
INTERNATIONAL JOURNAL OF c© 2010 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 7, Number 3, Pages 580–592

TWO-GRID ALGORITHMS FOR AN ORDINARY SECOND

ORDER EQUATION WITH AN EXPONENTIAL BOUNDARY

LAYER IN THE SOLUTION
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Abstract. This paper is concerned with the solution of the nonlinear system of

equations arising from the A.M. Il’in’s scheme approximation of a model semi-

linear singularly perturbed boundary value problem. We employ Newton and

Picard methods and propose a new version of the two-grid method originated

by O. Axelsson [2] and J. Xu [19]. In the first step, the nonlinear differential

equation is solved on a “coarse” grid of size H. In the second step, the problem

is linearized around an appropriate interpolation of the solution computed in

the first step and the linear problem is then solved on a fine grid of size h << H.

It is shown that the algorithms achieve optimal accuracy as long as the mesh

sizes satisfy h = O(H2m ), m = 1, 2, . . . , where m is the number of the Newton

(Picard) iterations for the difference problem. We count the number of the

arithmetical operations to illustrate the computational cost of the algorithms.

Numerical experiments are discussed.

Key Words. nonlinear boundary value problem, boundary layer, Il’in scheme,

nonlinear system, Newton method, Picard method, two-grid method.

1. Introduction

It is shown theoretically and experimentally that classical finite difference schemes
on non-adaptive meshes have a cell Reynolds number limitation when applied to
convection-dominated equations [3,6,7, 8,10,11]. For small values of the perturba-
tion parameter, these techniques lead to spurious solutions when central differences
for the advection terms are employed; on the other hand, first-order upwind meth-
ods introduce artificial diffusion that thickens the boundary layers. In order to
avoid these difficulties, exponentially-fitting techniques are frequently used [1,6,7,8].
Another approach is based on the generation of layer-adapted meshes that allow
resolution of the structure of the layer [3,10,11,12].

The defect correction and the Richardson extrapolation methods are used to
increase the accuracy of grid solutions for singularly perturbed boundary value
problems. Note that the nonlinear case has been considered in [12]. However, the
Richardson procedure requires the solution of discrete nonlinear systems on each of
the nested meshes.

Two-level discretizations can be dated back to Allen-Southwell [1], see also [5].
In the present paper we shall develop a new version based on the quasilinearization
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method of Belman and Kalaba [4], see also [ 9]. Two-grid finite element methods
were proposed by O. Axelsson [2] and J. Xu [19], independently of each other.
Note that the error estimates in these papers are in weak (Sobolev-type) discrete
norms. Conversely, our errors below are measured in the maximum norm, which is
sufficiently strong to capture layers and hence seems most appropriate for singularly
perturbed problems.

We illustrate some of these concepts on the model boundary value problem

(1) −εu′′ − a(x)u′ + f(x, u) = 0, x ∈ Ω ≡ (0, 1); u(0) = A, u(1) = B,

where A,B are given constants, ε is a parameter in (0, 1], and a(x) satisfies

(2) |a(x)| ≥ α > 0, a ∈ C2(Ω).

For the function f(x, u) we will assume that it is twice continuously differentiable
with respect to x , three times continuously differentiable with respect to u and

(3) f ′
u(x, u) ≥ 0 on Ω×R.

By these assumptions the problem (1) has the unique solution u = u(x, ε) and has
a boundary layer of order O(ε) near x = 0 or x = 1, see for example [8,11,16].

The goal of the present paper is to construct and study theoretically and numer-
ically two-grid interpolation algorithms for implementation of the classical Il’in’s
difference scheme [6] for problem (1)-(3). We begin by recalling in the next section
basic properties of problem (1)-(3) and an already classical uniformly convergent
result for the corresponding linear problem, Theorem 1. Then, in Section 3, we
describe a Newton linearization process for the differential problem (1)-(3) in order
not only to prove uniform convergence of Il’in’s scheme but first of all to obtain the
estimate (18) which is the key for the two-grid algorithms in the next sections. In
Sections 4, 5 we employ Newton and Picard methods in the solution of the arizing
systems of algebraic equations. The two-grid algorithms are formulated and their
rate of convergence is established in Section 6. This strategy is motivated by the
fact (Theorem 3) that the global error of the two-grid interpolation algorithm is of
the order h, the same as would have been obtained if the non-linear problem had
been solved directly on the fine grid. The coarse mesh can be quite coarse, (see the
experiments in Section 7) and still maintain an optimal approximation.

