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Abstract. A parabolic initial-boundary value problem with solutions display-

ing exponential layers is solved using layer-adapted meshes. The paper com-

bines finite elements in space, i.e., a pure Galerkin technique on a Shishkin

mesh, with some standard discretizations in time. We prove error estimates as

well for the θ-scheme as for discontinuous Galerkin in time.
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1. Introduction

We consider 1D unsteady convection-diffusion problems of the type

ut + Lu = f in Q = (0, 1)× (0, T ],(1a)

u(x, 0) = u0(x) for x ∈ [0, 1],(1b)

u(0, t) = u(1, t) = 0 for t ∈ (0, T ],(1c)

with f : (0, 1)× (0, T ] → R. Here the differential operator L is given by,

(2) Lu := −εuxx + bux + cu,

0 < ε << 1 is a small parameter and b, c : (0, 1) → R are sufficiently smooth with

(3) b(x) > β > 0 for x ∈ (0, 1).

By changing the dependent variable we may also assume that

(4) c− 1

2
bx ≥ c0 > 0 for x ∈ (0, 1).

Here β and c0 are constants. The exact solution of (1) has, in general, an exponen-
tial boundary layer at x = 1. Additionally, a discontinuity in the initial-boundary
data at the point x = 0, t = 0 would lead to an interior layer along the subchar-
acteristics through that point. We assume sufficient compatibility of the data to
exclude the existence of an interior layer, see [9].
In recent years many numerical methods have been developed to solve the corre-
sponding stationary problem on layer-adapted meshes, resulting in error estimates
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that are uniform with respect to the parameter ε, see [9]. For unsteady problems,
however, the situation is different.
Most existing papers deal with low order finite difference schemes, beginning with
[10] and the error estimate

(5) | u(xi, tj)− ui,j |≤ C(N−1 ln2N + τ)

for backward differencing in time and upwind differencing in space on a Shishkin
mesh. This result was extended in [5], [1] and [4]; in the last paper defect correction
in both space and time is applied to enhance the accuracy of the computed solution.
Concerning finite elements in space on a Shishkin mesh, we only know the pointwise
error estimates of [3] using space-time finite elements that are linear and continu-
ous in space but discontinuous in time, while additionally the streamline diffusion
stabilization in space-time is applied.
It is the aim of this paper to combine systematically finite elements in space (based
on a Galerkin technique or stabilization on a Shishkin mesh) with some standard
discretizations in time. First we shall study the θ-scheme which gives maximal
order 2 with respect to time. As a higher order scheme we decided to choose and
to analyze discontinuous Galerkin, because the analysis of higher order methods is
similar to lower order versions and discontinuous Galerkin offers the possibility to
investigate a posteriori error estimates based on standard ideas for Galerkin tech-
niques. In the numerical experiments we restricted ourselves to low order methods,
a careful numerical study of higher order methods is a task for subsequent studies.
For simplicity, we present the results for problems one-dimensional in space but we
apply only techniques which can be used in several dimensions as well.

2. The continuous problem

It is well known that for f ∈ L2(Q) and u0 ∈ L2(Ω) problem (1) has a unique
solution u ∈ L2(0, T ;H

1
0 (Ω)) with u′ ∈ L2(0, T ;H

−1(Ω)) (in our case we have
Ω = (0, 1)).
If we introduce the ε-weighted H1-norm defined by

(6) ‖v‖2ε := ε|v|21 + ‖v‖20 for v ∈ H1(Ω),

where ‖ · ‖0 defines the standard L2-norm and | · |1 the H1-seminorm respectively,
standard arguments lead us to the stability estimate (see [7], Theorem 11.1.1)

(7) sup
tǫ(0,T )

‖ u(t) ‖0 +(

∫ T

0

‖ u(t) ‖2ε dt)1/2 ≤ C ((

∫ T

0

‖ f(t) ‖20 dt)1/2+ ‖ u0 ‖0).

Therefore it is natural that we shall later prove error estimates in ”L∞(L2)”- and
”
√
εL2(H1)”-norms or their discrete analogues.

Remark 1. In [7], Proposition 11.1.1., we additionally can find an estimate for
maxtǫ(0,T ) ‖ u(t) ‖1. But, in our singularly perturbed case, it seems not possible to
follow the proof of Proposition 11.1.1 in such a way that the constants arising are
independent of ε (if moreover, ‖ u(t) ‖1 is replaced by ‖ u(t) ‖ε).�

Under certain compatibility conditions [9] there exists a classical solution of problem
(1).
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Theorem 1. Let α ∈ (0, 1), u0 ∈ C2+α(0, 1) ∩ C2[0, 1], u0(0) = 0, u0(1) = 0,
additionally

−εu′′0(0) + b(0, 0)u′0(0) + c(0, 0)u0(0) = f(0, 0)

−εu′′0(1) + b(1, 0)u′0(1) + c(1, 0)u0(1) = f(1, 0).

Let b, c und f be Hölder continuous on Q with exponent α. Then (1) has exactly
one solution in C2+α(Q).

