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A UNIFORM NUMERICAL METHOD FOR A

BOUNDARY-SHOCK PROBLEM
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This paper is dedicated to G. I. Shishkin.

Abstract. A singularly perturbed quasilinear boundary-value problem is con-

sidered in the case when its solution has a boundary shock. The problem is

discretized by an upwind finite-difference scheme on a mesh of Shishkin type.

It is proved that this numerical method has pointwise accuracy of almost first

order, which is uniform in the perturbation parameter.
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1. Introduction

Consider the problem of finding a C2(0, 1)-function u = u(x) which solves the
following singularly perturbed boundary-value problem:

(1) −εu′′ − ub(u)u′ + uc(x, u) = 0, x ∈ (0, 1), u(0) = 0, u(1) = B,

where ′ = d/dx, ε is a small positive perturbation parameter, and B is a positive
constant. It is assumed that the functions b and c are sufficiently smooth and satisfy
certain conditions, the main ones being b > 0 and cu ≥ 0. All the assumptions are
specified in section 2. They are exactly the same as in [13] and they guarantee
that there exists a unique solution u of problem (1) and that u has an exponential
boundary layer at x = 0.

In [13], (1) is solved numerically by applying a layer-resolving transformation
which renders the derivatives of the transformed solution bounded uniformly in
ε. The transformed problem is then solved using finite-difference schemes on an
equidistant discretization mesh. The layer-resolving transformation corresponds to
mesh-generating functions used to create special meshes, dense in the boundary
layer, for discretizing the problem (1) directly, cf. [16]. Numerical results obtained
by this method show pointwise ε-uniform convergence. However, only L1 ε-uniform
convergence is proved in [13]. The same result is obtained in [18], but for an
exponentially-fitted equidistant finite-difference scheme and for a special case (b ≡
1) of problem (1). This special case has been recently considered in [17], where a
robust error estimate in the maximum norm is derived. This is achieved by applying
the approach in which the differential equation

(2) −εu′′ −
1

2
(u2)′ + uc(x, u) = 0
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is integrated from x to 1 and then the integral
∫ 1

x
u(t)c(t, u(t))dt is approximated

using the solution of the corresponding reduced problem, cf. [6, 5]. After the de-
scribed transformation, equation (2) becomes a Riccati equation, which is solved
by the method from [11]. This method uses the simple backward scheme on a
Shishkin-type mesh. The error of the approximate solution obtained in this way
can be estimated at each mesh point by

(3) M [ε+N−1(lnN)2],

where N is the number of mesh steps and M is a positive constant independent
of both ε and N . Since it often holds in practice that ε ≪ 1/N , this error es-
timate gives accuracy of almost first order (almost means here that the accuracy
is diminished by lnN factors). Nevertheless, strictly speaking, (3) does not mean
convergence uniform in ε. This result can still be used to achieve ε-uniform conver-
gence, but the method has to be combined with some classical method for solving
differential equations, see the discussion in [6, 5]. However, the order of ε-uniform
convergence resulting from the combination is lowered since the error can be esti-
mated by MN−ω with 0 < ω < 1. The goal of the present paper is to prove that
ε-uniform convergence of order almost 1 can be achieved.

In the numerical method considered here, contrary to [13, 17], the only transfor-
mation of the problem is to its conservation form which is then discretized by an
upwind finite-difference scheme on a Shishkin piecewise equidistant mesh. There
is nothing new about this numerical method, but its analysis is new. Crucial in
this is the technique from [9] used to discuss the stability of the discretization
scheme. It is originally applied in [9] to a semilinear singular perturbation problem
with a boundary turning point. The technique is here adjusted to the quasilinear
problem and relies heavily on the Shishkin mesh used. The result is the pointwise
error-estimate of the form MN−1(lnN)3.

The problem (1) can be referred to as a boundary-shock problem in contrast to
interior-shock problems for which the boundary condition at x = 0 is u(0) = A < 0,
see [4] and [10] for instance. The difficulty in trying to obtain ε-uniform pointwise
accuracy for interior-shock problems lies in the fact that the interior shock of the
numerical solution is shifted from the original location. The method of the present
paper can be applied to interior-shock problems only if the position of the shock
is known; then the interior-shock problem can be broken down to two problems of
type (1).