Part of the present results was published in the conference paper [14].
Notation. Define the norm of a continuous function f(x) as ‖f‖ = max

x∈Ω̄
|f(x)|.

Throughout this paper C and Ci, i ≥ 0, denote positive constants independent of
H,h and ε . If z = (z0, . . . , zN ) ∈ RN+1 is a mesh function, define its discrete norm
as ‖z‖h = max

0≤i≤N
|zi|. For a continuous function f defined on Ω by [f ]wh

we will

denote it’s projection on a mesh wh ⊂ Ω. In the text u, u(m) and y, y(m) denote
continuous and discrete functions, respectively.

2. Preliminary analysis

In the following we will consider the problem (1)-(3) in the case a(x) ≥ α > 0.
The other case a(x) ≤ α < 0 can be put into the form of the first case by the change
of the independent variable from x to 1− x.

At first, we get the estimate for the solution of the problem (1)-(3):

(4) ‖u‖ ≤ l = α−1‖f(x, 0)‖+max{|A|, |B|}.
Let us introduce the linear operator:

Gz(x) = −εz′′(x) − a(x)z′(x) + b(x)z(x),
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where z(x) ∈ C2(Ω),

b(x) =
{ (f(x, u(x))− f(x, 0))/u(x), if u(x) 6= 0,

f ′
u(x, 0), if u(x) = 0.

Because of (3), we have b(x) ≥ 0. It is known, for example see [8], that the maximum
principle is valid for the operator G : z(0) ≥ 0, z(1) ≥ 0, Gz(x) ≥ 0, x ∈ [0, 1] →
z(x) ≥ 0, x ∈ [0, 1]. Define z(x) = α−1‖f(x, 0)‖(1 − x) + max{|A|, |B|} ± u(x). It
is clear that the requirements of the maximum principles are fulfilled. Therefore
z(x) ≥ 0, x ∈ [0, 1] which implies (4).

Make a decomposition of the solution u(x):

(5) u(x) = V (x) + p(x),

where

V (x) = r exp(−a0ε
−1x), r = −εu′(0)/a0, a0 = a(0).

Lemma 1. There exists a constant C > 0 such that:

(6) |p′(x)| ≤ C.

Proof. We get using (1), (5):
(7)

εp′′(x) + a(x)p′(x) = F (x), F (x) = f(x, u(x)) +
a0r

ε
(a(x) − a(0)) exp(−a0ε

−1x).

Using (4) we find the estimate

(8) |F (x)| ≤ C.

Next, rewrite the equation (7) in the form:

(9)
(
εp′(x) exp

( x∫

0

ε−1a(r) dr
))′

= F (x) exp
( x∫

0

ε−1a(r) dr
)
.

An integration of (9) from 0 to x and taking into account p′(0) = 0 implies:

p′(x) =
1

ε

x∫

0

F (s) exp
(
−

x∫

s

ε−1a(r) dr
)
ds.

Finally, recalling (8), we get (6). ♦
According to [13], the following estimates of the derivatives are correct:

(10) |u(j)(x)| ≤ C
[ 1

εj
exp(−αε−1x) + 1

]
, 0 < j ≤ 4.

The estimates (10) point out that the solution of the problem (1)-(3) has a boundary
layer near to the boundary x = 0.

Let us introduce the uniform mesh:

wh = {xi = ih, i = 0, 1, . . . , N, x0 = 0, xN = 1}, wh = wh ∪ {x0} ∪ {xN}.
We discretize (1), taking into account the boundary layer component V (x) in the
solution u(x) and using the difference scheme [6]:

(11)
T h
i y

h = −εhi λ
h
xxy

h
i − aiλ

h
xy

h
i + f(xi, y

h
i ) = 0, i = 1, 2, . . . , N − 1,

yh0 = A, yhN = B,

where

xi ∈ wh, ai = a(xi), ε
h
i =

aih

2
cth

aih

2ε
,
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λh
xy

h
i =

yhi+1 − yhi−1

2h
, λh

xxy
h
i =

yhi+1 − 2yhi + yhi−1

h2
.

Using the maximum principle, we can prove that for any mesh functions uh, vh :

||uh − vh||h ≤ 1

α
max

0<i<N
|Tiu

h − Tiv
h|+ |uh

0 − vh0 |+ |uh
N − vhN |.