Assuming still more compatibility to avoid interior layers, in [11] (see also [9], Chap-
ter 2, Remark 2.8) there are sufficient conditions for the validity of the estimates

(8)

∣

∣

∣

∣

∂k+mu(x, t)

∂xk∂tm

∣

∣

∣

∣

≤ C(1 + ε−ke−β(1−x)/ε)

for k +m ≤ 2. The estimate (8) implies in the one-dimensional case as well (see
[9]) the existence of an S-decomposition of the solution: u(x, t) = S(x, t) + V (x, t)
with

(9)

∣

∣

∣

∣

∂k+mS(x, t)

∂xk∂tm

∣

∣

∣

∣

≤ C and

∣

∣

∣

∣

∂k+mV (x, t)

∂xk∂tm

∣

∣

∣

∣

≤ Cε−ke−β(1−x)/ε.

For the solution decomposition in case of a higher-dimensional parabolic problem
in space see [10].
It is well known [9] that the existence of an S-decomposition in the stationary
case allows us in a relatively simple way to estimate both interpolation errors and
the error of finite element methods on S-meshes. In our analysis the solution de-
composition is used to derive estimates for the error of the Ritz projection, see
Section 3.

3. The θ-scheme for the discretization in time

For the discretization in space of (1) we use linear finite elements on a Shishkin
mesh. Denoting the corresponding finite element space by V N ⊂ H1

0 (Ω), the
semidiscrete problem is: Find uN : (0, T ] → V N such that

(
duN (t)

dt
, v) + a(uN (t), v) = (f(t), v) ∀v ∈ V N , ∀t ∈ (0, T ]

uN (0) = uN0 ,

(10)

where uN0 is an approximation of the initial condition in V N and will be specified
later. Here, the bilinear form a(·, ·) is

a(w, v) := ε(wx, vx) + (bwx + cw, v)

with a(v, v) ≥ ω‖v‖2ε for all v ∈ H1
0 (Ω), ω := min{1, c0}. The mesh is piecewise

uniform in [0, 1 − σ] and [1 − σ, 1] with the same number of mesh points in these
two subintervals and the definition

(11) σ = σ0ε lnN,

with σ0 a constant. For the discretization of the stationary problem related to (1)

LuS = f∗ in (0, 1),

uS(0) = uS(1) = 0,
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f∗ : (0, 1) → R, with linear finite elements on our Shishkin mesh, the following
error estimates are well known (see [9] for a detailed discussion and references):

(13) If σ0 ≥ 2, then ‖ uS − uNS ‖ε≤ CN−1 lnN,

(14) If σ0 ≥ 5

2
, then ‖ uIS − uNS ‖ε≤ C(N−1 lnN)2.

Here uIS denotes the linear interpolant of the stationary solution uS . The estimate
(14) implies in particular the L2 error estimate

(15) ‖ uS − uNS ‖0≤ C(N−1 lnN)2.

For the analysis of the time discretization it is useful to introduce the Ritz projection
Ru of u defined by Ru : [0, T ] → V N and

(16) a(Ru(t), v) = a(u(t), v) ∀v ∈ V N , t ∈ [0, T ].

Then, the error u(t)−Ru(t) satisfies for every t estimates of the type (13)-(15), i.e.

‖ u(t)−Ru(t) ‖ε ≤ CN−1 lnN

‖ uI(t)−Ru(t) ‖ε ≤ C(N−1 lnN)2

‖ u(t)−Ru(t) ‖0 ≤ C(N−1 lnN)2.

(17)

The proof easily follows the same argumentation as the one for (13)-(15)(see e.g.
[9]) and is based on the solution decomposition proposed.
Introduce a mesh in time that is equidistant for simplicity, with mesh width τ and
τ ·M = T . Then the θ-scheme is: Find Um ∈ V N ,m = 1, . . . ,M such that

(18) (
Um − Um−1

τ
, v) + a(Um−θ, v) = (fm−θ, v) ∀v ∈ V N , U0 = uN0

with some 0 ≤ θ ≤ 1 and the abbreviation

gm−θ := θgm + (1− θ)gm−1

for some g and gm = g(mτ), moreover fm = f(·,mτ). To analyze the θ-scheme,
let us introduce ψ := U −Ru. Then ψ satisfies the error equation

(19) (
ψm − ψm−1

τ
, v) + a(ψm−θ, v) = (Wm, v) ∀v ∈ V N

with

(20) Wm :=
(Ru)m − (Ru)m−1

τ
− (u′)

m−θ
.

Here and in the following u′ denotes the derivative in time. Next, in (19) we set
v = ψm−θ. Further, we use for θ ≥ 1/2 the inequality

(21) (ψm − ψm−1, ψm−θ) ≥ (‖ ψm ‖0 − ‖ ψm−1 ‖0) ‖ ψm−θ ‖0
and get

‖ ψm ‖0 +ωτ ‖ ψm−θ ‖ε≤‖ ψm−1 ‖0 +τ ‖Wm ‖0 .
Summation leads to

(22) ‖ ψM ‖0 +ω
∑

m

τ ‖ ψm−θ ‖ε≤‖ ψ0 ‖0 +τ
∑

m

‖Wm ‖0 .

