approach σξ is the mean deviation of the effective permeability estimated with the
help of the Monte Carlo method. For double randomization method σξ(N2) is the

mean deviation of ξ(N2). It is seen from this table that the estimate’s variance de-
creases with the increase of N2. But time t grows with the increase of N2 certainly.
Thus it is possible to increase the efficiency by choosing the optimal value N2 .
This optimal value depends on the procedure for random permeability simulation.

In Table 3 we present the results for the fractal permeability distribution for
χ = 0.125. The corresponding results for the standard Monte Carlo method are
Keff = 0.624, t = 11.5sec, σξ = 0.012, S = 0.0016 (N = 4000 realization).

In the last example we look at the application of both methods for a case of
random boundary conditions. We will consider one fixed realisation of random
field K with a spectrum (5) for σf = 1, If = 1m (Figure 4, Keff = 20.42m2). On
two opposite boundaries we assume no flow boundary conditions. On two other
boundaries we set values of pressure P1 + P ′(x, y), P2 + P ′(x, y) where P ′(x, y)
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Table 3. Dependence of computational complexity S on N2.
Fractal permeability distribution. χ = 0.125, K(1) = 1m2,K(2) =
0.001m2.

N1 N2 Keff t(N2, sec) σξ(N2) S
100000 1 0.627 0.12 0.569 0.03889
40000 10 0.624 0.18 0.180 0.00583
20000 100 0.624 0.35 0.058 0.00118
10000 1000 0.624 2.44 0.012 0.00108
4000 4000 0.624 9.40 0.0145 0.00198
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Figure 4. The realization of lognormal permeability random field
K used in the example with random boundary conditions. σf = 1,
If = 1m.

- a random field with a spectrum (5) with mean deviation 0.1 and correlation
length 1m. Because K is fixed, variance V ξ(N2) linearly decreases with the growth
of N2. On the other hand, the sampling of random field P ′ on two boundaries
is much less time-consuming than the sampling of random field K in the whole
domain Ω. Therefore, time t(N2) approximately linearly grows with the growth of
N2. Thus, computing complexity S practically does not depend on N2. In this
example computing complexity of the standard Monte Carlo method S = 3.251
and computing complexity of the method of double randomization is S = 0.044.

5. Conclusion

Using of the double randomization method, can decrease the computational com-
plexity of the calculation of the effective media’s properties. The essential compu-
tational efficiency of optimization by using the spitting method is shown in this
paper. Though in our numerical examples this method was used for calculating the
effective permeability by extended local upscaling only, the most attractive feature
of this method is that it has no restrictions on calculated averaged flow character-
istics and random parameters. For example, the permeability can be assumed as
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nongaussian or statistically nonhomogeneous random field. It is also easy to extend
this method for solving random domain problems.

Numerical tests show that the double randomization Monte Carlo method can
be efficient for effective permeability estimation. For some models of the permeabil-
ity distribution the computational efficiency can be increased by several orders of
magnitude. Certainly, the efficiency of double randomization technique will depend
on the considered problem and the concrete numerical methods used for solving of
system of linear equations. There are many optimization techniques are developed
both for deterministic and for the Monte Carlo methods. But their influence on
comparative effectivity of presented approaches is out of framework of this work.
The calculation of more complex statistical characteristics by this technique requires
additional research.
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