The rest of the paper is organized as follows. Properties of the continuous so-
lution are given in section 2, which is based on [13]. The numerical method is
described in section 3 and the main result is also proved there. Finally, section 4
contains some numerical results which illustrate the previously presented theory.

2. The continuous problem

The problem (1) is discretized in its conservation form,

(4) Tu := −εu′′ − f(u)′ + g(x, u) = 0, x ∈ (0, 1), Ru := (u(0), u(1)) = (0, B),

where B > 0,

f(u) =

∫ u

0

tb(t) dt, and g(x, u) = uc(x, u).

Although usually ε is small, a wider range of ε values is considered, ε ∈ (0, 1].
Detailed conditions on b and c follow, cf. [13]. Let X = [0, 1] and U = [0, B]. It

is assumed that b ∈ C2(U) and c ∈ C2(X ×U) since this is needed for the proof of
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the main result; other results stated in the paper may require weaker smoothness
assumptions. It is further assumed that

(5) c∗ ≥ c(x, u) ≥ c∗ ≥ 0, x ∈ X, u ∈ U,

and

(6) gu(x, u) ≥ 0, x ∈ X, u ∈ U.

Using (5) we get TB ≥ 0 = T 0. Thus, B and 0 are respectively upper and lower
solutions of problem (4), which therefore has a solution u ∈ C4(0, 1) satisfying
0 ≤ u(x) ≤ B, x ∈ X . This solution is unique because (6) implies that (T,R) is an
inverse-monotone operator.

Let also

(7) b∗ ≥ b(u) ≥ b∗ > 0, u ∈ U,

and

(8) B >
b∗c∗ +

√

b∗c∗(b∗c∗ − b∗c∗)

b∗b∗
.

Conditions (7) and (8) guarantee that u has a boundary layer at x = 0. Condition
(8) looks technical, but it reduces to B > c/b in the constant-coefficient case b =
b∗ = b∗, c = c∗ = c∗ and there is no layer at x = 0 if B ≤ c/b, [2].

The smoothness conditions and the conditions (5), (6), (7), and (8) are assumed
throughout the paper. Also used throughout the paper are generic constants M
and m which are positive numbers independent of ε (and later on of N , the number
of mesh steps). They may have different values in different occurrences. M is used
in upper-bound estimates and m in the lower-bound ones. Some specific values of
M and m are subscripted.

It is proved in [13] that for k = 1, 2, 3,

(9) |u(k)(x)| ≤ M
(

1 + ε−ke−m∗x/ε
)

, x ∈ X,

where

(10) 0 < m∗ < b∗m0,

with

m0 = m1e
−b∗B, m1 =

1

2
b∗B

2 − c∗B +
c∗c∗
2b∗

.

Note that m1 is positive because of (8).
Estimates (9) and (10) are crucial in the error analysis of section 3. Their proofs

can be found in [13], but some details are provided below for completeness. The
proofs presented here differ a little from those in [13]. Moreover, closer attention is
paid here to the constant m∗ since its upper estimate is only implicitly contained
in the proofs in [13], this being unimportant there.

Lemma 1. The solution u of problem (4) satisfies

(11)
m1

ε
≤ u′(0) ≤

M

ε
.

Proof. If u′(x) < 0 at some points in (0, 1), then there exists a point x̃ ∈ (0, 1)
such that u′(x̃) = 0 and u′′(x̃) < 0. This is a contradiction because the differential
equation in (1) cannot be satisfied at x = x̃. Therefore, u′(x) ≥ 0 for x ∈ X .

Let

u∗(x) =
c∗
b∗

(x− 1) +B.
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From (8) we have that B > c∗/b∗ ≥ c∗/b
∗ and therefore u∗(x) ≥ u∗(0) > 0, x ∈ X .

This means that u∗(0) > u(0) while u∗(1) = u(1). Since for x ∈ X ,

Tu∗(x) = u∗(x)
[

−b(u∗(x))
c∗
b∗

+ c(x, u∗(x))
]

≥ 0,

inverse monotonicity implies that

(12) u(x) ≤ u∗(x), x ∈ X.