Here ψ0 = uN0 −Ru0 is zero if we choose uN0 = Ru0. We can write Wm in the form

Wm =
(Ru− u)m − (Ru− u)m−1

τ
+

(

um − um−1

τ
− (u′)

m−θ
)
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or

Wm =
1

τ

∫ tm

tm−1

((R − I)u(s))′ds+
1

τ

∫ tm

tm−1

[

u′(s)− (u′)
m−θ

]

ds.

This gives us

‖Wm ‖0≤
{

C((N−1 lnN)2 + τ) for 1
2 < θ ≤ 1,

C((N−1 lnN)2 + τ2) for θ = 1
2

and consequently

Theorem 2. Set uN0 = Ru0. Then, the error ψ = U −Ru of the θ-scheme satisfies

(23) ‖ ψM ‖0 +ω
M
∑

m=1

τ ‖ ψm−θ ‖ε≤
{

C((N−1 lnN)2 + τ2) for θ = 1
2 ,

C((N−1 lnN)2 + τ) for θ > 1
2 .

For the error U − u itself we get a poor result because
(24)

‖ (u −Ru)M ‖0 +ω

M
∑

1

τ ‖ (u−Ru)m−θ ‖ε≤
{

C(N−1 lnN + τ2) for θ = 1
2 ,

C(N−1 lnN + τ) for θ > 1
2 .

Remark 2. Let us assume that instead of (18) we use

(Um − Um−1

τ
, v
)

+ as(U
m−θ, v) = (fm−θ

s , v),

where we replace the Galerkin scheme by some stabilization. Then a consistent
stabilization, i.e., where the exact solution u satisfies

(25) (
du

dt
, v) + as(u, v) = (fs, v),

allows the same kind of error estimation if the stabilization term is time-independent.
Again we have (19) with (20), if Ru now denotes the Ritz projection with respect
to the stabilized bilinear form.
That means, for instance, that CIP stabilization can be handled without problems
but SDFEM is less easy to deal with.�

Remark 3. In the non-singularly perturbed case it is well-known that for a problem
with irregular initial values (u0 is not very smooth) the Crank-Nicolson scheme is
not strongly A-stable which leads to non-physical oscillations. A possible alternative
is the strategy to apply first two implicit Euler steps with step size τ/2. This damped
Crank-Nicolson method has better properties then the original scheme (see [8], for
instance), but allows error estimates of the same type as the original scheme.�

4. Discontinuous Galerkin in time

First we describe the combination of a dG method in time with a Galerkin finite
element method in space to discretize the problem

(
du

dt
, v) + a(u, v) = (f, v) ∀v ∈ V = H1

0 (Ω), u(0) = u0 ∈ L2(Ω).

In the time interval (tm−1, tm) we use a finite element space Vh,m ⊂ H1
0 (Ω) of linear

elements for the discretization in space (thus on every time interval we could use a
different mesh). Moreover we define

Sq
h,τ =

{

ϕ ∈ L2(Q) : ϕ|(tm−1,tm) ∈ Pq with coefficients from Vh,m
}

,
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where Pq is the space of polynomials of degree q.
For the discontinuous functions in time we introduce the jumps at tm by

[ϕ]m := lim
t→tm+

ϕ(t)− lim
t→tm−

ϕ(t) = ϕ+
m − ϕ−

m.

Then our discretization is given by: Find U ∈ Sq
h,τ with

∑

m

∫ tm

tm−1

((U ′, ϕ) + a(U,ϕ))dt+

M
∑

2

([U ]m−1, ϕ
+
m−1) + (U+

0 , ϕ
+
0 )

=

∫ tM

0

(f, ϕ)dt + (u0,h, ϕ
+
0 )

(26)

for all ϕ ∈ Sq
h,τ . u0,h is an approximation of u0 that will be defined later.

If one introduces

(27) B(u, v) :=
∑

m

∫ tm

tm−1

((u′, v) + a(u, v))dt+

M
∑

2

([u]m−1, v
+
m−1) + (u+0 , v

+
0 ),

then integration by parts results in

(28) B(u, v) :=
∑

m

∫ tm

tm−1

(

−(u, v′) + a(u, v)
)

dt−
M−1
∑

1

(u−m, [v]m) + (u−M , v
−
M ).

The combination of (27) and (28) allows the estimate

(29) B(v, v) ≥ ‖v‖2dG with

(30) ‖v‖2dG := ω
∑

m

∫ tm

tm−1

‖v‖2εdt+
1

2
‖v+0 ‖20 +

1

2

M−1
∑

1

‖ [v]m‖20 +
1

2
‖ v−M‖20.

Next, denote by πu ∈ Sq
h,τ some interpolant of u in space and time that will be

defined later. We are interested in estimating U − πu because then to bound the
error itself we have only to estimate the interpolation error. The exact solution u
satisfies

∑

m

∫ tm

tm−1

{(u′, ϕ) + a(u, ϕ)}dt =
∫ tM

0

(f, ϕ)dt,

or (again integration by parts)

∑

m

∫ tm

tm−1

{

(−u, ϕ′) + a(u, ϕ)
}

dt+ (uM , ϕ
−
M )−

∑

m

(u−m, [ϕ]m)

− (u0, ϕ
+
0 ) =

∫ tM

0

(f, ϕ)dt.