It follows that the problem (11) has an unique solution.
In the linear case f(x, u) = f0(x)u + g(x), f0(x) ≥ 0, the scheme (11) coin-

cides with the famous Il’in-Allen-Southwell scheme [1,6,7,8,11,16]. The literature
contains many different techniques for analysing Il’in and related schemes for two-
point boundary value problems. In the following we shall make use of the result
originated in [6].

Theorem 1. Let u(x) be the solution of (1)-(3) in the linear case f(x, u) = f0(x)u+
g(x) and yh− the solution of the corresponding discrete problem (11). Then

‖yh − [u]wh
‖h ≤ Ch.

3. Uniform convergence

To solve (1), we use a quasilinearization process [4,9] and obtain the Newton
sequence {u(m)}∞0 for an initial guess u(0)(x) with u(0)(0) = A, u(0)(1) = B :

Lu(m+1) = −ε
d2u(m+1)

dx2
− a(x)

du(m+1)

dx
+ f ′

u(x, u
(m))u(m+1) = f ′

u(x, u
(m))u(m)−

(12) −f(x, u(m)), u(m+1)(0) = A, u(m+1)(1) = B, m = 0, 1, 2 . . .

Let us first consider the convergence of the process (12). Suppose that

(13) ‖u(0) − u‖ ≤ ρ.

Let l be as in (4) and introduce

θ = max
x∈Ω,|ξ|≤l+2ρ

‖f ′′
uu(x, ξ)‖.

Lemma 2. Assume that α−1θρ < 1. Then

(14) ‖u(m) − u‖ ≤ αθ−1(α−1θρ)2
m

, m = 0, 1, 2, . . .

Proof. The boundary value problem for v(m+1) = u(m+1) − u reads as follows:

(15) Lv(m+1)(x) = F (m)(x), x ∈ Ω, v(m+1)(0) = 0, v(m+1)(1) = 0,

where

F (m)(x) = f(x, u(m)(x))− f(x, u(x)) + f ′
u(x, u

(m)(x))(u(x) − u(m)(x)).

We will prove by induction that for all k ≥ 0, ‖u(k) − u‖ ≤ ρ. For k = 0 this
inequality is obvious. Suppose that it holds for k = m. Using the mean value
theorem, we easily obtain ‖F (m)‖ ≤ θ‖u(m)−u‖2. The maximum principle applied
to problem (15) implies:

(16) ‖u(m+1) − u‖ ≤ α−1θ‖u(m) − u‖2.
In view of the assumptions ‖u(m) − u‖ ≤ ρ and α−1θρ < 1 we reach to the next

induction step. So, for all m ≥ 0 we have ‖u(m) − u‖ ≤ ρ which implies (16) for
m = 0, 1, 2, . . . The inequality (14) follows from (16). ♦
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Let us consider the Newton iterative method for the scheme (11):

Lh
i y

(m+1) = −εhi λ
h
xxy

(m+1)
i − aiλ

h
xy

(m+1)
i + f ′

u(xi, y
(m)
i )y

(m+1)
i = f ′

u(xi, y
(m)
i )y

(m)
i −

(17) −f(xi, y
(m)
i ), i = 1, · · · , N − 1, y

(m+1)
0 = A, y

(m+1)
N = B, m = 0, 1, 2, . . .

The next lemma is a keystone for the construction of the two-grid algorithms.

Lemma 3. Let y(0) = [u(0)]w̄h
in (17). There are constants h0 and ρ0, independent

of ε, such that for h ≤ h0 and ‖u(0) − u‖ ≤ ρ ≤ ρ0

(18) ‖y(m) − [u]wh
‖h ≤ C0

[
h+ (α−1θρ)2

m
]
,m = 0, 1, 2, . . .

Proof. We suppose that ρ0 is sufficiently small such that α−1θρ < 1, and
introduce the auxiliary iterative process:

−εhi λ
h
xxỹ

(m+1)
i − aiλ

h
x ỹ

(m+1)
i + f ′

u(xi, u
(m)(xi))ỹ

(m+1)
i

= f ′
u(xi, u

(m)(xi))u
(m)(xi)− f(xi, u

(m)(xi)), i = 1, 2, · · · , N − 1,

(19) ỹ
(m+1)
0 = A, ỹ

(m+1)
N = B, m = 0, 1, 2, . . .