It should be noted that the proof of (12) is more complicated in [13] because gu ≥ 0
is introduced there later and inverse monotonicity cannot be used at this stage.

Both estimates in (11) can be proved after integrating Tu = 0 from 0 to some
point ζ ∈ (0, 1]. Expressing εu′(0), we get

(13) εu′(0) = εu′(ζ) + f(u(ζ))−

∫ ζ

0

g(x, u(x)) dx.

To prove the lower estimate in (11), set ζ = 1 and use u′(1) ≥ 0 in (13) to get

εu′(0) ≥ f(B)−

∫ 1

0

g(x, u(x)) dx ≥
1

2
b∗B

2 − c∗
∫ 1

0

u∗(x) dx

=
1

2
b∗B

2 − c∗B +
c∗c∗
2b∗

= m1.

For the upper estimate, choose ζ so that

εu′(ζ) = u(ε)− u(0) = u(ε) ≤ M, ζ ∈ (0, ε).

Then (13) implies that εu′(0) ≤ M . �

Lemma 2. The solution u of problem (4) satisfies

(14) u(x) ≥ m0x/ε, x ∈ [0, ε],

(15) u(x) ≥ m0, x ∈ [ε, 1].

Proof. Let β(x) =
∫ x

0
u(t)b(u(t))dt. The differential equation in (1) can be ex-

pressed in the form

ε
(

eβ(x)/εu′(x)
)′

= g(x, u(x))eβ(x)/ε,

from where

(16) u′(x) =

[

ε−1

∫ x

0

g(t, u(t))eβ(t)/ε dt+ u′(0)

]

e−β(x)/ε.

(We can see now that u′(x) > 0 for all x ∈ X .) It further follows that

(17) u′(x) ≥ u′(0)e−β(x)/ε ≥
m1

ε
e−b∗Bx/ε.

If x = 0, the inequality in (14) is trivially satisfied. If x ∈ (0, 1], there exists
ξ ∈ (0, x) such that

(18) u(x) = xu′(ξ) ≥
m1

ε
xe−b∗Bξ/ε ≥

m1

ε
xe−b∗Bx/ε,

where we have used (17). This immediately implies (14). As for (15), this inequality
follows from the fact that u(x) ≥ u(ε) when x ∈ [ε, 1] and from (18) with x = ε. �

Theorem 1. The solution u of problem (4) satisfies (9) with m∗ like in (10).
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Proof. It follows from (16) that

u′(x) ≤

[

ε−1 c
∗

b∗

∫ x

0

u(t)b(u(t))eβ(t)/ε dt+ u′(0)

]

e−β(x)/ε

=

[

c∗

b∗

(

eβ(x)/ε − 1
)

+ u′(0)

]

e−β(x)/ε

≤ M
[

1 + ε−1e−β(x)/ε
]

, x ∈ X,

where Lemma 1 is used in the last step. Since (14) and (15) imply that

β(x) ≥

{

b∗m0x
2/(2ε) for x ∈ [0, ε],

b∗m0x for x ∈ [ε, 1],

and since

e−b∗m0x
2/(2ε) ≤ eb∗m0(1−x/ε) ≤ Me−b∗m0x/ε, x ∈ [0, ε],

it follows that

u′(x) ≤ M
(

1 + ε−1e−b∗m0x/ε
)

, x ∈ X.

This proves (9) for k = 1.
For k = 2, differentiate once the differential equation in (1) and express u′′(x)

the way this is done in (16) with u′(x). From there it follows that, [13, Lemma 4],

|u′′(x)| ≤ M
(

1 + ε−3xe−β(x)/ε
)

, x ∈ X.

Then, using the above arguments,

|u′′(x)| ≤ M
(

1 + ε−3xe−b∗m0x/ε
)

≤ M
(

1 + ε−2e−m∗x/ε
)

, x ∈ X.

The estimate for k = 3 can be proved analogously. �

3. The numerical method

Let XN be the discretization mesh with points 0 = x0 < x1 < · · · < xN = 1. Let
also hi = xi − xi−1, i = 1, 2, . . . , N and χi = θhi + (1− θ)hi+1, i = 1, 2, . . . , N − 1,
for a fixed θ in [0, 1]. Mesh functions on XN are denoted by vN = (vi) = (v(xi)),
wN = (wi) = (w(xi)), etc. In particular, uN = (u(xi)) is the discretization of the
continuous solution onto XN . Let

‖vN‖XN = max
x∈XN

|v(x)|.