It follows that we have the error equation

B(U − πu, ξ) =
∑

m

∫ tm

tm−1

{−(u− πu, ξ′) + a(u − πu, ξ)}dt

+ ((u− πu)−M , ξ
−
M )−

∑

m

((u − πu)−m, [ξ]m)

+ (u0,h − u0, ξ
+
0 ).

(31)

Based on (29) the choice ξ := U − πu allows us to estimate ‖U − πu‖dG if one is
able to bound the right-hand-side of (31) by some suitable quantity multiplied by
‖ξ‖dG.
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Remark 4. (A duality trick)
A second possibility for error estimation is the following (see [12]): Let
ψ = (U − πu)M and define the auxiliary function Z ∈ Sq

h,τ such that

(32) B(ϕ,Z) = (ϕM , ψ)

for all ϕ ∈ Sq
h,τ . With ϕ := U − πu we get for the L2 error at the time t = tM = T

(33) ‖(U − πu)M‖20 = B(U − πu, Z);

again we can reformulate B(U − πu, Z) as in (31). The final error estimate is the
result of two steps:

• estimate B(U−πu, Z) by terms containing the interpolation error multiplied
by some norm ||| · ||| of Z

• prove the a priori estimate |||Z||| ≤ C‖ψ‖0 for the solution of (32) with
respect to the norm ||| · |||.

We remark that Z solves a backward homogeneous problem in time.�

If now u0,h is the L2 projection of u0, one term of (31) vanishes. Therefore we
assume this for the rest of the paper. Next we have to answer the crucial question:
How to choose the interpolant of u in space and time?
Let us first study the case q = 0, i.e., piecewise constant approximation in time. If
we now denote by Ru the Ritz projection with respect to a(·, ·), then the choice

(34) πu
∣

∣

(tm−1,tm)
=

1

τ

∫ tm

tm−1

(Ru)(t)dt

leads to the simplified error equation

(35) B(U − πu, ξ) = ((u− πu)−M , ξ
−
M )−

M−1
∑

m=1

((u − πu)−m [ξ]m).

The definition (30) of the dG norm, inequality (29) and Cauchy-Schwarz result in

(36) ‖U − πu‖dG ≤ C
{

‖(u− πu)−M‖20 +
M−1
∑

m=1

‖(u− πu)−m‖20
}1/2

.

Remark 5. The duality trick also leads to (36) (but we get an error estimate only
for ‖(U − πu)M‖0) because Z satisfies

(37) ‖Z−
M‖20 +

M−1
∑

m=1

‖[Z]m‖20 ≤ ‖ψ‖20.

For sharpened estimates for Z see the next remark.�

To estimate the right-hand side of (36) we observe that

(38) u(t−m)− (πu)(t−m) = u(t−m)− u(t̃m) + u(t̃m)−Ru(t̃m)

because (34) implies πu|(tm−1,tm) = Ru(t̃m) for t̃m ∈ (tm−1, tm).
On a Shishkin mesh with linear elements we obtain consequently

Theorem 3. Set u0,h to be the L2 projection of u0. Then, the error U −πu of our
discretization method can be estimated by

(39) ‖U − πu‖dG ≤ C
{

τ2 + (N−1 lnN)4 +
(N−1 lnN)4 + τ2

τ

}1/2
.
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Here we used

∑

m

∫

Ω

(u(t−m)− u(t̃m))2 =
∑

m

∫

Ω

(

∫ t−
m

t̃m

ut)
2 ≤ τ

∫

Ω

∫ T

0

u2t .

Remark 6. : In the case of a symmetric bilinear form, in [12] we can find a
stability estimate that sharpens (37), namely

(40)

M−1
∑

m=1

‖[Z]m‖0 ≤ C L ‖ψ‖0

(here L depends logarithmically on the mesh in time). Inequality (40) allows us to
estimate the L2 error of (U − πu)M ) by

sup
m

‖(U − πu)−m‖0,

consequently for a symmetric problem on a standard mesh the resulting L2 error
is proportional to τ + h2 instead of {(τ2 + h4)/τ}1/2 which we got before. For our
non-symmetric problem it is an open question whether or not improved estimates
can be derived. �

To estimate the error U − u we use the estimate (39) and have, additionally, to
estimate u− πu. The second part of the norm (30) is easily bounded with the help
of (38) and the error estimates for the Ritz projection

1

2
‖(u− πu)+0 ‖20 +

1

2

M−1
∑

1

‖ [u− πu]m‖20 +
1

2
‖ (u− πu)−M‖20

≤ C
{

τ + (N−1 lnN)4 +
(N−1 lnN)4

τ

}

.

We have still to bound

∑

m

∫ tm

tm−1

‖u− πu‖2ε dt ≤ 2
∑

m

∫ tm

tm−1

(‖u(t)− u(t̃m)‖2ε

+ ‖u(t̃m)−Ru(t̃m)‖2ε)dt.
This gives an error contribution of the order

(41) O(τ1/2 +N−1 lnN +
1

τ1/2
(N−1 lnN)2).