An application of Theorem 1 provides the estimate

(20) ‖ỹ(m+1) − [u(m+1)]wh
‖h ≤ C1h, m = 0, 1, 2, · · ·

Define v(m+1) = y(m+1) − ỹ(m+1) and estimate ||v(m+1)||h. We subtract (19) from
(17), make transformations and obtain the problem:

(21) Lh
i v

(m+1) = F
(m)
i , i = 1, · · · , N − 1, v

(m+1)
0 = 0, v

(m+1)
N = 0,

where F
(m)
i has the form:

F
(m)
i = −(y

(m)
i − u(m)(xi))

[
f ′′
uu(xi, ξ

(4)
i )(ξ

(1)
i − ξ

(3)
i ) +

+ỹ
(m+1)
i (f ′′

uu(xi, ξ
(2)
i )− f ′′

uu(xi, ξ
(3)
i )) + f ′′

uu(xi, ξ
(3)
i )(ỹ

(m+1)
i − ξ

(3)
i )

]
,

all ξ
(j)
i , j = 1, 2, 3, 4, lie between y

(m)
i and u(m)(xi). We estimate ỹ

(m+1)
i − ξ

(3)
i by

ỹ
(m+1)
i − ξ

(3)
i = (ỹ

(m+1)
i −u(m+1)(xi))+ (u(m+1)(xi)−u(m)(xi))+ (u(m)(xi)− ξ

(3)
i ).

We use that continuous functions f ′′
uu, f

′′′
uuu with given arguments are bounded

and obtain that there are some constants C2, C3, C4 such that:
∥∥∥F (m)

∥∥∥
h
≤

(
C2

∥∥∥y(m)− [u(m)]wh

∥∥∥
h
+C3

∥∥∥u(m+1)−u(m)
∥∥∥+C4h

)∥∥∥y(m)− [u(m)]wh

∥∥∥
h
.

Applying the maximum principle to the problem (21), using the last inequality
and (20), we get

(22)

∥∥∥y(m+1) − [u(m+1)]wh

∥∥∥
h
≤ α−1

(
C2

∥∥∥y(m) − [u(m)]wh

∥∥∥
h

+C3

∥∥∥u(m+1) − u(m)
∥∥∥+ C4h

)∥∥∥y(m) − [u(m)]wh

∥∥∥
h
+ C1h.

It follows from (22) that for enough small values of h and ρ, defined in (13),
∥∥∥y(m+1) − [u(m+1)]wh

∥∥∥
h
≤ 1

2

∥∥∥y(m) − [u(m)]wh

∥∥∥
h
+ C1h, m = 0, 1, 2 . . .

Because of y(0) = [u(0)]wh
, we get that for any m ≥ 0
∥∥∥y(m) − [u(m)]wh

∥∥∥
h
≤ 2C1h.
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Using (14) we complete the proof. ♦
Now we are in a position to prove the ε-uniform convergence of the scheme (11).

Theorem 2. Let u(x) be the solution of the problem (1) and yh be the solution of
the scheme (11). Then the following estimate holds:

‖yh − [u]wh
‖h ≤ C0h.

Proof. We suppose that ρ is small enough, ρ ≤ ρ0 and take h ≤ h0, where
ρ0 and h0 satisfy the requirements given in the proof of Lemma 3. Similarly as in
Lemma 2 one can prove that

(23) ‖y(m) − yh‖h ≤ αθ−1(α−1θ‖y(0) − yh‖h)2
m

, m = 0, 1, 2, . . .

Hence, y(m) → yh, as m → ∞, if α−1θ‖y(0) − yh‖h < 1. Let m → ∞, then from
(18) we get the required estimate. To complete the proof the case h > h0 must
be considered. The maximum principle implies ‖yh‖ ≤ l (l corresponds to (4)).
Therefore

‖yh − [u]wh
‖h ≤ ‖yh‖h + ‖[u]wh

‖h ≤ C0h, C0 = 2lh−1
0 .

♦

4. Newton’s method

In this section Newton’s method is discussed for solving the system of nonlinear
algebraic equations (11). To compute the solution of the scheme (11) we consider
the Newton iterative method (17). Let y(0) be an initial guess such that ||y(0) −
yh||h ≤ δ, where δ is a given constant.