The problem (4) is discretized as follows:

(19)
TNwi := −εD′′wi −Dθf(wi) + g(xi, wi) = 0, i = 1, 2, . . . , N − 1,

w0 = 0, wN = B,

where

Dθwi =
wi+1 − wi

χi
and D′′wi =

1

χi
(D0wi −D0wi−1) .

Because of the assumption (5), the discrete problem (19) has a unique solution
wN = (wi) satisfying wi ∈ U , i = 1, 2, . . . , N − 1.

In the discussion of the stability of the discrete operator TN , the following linear
discrete operator is needed:

(20) ΛNvi := −εD′′vi + pi
vi − vi−1

χi
+ qivi.
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Let (Gj
i ) be the discrete Green’s function associated with ΛN at the point xj ,

j = 1, 2, . . . , N − 1. Thus,

ΛNGj
i =

δij
χi

, i = 1, 2, . . . , N − 1, Gj
0 = Gj

N = 0,

where

δij =

{

1 if i = j,
0 if i 6= j.

Lemma 3. Consider the operator ΛN with pi > 0 and qi ≥ 0, i = 1, 2, . . . , N − 1.
Then its discrete Green’s function satisfies

(21) 0 ≤ Gj
i ≤ Qj

0, i, j = 0, 1, . . . , N,

where Qj
0 is defined below in (22).

Proof. The proof uses the technique from [9] with appropriate modifications. The

operator ΛN is inverse monotone and Gj
i ≥ 0 for all i and j. Qj

0 is defined in the
following more general formula:

(22) Qj
i =







hjR
j
j + hj−1R

j
j−1 + · · ·+ hi+1R

j
i+1

ε+ pjhj
for i = 0, 1, . . . , j − 1,

0 for i = j, j + 1, . . . , N,

with

Rj
i = (σiσi+1 · · ·σj−1)

−1, i = 1, 2, . . . , j − 1, σν = 1 +
pνhν

ε
,

and
Rj

j := 1.

The estimate (21) is proved using the inverse monotonicity of ΛN and the barrier
function

Bj
i =

{

Qj
0 −Qj

i for i = 0, 1, . . . , j − 1,

Qj
0 for i = j, j + 1, . . . , N.

For any fixed j, it holds that

Bj
i −Bj

i−1

hi
=







Rj
i

ε+ pjhj
for i = 1, 2, . . . , j,

0 for i = j + 1, j + 2, . . . , N,

and it can be verified that

ΛNBj
i ≥

δij
χi

= ΛNGj
i , i = 1, 2, . . . , N − 1.

Therefore, Gj
i ≤ Bj

i for i = 1, 2, . . . , N − 1 and (21) follows because Bj
i ≤ Qj

0 for
all i. �

From this point on, a special discretization mesh, dense in the layer, is needed.
A Shishkin-type mesh, introduced for the first time in [12], is used. It consists of
two equidistant parts: the fine part with J subintervals and the coarse part with
N − J intervals. J is here less than N and such that κ := J/N is a fixed constant.
The transition point between the two parts of the mesh is

τ = min{κ, λ} with λ =
aεL

m∗

,

where a is a positive constant, m∗ is from (10), and L = L(N) denotes a real
number satisfying

L ≤ lnN and e−L ≤
L

N
.
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Therefore, the fine and coarse mesh steps are h = τ/J and H = (1 − τ)/(N − J),
respectively, and the mesh points are xi = ih for i = 0, 1, . . . , J and xi = τ+(i−J)H
for i = J + 1, J + 2, . . . , N . Let this mesh be denoted by SN(L). The standard
Shishkin mesh uses lnN instead of L, typically with κ = 1

2 , see [12]. When N → ∞,
L behaves like lnN , see [15]. However, there is a practical reason for using values
of L which are less than lnN : if L is smaller, the mesh is denser in the layer and
more accurate numerical results can be expected. The smallest possible L is the
solution L∗ of the equation e−L∗ = L∗/N .