Now we start to consider dG methods with q > 0. We define our interpolant πu
now in two steps (see [12, 2]):

• ũ is the piecewise polynomial in t of degree q with

ũ(t−m) = u(tm),

∫ tm

tm−1

(ũ(t)− u(t))tldt = 0 for l ≤ q − 1.

• πu is the L2−projection of ũ onto our finite element space.

Then, we get the error equation

(42) B(ξ, ξ) =
∑

m

∫ tm

tm−1

a(u− πu, ξ)dt−
M−1
∑

m=1

((u− πu)−m, [ξ]m).

We use the splitting

u− πu = u− ũ+ ũ−Πũ (Π denotes the L2 projection in space).
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It is known that ũ approximates u with an accuracy of order O(τq+1), but we have
to keep in mind (compare (8)) that derivatives of ũ with respect to x behave like
derivatives of u.
What about the L2 projection of ũ on a Shishkin mesh? First, L2 stability shows
that

(43) ‖u−Πu‖0 ≤ C ‖u− uI‖0 ≤ C(N−1 lnN)2

Moreover, in 1D the L2 projection is L∞ − L∞ stable:

(44) ‖u−Πu‖∞ ≤ C ‖u− uI‖∞ ≤ C (N−1 lnN)2,

(for the two-dimensional case see [6]).
The error in the H1-seminorm satisfies

(45) ε1/2 | u−Πu |1≤ C N−1(lnN)3/2.

For the proof we introduce the standard interpolant uI of u and use the triangle
inequality

ε1/2 | u−Πu |1≤ ε1/2 | u− uI |1 +ε1/2 | uI −Πu |1 .
The first term is already of the desired order. The second term is estimated using an
inverse inequality on both the coarse and the fine parts of the mesh and introducing
the L∞-norm:

|uI −Πu|1,Ω̃ ≤ C

hΩ̃
(meas Ω̃)1/2‖uI −Πu‖∞,Ω̃.

Applying the triangle inequality again the estimate (45) follows.
Therefore, in the one-dimensional case we have all the ingredients needed to esti-
mate the right-hand side of (42). First we get

(46) |
M−1
∑

m=1

((u − πu)−m, [ξ]m)| ≤ C(
(N−1 lnN)2

τ1/2
+ τq+1/2)‖ξ‖dG.

Next we have to estimate

(47)
∑

m

∫ tm

tm−1

a(u− ũ, ξ)dt and
∑

m

∫ tm

tm−1

a(ũ−Πũ, ξ)dt.

In the first term we use the smallness of u−ũ but have difficulties with the convective
term. Integration by parts yields on (tm−1, tm)

(48) | (u − ũ,▽ξ) |≤ C(Nτq+1 + τq+1 ln1/2N)‖ξ‖ε.
In the estimate of the second term we use the approximation properties of the
L2−projection and the standard arguments on Shishkin meshes:

(49) | a(ũ−Πũ, ξ) |≤ C N−1(lnN)3/2 ‖ξ‖ε.
The final estimate follows from (46), (48), (49).

Theorem 4. Set u0,h to be the L2 projection of u0. Then, the error U −πu of our
discretization method can be estimated by

‖U − πu‖dG ≤ C
(

N−1(lnN)3/2 +
(N−1 lnN)2

τ1/2
+ τq+1/2 +Nτq+1

)

.

Remark that for a stabilization technique instead of pure Galerkin one can hope to
replace the last term Nτq+1 by the expression N1/2τq+1.
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5. Numerical experiments

We consider the initial-boundary value problem

ut(x, t) − εuxx(x, t) + ux(x, t) + u(x, t) = f(x, t) in Ω := (0, 1)× (0, 1]

u(0, t) = te−1/ε + 1 + t2

u(1, t) = t+ t2

u(x, 0) = 1− x2

(50)

with the right-hand side

f(x, t) = 2ε− 2x+ 2t+ 1− x2 + t2 + te−(1−x)/ε + e−(1−x)/ε

and the exact solution

u(x, t) = te−(1−x)/ε + 1− x2 + t2.

The same example was studied in [3] using a streamline diffusion scheme, here
we will use linear finite elements on a Shishkin mesh in space and the θ-scheme
and respectively the discontinuous Galerkin scheme for the discretization on an
equidistant mesh in time.
We solve the problem for various ε and N , the number of intervals in space. M
depends in our calculations on N . The convergence rates pεN are computed by

(51) pεN = (lnEε
N,M(N) − lnEε

2N,M(2N))/ ln 2,

where Eε
N,M(N) is the discretization error in the corresponding norm as described

below.

5.1. The θ-scheme. We will first examine the implicit Euler scheme and set
θ = 1. For the error one gets from (24) and for some N

(52) Eε
N,M(N) =‖ (U − u)M ‖0 +ω

M
∑

1

τ ‖ (U − u)m−θ ‖ε≤ C(N−1 lnN +M−1).