First we study the convergence of the iterative process (17). Letting z(m) =
y(m) − yh, we have from (11), (17):

−εhi λ
h
xxz

(m+1)
i − aiλ

h
xz

(m+1)
i + f ′

u(xi, y
(m)
i )z

(m+1)
i = f ′′

uu(xi, r
m
i )(y

(m)
i − smi )z

(m)
i ,

(24) z
(m+1)
0 = 0, z

(m+1)
N = 0,

where rmi and smi are between y
(m)
i and yhi . The application of the maximum prin-

ciple to the problem (24) implies

(25) ||y(m+1) − yh||h ≤ α−1θ||y(m) − yh||2h.
It follows from (25) that the Newton method converges if

(26) α−1θδ < 1.

Also (25) implies

(27) ||y(m) − yh||h ≤ αθ−1(α−1θδ)2
m

, m ≥ 0.

Further we will find a lower bound for the necessary number mh of iterations in
order to fulfill the following estimate: ||y(mh) − yh||h ≤ h. ¿From (27) we get:

(28) mh ≥ log2
ln(α−1θh)

ln(α−1θδ)
.

Now we will calculate the number of arithmetical operations. Suppose that in
each iteration of method (17) we need about dN operations. Note that for Gauss
elimination one needs about 8N operations. Then for mh iterations we need

(29) Nh ≈ dN log2
ln(α−1θh)

ln(α−1θδ)
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operations. To reduce the number of operations we will develop a new version of
the two-grid Newton method [2, 19]. Introduce the coarse grid wH :

wH = {Xi = iH, i = 0, 1, . . . , n, X0 = 0, Xn = 1}, wH = wH ∪ {X0} ∪ {Xn}
and write Il’in’s scheme on wH :

(30) −εHi λH
xxy

H
i − aiλ

H
x yHi + f(xi, y

H
i ) = 0, 0 < i < n, yH0 = A, yHn = B.

Then, in view of Theorem 2, we have

||yH − [u]wH
||H ≤ CH.

To compute the solution of (30), we use the Newton method:

−εHi λH
xxy

(m+1)
i − aiλ

H
x y

(m+1)
i + f(xi, y

(m)
i ) + f ′

u(xi, y
(m)
i )(y

(m+1)
i − y

(m)
i ) = 0,

(31) 0 < i < n, y
(m+1)
0 = A, y(m+1)

n = B.

We will count the iterations to achieve maxi |y(m)
i −yHi | ≤ H. If mH is the necessary

number of iterations, as in (28), we have

(32) mH ≥ log2
ln(α−1θH)

ln(α−1θδ)
.

Denote by y(mH) the approximate solution of scheme (31).
Further we will investigate, how to interpolate the solution y(mH) from nodes of

a coarse grid to nodes of a fine grid. It was shown in [18] for a problem with a
boundary layer that the linear interpolation on a uniform mesh leads to significant
errors. We use for this purpose exponential interpolation of the function u(x):

(33) Int([u]wH
, x) = (ui − ui−1)

exp(−a0ε
−1x)− exp(−a0ε

−1Xi)

exp(−a0ε−1Xi)− exp(−a0ε−1Xi−1)
+ ui

for x ∈ [Xi−1, Xi], i = 1, 2, . . . , n. It is proved in [17] that for a function u(x)
satisfying (5), (6) the following estimate,

|u(x)− Int([u]wH
, x)| ≤ 2CH,

holds true. Formula (33) is stable with respect to the perturbation of [u]wH
, there-

fore

(34) |u(x)− Int(y(mH), x)| ≤ C1H.

Note that, in order to decrease the number of calculations for an interpolation,
outside the boundary layer we can use a formula of linear interpolation:

uL(x) =
x−Xi−1

H
(ui − ui−1) + ui−1.

If ε2 ≥ H , then it holds for some constant C that |u(x) − uL(x)| ≤ CH for any
mesh interval [Xi−1, Xi]. Otherwise, if ε2 < H , then |u(x)−uL(x)| ≤ CH for x ∈
[Xi−1, Xi], provided that Xi−1 ≥ −2εα−1 ln

(
ε/
√
H
)
.

Let yIH = [Int(y(mH), x)]wh
. Taking into account Theorem 2 and the estimate

(34), we obtain ||yIH − yh||h ≤ CH.
So, using iterations on a coarse grid and exponential interpolation, we got the

initial guess yIH for the method (17) on a fine grid with accuracy O(H). Then we
continue iterations (17) to find yh with accuracy O(h). Let us count the number of
arithmetical operations for the two-grid method:

(35) NhH ≈ dn log2
ln(α−1θH)

ln(α−1θδ)
+ dN log2

ln(α−1θh)

ln(α−1θH)
+ IH ,
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where IH is the number of operations for an interpolation. Note that we make an
interpolation only once.