Linß [7] generalizes the results from [9] while making use of the same kind of
stability inequality as in [9]. This stability inequality, based on a result analogous
to the above Lemma 3, is used differently in [7] than in [9]. In order to obtain
further estimates which are needed in the error-analysis, Linß derives a sharper
estimate of the quantity corresponding to the present Qj

0. This sharper estimate
takes the Shishkin discretization mesh into account. The same is done here, but
the analysis is different. The case τ = λ is considered initially.

Lemma 4. Let pi ≥ mu(xi), i = 1, 2, . . . , N − 1, where u is the solution of (4).
Let also τ = λ and let N be sufficiently large independently of ε. Then the estimate

(23) Qj
0 ≤ ML,

is satisfied on SN(L) for all j = 1, 2, . . . , N − 1.

Proof. Consider j = 1, 2, . . . , J . According to (22),

Qj
0 =

h(1 +Rj
j−1 + · · ·+Rj

1)

ε+ pjh
≤

jh

ε

since Rj
i < 1 for i = 1, 2, . . . , j− 1 and since pj is positive because of (14) and (15).

Then h = λ/J implies (23) in this case.
Let now j = J+1, J+2, . . . , N−1. Since N is large enough, λ ≥ ε and therefore

xj ≥ ε. Then because of (15) there exists a constant m2 such that pj ≥ m2. Qj
0

can now be estimated as follows:

Qj
0 ≤

Hρj + Jh

ε+m2H
,

where

ρj = Rj
j +Rj

j−1 + · · ·+ Rj
J+1.

Since
Jh

ε+m2H
≤

Jh

ε
≤ ML,

(23) follows from

P :=
Hρj

ε+m2H
≤ M.

To see this, set σ = 1 +m2H/ε and use the fact that

Rj
ν ≤ σν−j for ν = J + 1, J + 2, . . . , j.

Then

ρj ≤ 1 + σ−1 + σ−2 + · · ·+ σJ+1−j ≤
1

1− σ−1
,

which implies

P ≤
H

εσ
·

1

1− σ−1
=

H

ε
·

1

σ − 1
=

1

m2
.

�
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It should be noted that the simplicity of the Shishkin mesh is beneficial in the
above analysis. Bakhvalov discretization meshes [1] are also well-known in the nu-
merical analysis of singular perturbation problems as layer-resolving meshes which
are used in ε-uniform methods. Being smoother than Shishkin meshes, they typi-
cally give more accurate results, see [14] for instance. However, the proof of Lemma
4 would be much more complicated on a mesh of Bakhvalov type.

The main result of the paper follows.

Theorem 2. Consider the discrete problem (19) on the mesh SN(L) with τ = λ,
a ≥ 2, and N sufficiently large but independent of ε. Then the solution wN of (19)
satisfies

‖wN − uN‖SN (L) ≤ M
L3

N
,

where uN = (u(xi)), u being the solution of the continuous problem (4).

Proof. Let vN be an arbitrary mesh function with v0 = vN = 0. Define for i =
1, 2, . . . , N − 1

Λ∗,Nvi = −εD′′vi −Dθ(pivi) + qivi,

where

pi =

∫ 1

0

zi(t)b(zi(t)) dt, zi(t) = tu(xi) + (1− t)wi,

and

qi =

∫ 1

0

gu(xi, zi(t)) dt.

It holds true that

Λ∗,N [u(xi)− wi] = TNu(xi)− TNwi = TNu(xi).

The operators ΛN (defined in (20)) and Λ∗,N are adjoint in the sense that

N−1
∑

i=1

χiviΛ
Nyi =

N−1
∑

i=1

χiyiΛ
∗,Nvi

(yN is here another mesh function satisfying y0 = yN = 0). Therefore,

vj =

N−1
∑

i=1

χiviΛ
NGj

i =

N−1
∑

i=1

χiG
j
iΛ

∗,Nvi, j = 1, 2, . . . , N − 1.

Up to this point, the proof has followed the steps from [8]. Lemmas 3 and 4 are
now used to get

|vj | ≤

N−1
∑

i=1

χiQ
j
0|Λ

∗,Nvi| ≤ ML

N−1
∑

i=1

χi|Λ
∗,Nvi|,

that is,

(24) |u(xj)− wj | ≤ ML
N−1
∑

i=1

χi|T
Nu(xi)|.