We set ω = 1 and τ = 1/M . We choose M to be the greatest integer lower bound
of N/ lnN and compute the order of convergence in space according to (51). The
errors and the corresponding convergence rates are displayed in Tables 1 and 2.

ε N=8 N=16 N=32 N=64 N=128 N=256

1.56250e-2 2.7937e-1 1.8944e-1 1.1626e-1 7.1401e-2 4.1964e-2 2.4020e-2
3.90625e-3 2.8258e-1 1.9168e-1 1.1764e-1 7.2304e-2 4.2508e-2 2.4334e-2
9.76562e-4 2.8345e-1 1.9240e-1 1.1801e-1 7.2518e-2 4.2637e-2 2.4409e-2
2.44141e-4 2.8367e-1 1.9261e-1 1.1815e-1 7.2583e-2 4.2669e-2 2.4428e-2
6.10352e-5 2.8373e-1 1.9266e-1 1.1819e-1 7.2611e-2 4.2681e-2 2.4433e-2
1.52588e-5 2.8374e-1 1.9268e-1 1.1820e-1 7.2621e-2 4.2686e-2 2.4435e-2
3.81470e-6 2.8375e-1 1.9268e-1 1.1821e-1 7.2623e-2 4.2688e-2 2.4436e-2
9.53674e-7 2.8375e-1 1.9268e-1 1.1821e-1 7.2624e-2 4.2689e-2 2.4436e-2
2.38419e-7 2.8375e-1 1.9268e-1 1.1821e-1 7.2624e-2 4.2689e-2 2.4437e-2
5.96046e-8 2.8375e-1 1.9268e-1 1.1821e-1 7.2624e-2 4.2689e-2 2.4437e-2
1.49012e-8 2.8375e-1 1.9268e-1 1.1821e-1 7.2624e-2 4.2689e-2 2.4437e-2
3.72529e-9 2.8375e-1 1.9268e-1 1.1821e-1 7.2624e-2 4.2689e-2 2.4437e-2

Table 1. Errors for the implicit Euler scheme
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ε N=8 N=16 N=32 N=64 N=128

1.56250e-2 5.6043e-1 7.0441e-1 7.0334e-1 7.6678e-1 8.0494e-1
3.90625e-3 5.5994e-1 7.0435e-1 7.0221e-1 7.6634e-1 8.0476e-1
9.76562e-4 5.5900e-1 7.0520e-1 7.0249e-1 7.6621e-1 8.0468e-1
2.44141e-4 5.5855e-1 7.0508e-1 7.0289e-1 7.6643e-1 8.0466e-1
6.10352e-5 5.5843e-1 7.0497e-1 7.0286e-1 7.6661e-1 8.0477e-1
1.52588e-5 5.5839e-1 7.0494e-1 7.0281e-1 7.6660e-1 8.0485e-1
3.81470e-6 5.5838e-1 7.0493e-1 7.0280e-1 7.6658e-1 8.0484e-1
9.53674e-7 5.5838e-1 7.0492e-1 7.0280e-1 7.6658e-1 8.0483e-1
2.38419e-7 5.5838e-1 7.0492e-1 7.0279e-1 7.6657e-1 8.0483e-1
5.96046e-8 5.5838e-1 7.0492e-1 7.0279e-1 7.6657e-1 8.0483e-1
1.49012e-8 5.5838e-1 7.0492e-1 7.0279e-1 7.6657e-1 8.0483e-1
3.72529e-9 5.5838e-1 7.0492e-1 7.0279e-1 7.6657e-1 8.0483e-1

Table 2. Convergence rates in space for the implicit Euler scheme

As stated in (52) we get almost first order convergence in space and first order
convergence in time because of the choice of M .
For the Crank Nicolson scheme, i.e. θ = 1/2, we have

(53) Eε
N,M(N) =‖ (U − u)M ‖0 +ω

M
∑

1

τ ‖ (U − u)m−θ ‖ε≤ C(N−1 lnN +M−2).

Now we chooseM to be the greatest integer lower bound of
√

N/ lnN . The results
are displayed in Tables 3 and 4.

ε N=8 N=16 N=32 N=64 N=128 N=256

1.56250e-2 1.6647e-1 1.0983e-1 6.8130e-2 4.0526e-2 2.3473e-2 1.3345e-2
3.90625e-3 1.6203e-1 1.0692e-1 6.6976e-2 4.0121e-2 2.3347e-2 1.3314e-2
9.76562e-4 1.6055e-1 1.0567e-1 6.6379e-2 3.9898e-2 2.3267e-2 1.3287e-2
2.44141e-4 1.6015e-1 1.0530e-1 6.6130e-2 3.9795e-2 2.3231e-2 1.3274e-2
6.10352e-5 1.6005e-1 1.0520e-1 6.6056e-2 3.9755e-2 2.3216e-2 1.3269e-2
1.52588e-5 1.6002e-1 1.0517e-1 6.6037e-2 3.9745e-2 2.3210e-2 1.3267e-2
3.81470e-6 1.6001e-1 1.0517e-1 6.6032e-2 3.9743e-2 2.3209e-2 1.3266e-2
9.53674e-7 1.6001e-1 1.0517e-1 6.6031e-2 3.9742e-2 2.3208e-2 1.3266e-2
2.38419e-7 1.6001e-1 1.0517e-1 6.6031e-2 3.9742e-2 2.3208e-2 1.3266e-2
5.96046e-8 1.6001e-1 1.0517e-1 6.6031e-2 3.9742e-2 2.3208e-2 1.3266e-2
1.49012e-8 1.6001e-1 1.0517e-1 6.6031e-2 3.9742e-2 2.3208e-2 1.3266e-2
3.72529e-9 1.6001e-1 1.0517e-1 6.6031e-2 3.9742e-2 2.3208e-2 1.3266e-2