Suppose that H ≪ α−1θ. Then

Nh ≈ dN log2
ln(h)

ln(α−1θδ)
, NhH ≈ dn log2

ln(H)

ln(α−1θδ)
+ dN log2

ln(h)

ln(H)
+ IH

and we can estimate the economy of the operations as follows:

(36) Nh −NhH ≈ d(N − n) log2
ln(H)

ln(α−1θδ)
− IH .

Consider the case h = H2. Then (25) shows that we have to perform only one
iteration (17) on a fine grid to find the solution of the scheme (11) with accuracy
O(h). In the case h = H4 we need two iterations (17) to find yh with accuracy
O(h).

5. Picard method

Suppose that instead of the condition (3) we have stronger restriction:

(37) β ≥ f ′
u(u, x) ≥ γ > 0 on Ω×R.

To find the solution of the scheme (11) let us consider the Picard iterative method:

−εhi λ
h
xxy

(m+1)
i − aiλ

h
xy

(m+1)
i + βy

(m+1)
i = βy

(m)
i − f(xi, y

(m)
i ), 0 < i < N,

(38) y
(m+1)
0 = A, y

(m+1)
N = B.

Using the maximum principle, we can prove that

(39) ||y(m+1) − yh||h ≤
(
1− γ

β

)
||y(m) − yh||h.

Therefore the Picard method converges for any initial guess.
Let us count the necessary number of iterations to achive the accuracy

||y(m) − yh||h ≤ h.

To obtain accuracy of order h for mh iterations we must have: δ
(
1− γ/β

)mh

≤ h,

which implies mh ≈ ln h
δ
/ ln(1− γ

β
).

To reduce the number of calculations let us consider the iterative method for the
scheme (30) on a coarse grid wH :

−εHi λH
xxy

(m+1)
i − aiλ

H
x y

(m+1)
i + βy

(m+1)
i = βy

(m)
i − f(xi, y

(m)
i ),

(40) y
(m+1)
0 = A, y(m+1)

n = B.

We use the iterations (40) to obtain the accuracy ||y(m) − yH ||H ≤ H. We need
about mH iterations,

(41) mH ≈ ln
H

δ
/ ln(1− γ

β
).

Suppose that we got y(mH) after mH iterations (40). Then

||y(mH) − [u]wH
||H ≤ (C0 + 1)H.

Let yIH = [Int(y(mH), x)]wh
. Then

||yIH − yh||h ≤ C1H, C1 = 3(C0 + 1).
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Now we perform iterations (38) on a fine grid, using yIH as initial guess to find yh

with the accuracy O(h). Let us count the number of arithmetic operations for the
Picard method on a fine grid and for the two-grid Picard method:

(42) Nh ≈ dN ln h
δ

ln(1− γ
β
)
, NhH ≈ dn ln H

δ

ln(1− γ
β
)
+

dN ln h
H

ln(1 − γ
β
)
+ IH .

Therefore, an economy of operations can be realized , if we use two-grid Picard
method:

Nh −NhH ≈ d(N − n)

ln(1 − γ
β
)
ln

H

δ
− IH .

Remark. As it is known, Newton method requires an initial guess, close to the
exact solution. According to (26), the closeness can be expressed by the inequality
α−1θ||y(0) − yH ||H < 1. We can perform several initial iterations using the Picard
method to achieve the inequality α−1θ||y(m)−yH ||H < 1 and then to continue with
Newton iterations.

6. Two-grid algorithms of high accuracy

The results obtained in the previous sections can be used for formulation of
high order accuracy two-grid algorithms. The estimate (18) plays a key role in the
construction of the algorithms.

Let yH be the solution of the nonlinear discrete problem (30) on a coarse mesh
with a step H . If in the iterative process (17) on a fine mesh with the step h = H2

we take an initial guess y(0) = [Int(yH , x)]wh
, then ||yh − y(0)||h ≤ ρ = CH , in

view of the estimate (18) we have

||y(1) − [u]wh
||h ≤ C1h = C1H

2.

Further, if we take h = H4 , then according to (18)

||y(2) − [u]wh
||h ≤ C2h = C2H

4.