Table 3. Errors for the Crank Nicolson scheme

With the same arguments as for implicit Euler we get almost first order convergence
in space but now second order in time.

5.2. The discontinuous Galerkin scheme. For the discontinuous Galerkin scheme
for piecewise constant functions in time, i.e. q = 0, we know from (41)

(54) Eε
N,M(N) =‖ U − u ‖dG≤ C(M−1/2 +N−1 lnN +

1

M−1/2
(N−1 lnN)2).
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ε N=8 N=16 N=32 N=64 N=128

1.56250e-2 5.9997e-1 6.8889e-1 7.4946e-1 7.8781e-1 8.1469e-1
3.90625e-3 5.9980e-1 6.7476e-1 7.3929e-1 7.8108e-1 8.1037e-1
9.76562e-4 6.0346e-1 6.7075e-1 7.3441e-1 7.7802e-1 8.0834e-1
2.44141e-4 6.0496e-1 6.7108e-1 7.3272e-1 7.7651e-1 8.0750e-1
6.10352e-5 6.0537e-1 6.7135e-1 7.3256e-1 7.7603e-1 8.0708e-1
1.52588e-5 6.0548e-1 6.7142e-1 7.3251e-1 7.7603e-1 8.0695e-1
3.81470e-6 6.0550e-1 6.7144e-1 7.3249e-1 7.7602e-1 8.0695e-1
9.53674e-7 6.0551e-1 6.7145e-1 7.3248e-1 7.7602e-1 8.0695e-1
2.38419e-7 6.0551e-1 6.7145e-1 7.3248e-1 7.7602e-1 8.0695e-1
5.96046e-8 6.0551e-1 6.7145e-1 7.3248e-1 7.7602e-1 8.0695e-1
1.49012e-8 6.0551e-1 6.7145e-1 7.3248e-1 7.7602e-1 8.0695e-1
3.72529e-9 6.0551e-1 6.7145e-1 7.3248e-1 7.7602e-1 8.0695e-1

Table 4. Convergence rates in space for the Crank Nicolson scheme

If we now choose M to be the greatest integer lower bound of (N/ lnN)2, the error
is dominated by N−1 lnN . We can see this fact in Tables 5 and 6, the latter showing
the almost first order convergence in space.

ε N=8 N=16 N=32 N=64 N=128 N=256

1.56250e-2 3.3527e-1 2.2063e-1 1.3821e-1 8.3147e-2 4.8536e-2 2.7746e-2
3.90625e-3 3.3097e-1 2.1712e-1 1.3587e-1 8.1769e-2 4.7747e-2 2.7302e-2
9.76562e-4 3.3000e-1 2.1646e-1 1.3533e-1 8.1379e-2 4.7520e-2 2.7174e-2
2.44141e-4 3.2977e-1 2.1636e-1 1.3530e-1 8.1326e-2 4.7462e-2 2.7140e-2
6.10352e-5 3.2972e-1 2.1633e-1 1.3531e-1 8.1358e-2 4.7468e-2 2.7132e-2
1.52588e-5 3.2970e-1 2.1633e-1 1.3532e-1 8.1374e-2 4.7488e-2 2.7139e-2
3.81470e-6 3.2970e-1 2.1633e-1 1.3532e-1 8.1379e-2 4.7497e-2 2.7149e-2
9.53674e-7 3.2970e-1 2.1633e-1 1.3532e-1 8.1380e-2 4.7499e-2 2.7153e-2
2.38419e-7 3.2970e-1 2.1633e-1 1.3532e-1 8.1380e-2 4.7500e-2 2.7154e-2
5.96046e-8 3.2970e-1 2.1633e-1 1.3532e-1 8.1381e-2 4.7500e-2 2.7154e-2
1.49012e-8 3.2970e-1 2.1633e-1 1.3532e-1 8.1381e-2 4.7500e-2 2.7154e-2
3.72529e-9 3.2970e-1 2.1633e-1 1.3532e-1 8.1381e-2 4.7500e-2 2.7154e-2

Table 5. Errors for dG and q = 0

For q = 1 we have

(55) Eε
N,M(N) ≤ C(M−3/2 +NM−2 +N−1(lnN)3/2 +

1

M−1/2
(N−1 lnN)2).

ForM set to the greatest integer lower bound of (N/ lnN)2 the results are displayed
in Tables 7 and 8. The error seems to be dominated by the same term as for q = 0.
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ε N=8 N=16 N=32 N=64 N=128

1.56250e-2 6.0367e-1 6.7481e-1 7.3310e-1 7.7661e-1 8.0677e-1
3.90625e-3 6.0819e-1 6.7630e-1 7.3259e-1 7.7615e-1 8.0641e-1
9.76562e-4 6.0836e-1 6.7770e-1 7.3370e-1 7.7613e-1 8.0633e-1
2.44141e-4 6.0808e-1 6.7725e-1 7.3437e-1 7.7694e-1 8.0637e-1
6.10352e-5 6.0798e-1 6.7694e-1 7.3397e-1 7.7733e-1 8.0696e-1
1.52588e-5 6.0795e-1 6.7685e-1 7.3374e-1 7.7700e-1 8.0721e-1
3.81470e-6 6.0794e-1 6.7682e-1 7.3367e-1 7.7683e-1 8.0695e-1
9.53674e-7 6.0794e-1 6.7682e-1 7.3365e-1 7.7677e-1 8.0682e-1
2.38419e-7 6.0794e-1 6.7681e-1 7.3365e-1 7.7676e-1 8.0678e-1
5.96046e-8 6.0794e-1 6.7681e-1 7.3364e-1 7.7676e-1 8.0676e-1
1.49012e-8 6.0794e-1 6.7681e-1 7.3364e-1 7.7676e-1 8.0676e-1
3.72529e-9 6.0794e-1 6.7681e-1 7.3364e-1 7.7676e-1 8.0676e-1

Table 6. Convergence rates in space for dG and q = 0

ε N=8 N=16 N=32 N=64 N=128 N=256

1.56250e-2 2.6531e-1 1.7578e-1 1.1013e-1 6.6150e-2 3.8547e-2 2.2000e-2
3.90625e-3 2.6500e-1 1.7532e-1 1.0981e-1 6.5885e-2 3.8363e-2 2.1883e-2
9.76562e-4 2.6476e-1 1.7488e-1 1.0958e-1 6.5791e-2 3.8300e-2 2.1843e-2
2.44141e-4 2.6469e-1 1.7473e-1 1.0941e-1 6.5716e-2 3.8282e-2 2.1832e-2
6.10352e-5 2.6467e-1 1.7468e-1 1.0934e-1 6.5650e-2 3.8256e-2 2.1829e-2
1.52588e-5 2.6467e-1 1.7467e-1 1.0933e-1 6.5625e-2 3.8229e-2 2.1819e-2
3.81470e-6 2.6467e-1 1.7467e-1 1.0932e-1 6.5618e-2 3.8218e-2 2.1807e-2
9.53674e-7 2.6467e-1 1.7467e-1 1.0932e-1 6.5616e-2 3.8215e-2 2.1803e-2
2.38419e-7 2.6467e-1 1.7467e-1 1.0932e-1 6.5616e-2 3.8215e-2 2.1801e-2
5.96046e-8 2.6467e-1 1.7467e-1 1.0932e-1 6.5616e-2 3.8214e-2 2.1801e-2
1.49012e-8 2.6467e-1 1.7467e-1 1.0932e-1 6.5616e-2 3.8214e-2 2.1801e-2
3.72529e-9 2.6467e-1 1.7467e-1 1.0932e-1 6.5616e-2 3.8214e-2 2.1801e-2

Table 7. Errors for dG and q = 1

ε N=8 N=16 N=32 N=64 N=128

1.56250e-2 5.9391e-1 6.7453e-1 7.3541e-1 7.7911e-1 8.0909e-1
3.90625e-3 5.9598e-1 6.7497e-1 7.3702e-1 7.8024e-1 8.0990e-1
9.76562e-4 5.9830e-1 6.7444e-1 7.3599e-1 7.8055e-1 8.1015e-1
2.44141e-4 5.9921e-1 6.7541e-1 7.3538e-1 7.7956e-1 8.1020e-1
6.10352e-5 5.9946e-1 6.7587e-1 7.3602e-1 7.7911e-1 8.0941e-1
1.52588e-5 5.9953e-1 6.7600e-1 7.3634e-1 7.7959e-1 8.0907e-1
3.81470e-6 5.9954e-1 6.7604e-1 7.3644e-1 7.7984e-1 8.0946e-1
9.53674e-7 5.9955e-1 6.7605e-1 7.3646e-1 7.7991e-1 8.0965e-1
2.38419e-7 5.9955e-1 6.7605e-1 7.3647e-1 7.7993e-1 8.0971e-1
5.96046e-8 5.9955e-1 6.7605e-1 7.3647e-1 7.7993e-1 8.0973e-1
1.49012e-8 5.9955e-1 6.7605e-1 7.3647e-1 7.7993e-1 8.0973e-1
3.72529e-9 5.9955e-1 6.7605e-1 7.3647e-1 7.7993e-1 8.0973e-1

Table 8. Convergence rates in space for dG and q = 1
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We tested as well the case N = M , here the error is a little bit larger. It could
be that different error constants influence the behaviour of the error; in any case
further detailed numerical studies for q = 1 and q > 1 are a task for future studies.
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