On the base of this discussion we can formulate algorithms of high accuracy.
Algorithm 1.

1. Solve the nonlinear difference scheme (30) and let yH be the solution of the
difference scheme. Compute yH with the accuracy O(H) using Newton or Picard
method.

2. Interpolate the mesh function yH , using exponential interpolation (33), uI
H(x) =

Int(yH , x).
3. Let h = H2, yIH = [uI

H ]wh
.

4. Solve on the fine mesh wh the linear problem

−εhi λ
h
xxy

h
i − aiλ

h
xy

h
i + f(xi, (y

I
H)i) + f ′

u(xi, (y
I
H)i)(y

h
i − (yIH)i) = 0,

0 < i < N, yh0 = A, yhN = B.

5. Let uI
h = Int(yh, x).

Combining results of sections 3,4 it is easy to prove the following theorem.

Theorem 3. Let u be the solution of the problem (1)-(3) and let uI
h be the inter-

polant as defined in Algorithm 1. Then the following error estimate holds true:

(43) ||uI
h − u|| ≤ CH2.
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Algorithm 2.

Steps 1 and 2 are the same as in Algorithm 1.
3. Let h = H4, yIH = [uI

H ]wh
.

4. Solve on the fine mesh wh the linear problem

−εhi λ
h
xxy

hH
i − aiλ

h
xy

hH
i + f(xi, (y

I
H)i) + f ′

u(xi, (y
I
H)i)(y

hH
i − (yIH)i) = 0,

0 < i < N, yhH0 = A, yhHN = B.

5. Solve the linear problem on the mesh wh :

−εhi λ
h
xxy

h
i − aiλ

h
xy

h
i + f(xi, y

hH
i ) + f ′

u(xi, y
hH
i )(yhi − yhHi ) = 0,

0 < i < N, yh0 = A, yhN = B.

6. Let uI
hH = Int(yh, x).

Again, combining results from Sections 3 and 4 one can prove the next theorem.

Theorem 4. Let u be the solution of the problem (1)-(3) and let uI
hH be the inter-

polant as defined in Algorithm 2. Then the following error estimate holds true:

(44) ||uI
hH − u|| ≤ CH4.

It is clear that we can continue Algorithm 2 to obtain on the fine mesh wh, with
h = H8 the accuracy CH8.

7. Numerical experiments

We present here some numerical results in the following situation:

εu′′ − u′ + exp(−u) + g(x) = 0, u(1/2) = A, u(1) = B,

where A, B, g(x) correspond to the exact solution

u(x) = exp ((x− 1)/ε) + lnx

with a boundary layer near the point x = 1, and according to (1) f(x, u) =
−[exp(−u) + g(x)]. The following estimates hold:

β ≥ f ′
u ≥ γ > 0 with β = 2, γ = e−1.

The initial iteration for the iterative methods in all the experiments is chosen as

the straight line between boundary conditions: y
(0)
i = A+ (2xi − 1)(B −A).

At first, compare the necessary number of iterations for one-grid and for two-
grid methods to achieve a given accuracy. We make iterations on the coarse grid
and on the fine grid, accordingly, to achieve: ||y(m) − y(m−1)||H ≤ rH, ||y(m) −
y(m−1)||h ≤ rh, where m is the number of iterations and r is a given parameter.
We use r = 0.02, ε = 0. 1.

In Table 1 (left) the number of iterations for the Newton method is presented
for different values of N . The upper number in each cell is the number of iterations
for the one-grid method and the lower numbers are the number of iterations on the
fine grid and the number (parenthesized) of iterations on the coarse grid with n
nodes.

Table 1 (right) shows the analogous numbers for the Picard method with param-
eter β = 2. Recall that nH = Nh = 0.5.

Note that results for other values of r and ε are similar. We have a significant
economy of iterations on the fine grid of the two-grid method in comparison to the
one-grid method on a fine grid.

Now we discuss numerical results concerning the accuracy of Il’in’s scheme real-
ized with Algorithms 1 and 2. Define the error of the difference scheme

EN = ‖yh − [u]wh
‖h
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and the numerical order of the convergence by the formula

CRN = log2(EN/E2N ).

In Table 2 the error EN and convergence rate CRN are presented depending
on ε and h. In Tables we denote 10±m as e ±m. Results confirm the well-known
estimate of the accuracy in the linear case for Il’in’s scheme [8]:

∥∥∥yh − [u]wh

∥∥∥
h
≤ Ch2/(h+ ε).

In Tables 3, 4 the error EN of Algorithm 1 and Algorithm 2 and it’s convergence
rate CRN are presented. Numerical experiments confirm the results of Theorems
2-4.

Table 1. Number of Newton iterations for one-grid and two-grid
methods (left) and Number of Picard iterations for one-grid and
two-grid methods , β = 2 (right)

n N n N
50 500 5000 10000 50 500 5000 10000

3 5 6 7 7 3 5 6 7 7
4 (4) 5 (4) 6 (4) 6 (4) 4 (4) 5 (4) 6 (4) 6 (4)

5 5 6 7 7 5 5 6 7 7
2 (4) 3 (4) 3 (4) 3 (4) 4 (4) 5 (4) 6 (4) 6 (4)

10 5 6 7 7 10 5 6 7 7
2 (4) 2 (4) 3 (4) 3 (4) 3 (4) 4 (4) 5 (4) 5 (4)

50 5 6 7 7 50 5 6 7 7
2 (5) 2 (5) 2 (5) 2 (5) 3 (5) 4 (5)

100 5 6 7 7 100 5 6 7 7
2 (5) 2 (5) 2 (5) 2 (5) 2 (5) 3 (5)

Table 2. Error of Il’in’s scheme and CRN

ε h
1/10 1/20 1/40 1/80 1/160

1.0 9.71e− 4 2.73e− 4 6.08e− 5 1.50e− 5 3.78e− 6
1.83 2.16 1.91 2.10

1.0e− 1 5.22e− 3 1.36e− 3 3.41e− 4 8.17e− 5 2.17e− 5
1.94 2.00 2.06 1.91

1.0e− 2 2.46e− 2 1.02e− 2 3.21e− 3 8.65e− 4 2.18e− 4
1.27 1.67 1.89 1.99

1.0e− 3 2.95e− 2 1.56e− 2 7.73e− 3 3.58e− 3 1.47e− 3
0.92 1.01 1.11 1.28

1.0e− 4 2.99e− 2 1.61e− 2 8.32e− 3 4.19e− 3 2.08e− 3
0.89 0.95 0.99 1.01
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Table 3. Error of Algorithm 1 and CRN

ε h
1/10 1/20 1/40 1/80 1/160

1.0 9.72e− 6 6.08e− 7 3.80e− 8 2.42e− 9 1.20e− 10
4.00 4.00 4.00 4.20

1.0e− 1 9.98e− 5 6.34e− 6 3.98e− 7 2.49e− 8 1.43e− 9
3.98 3.99 3.99 4.12

1.0e− 2 2.03e− 3 2.59e− 4 2.34e− 5 1.65e− 6 1.07e− 7
2.97 3.46 3.82 3.95

1.0e− 3 4.87e− 3 9.97e− 4 1.56e− 4 2.92e− 5 4.61e− 6
2.28 2.68 2.42 2.68

1.0e− 4 5.48e− 3 1.38e− 3 3.03e− 4 5.25e− 5 1.03e− 5
1.99 2.18 2.52 2.35

Table 4. Error of Algorithm 2 and CRN

ε h
1/4 1/8 1/12

1.0 1.46e− 6 5.72e− 9 1.77e− 10
8.00 8.50

1.0e− 1 8.65e− 6 3.41e− 8 1.10e− 9
7.99 8.38

1.0e− 2 1.02e− 4 1.14e− 6 1.24e− 7
6.48 5.48

1.0e− 3 7.34e− 4 5.06e− 6 4.68e− 7
7.18 5.87

1.0e− 4 1.30e− 3 3.32e− 5 1.71e− 6
5.29 7.32

1.0− 5 1.38e− 3 7.94e− 5 1.04e− 5
4.12 5.01

8. Conclusions

A two grid-method, based on the quasilinearization of Belmann and Kalaba,
combined with the special interpolation and Il’in scheme, for a second order ordi-
nary differential equation with an exponential boundary layer is constructed. It is
shown that an application of two-grid method leads to a decrease in the number
of arithmetical operations. The method applied in this paper is also applicable to
systems of ordinary differential equations [15] and to elliptic problems. However,
new techniques are required in order to theoretically justify the application of the
present method to these more general problems. This is out of the scope of our
paper.

Acknowledgement. The authors thank the anonymous referees for careful
reading and comments.
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