Lemma 4 can be applied since qi ≥ 0 and

pi ≥ b∗

∫ 1

0

[tu(xi) + (1− t)wi] dt =
b∗
2
[u(xi) + wi] ≥ mu(xi)

(recall that wi ≥ 0). The assertion then follows from (24) if it is proved that

(25) ΣN−1
1 ≤ M

L2

N
,
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where

Σk
j :=

k
∑

i=j

ri, ri := χi|T
Nu(xi)|.

The estimate in (25) can be proved using a fairly standard technique, cf. [9] for
instance. By Taylor’s expansion and (9) it follows that

(26) ri ≤ Mh2
i+1

(

1 + ε−2e−m∗xi−1/ε
)

.

Consider ΣJ−1
1 first. Then hi+1 = h ≤ MεL/N , where h is the fine-mesh step

size. This implies that

ri ≤ M

(

εL

N

)2

(1 + ε−2) ≤ M
L2

N2
.

Therefore,

(27) ΣJ−1
1 ≤ M

L2

N
.

On the other hand, within ΣN−1
J+2 , hi+1 = H ≤ M/N , where H is the coarse-mesh

step size, and xi−1 ≥ λ+H . Then (26) gives

ri ≤ M
[

H2 +
(

H
ε
)2

e−m∗H/ε · e−m∗λ/ε
]

≤ M
[

N−2 + e−m∗λ/ε
]

≤ M
[

N−2 +
(

e−L
)a
]

≤ M

[

N−2 +

(

L

N

)a]

≤ M
L2

N2 ,

implying that

(28) ΣN−1
J+2 ≤ M

L2

N
.

Finally, let i = J, J + 1. Then hi+1 = H and xi−1 ≥ λ− h, so that

ri ≤ M
[

H2 +
(

H
ε
)2

e−m∗λ/ε
]

≤ M

[

N−2 +

(

1

εN

)2

·

(

L

N

)a
]

.

Then

(29) ri ≤ M
L2

N2
, i = J, J + 1, if ε ≥

1

N
.

It is left to consider the case ε ≤ 1/N . ri is then estimated differently from (26):

(30) ri ≤ 2ε max
xi−1≤x≤xi+1

u′(x) + b∗
∫ u(xi+1)

u(xi)

t dt+ χi|g(xi, u(xi))|.

Since
∫ u(xi+1)

u(xi)

t dt ≤ M [u(xi+1)− u(xi)] = M

∫ xi+1

xi

u′(t) dt

≤ M

∫ xi+1

xi

(

1 + ε−1e−m∗t/ε
)

dt ≤ M
(

H + e−m∗xi/ε
)

,

it follows from (30) that

ri ≤ M
[

ε+ e−m∗xi−1/ε +H
]

≤ M
[

N−1 + e−m∗(λ−h)/ε
]

≤ M

[

N−1 +

(

L

N

)2
]

.
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This means that

(31) ri ≤ M
L2

N
, i = J, J + 1, if ε ≤

1

N
.

Then (25) follows from (27), (28), (29), and (31). �

The case τ = κ has not been discussed above. It implies that ε lnN ≥ m, thus N
is unreasonably large. Nevertheless, it is only befitting in a paper dedicated to G.
I. Shishkin to give a complete proof of ε-uniform convergence in its strictest sense.
Theorem 3 below shows that the result of Theorem 2 holds true when τ = κ.

Theorem 3. Consider the discrete problem (19) on the mesh SN (L) with τ = κ.
Then the solution wN of (19) satisfies

‖wN − uN‖SN (L) ≤ M
L3

N
,

where uN = (u(xi)), u being the solution of the continuous problem (4).

Proof. Since τ = κ, it holds true that ε−1 ≤ ML. Then for pj ≥ 0,

Qj
0 ≤

H(1 +Rj
j−1 + · · ·+Rj

1)

ε+ pjh
≤

1

ε
≤ ML, j = 1, 2, . . . , N − 1,

and the estimate from Lemma 4 is still valid. The estimate in (25) is also satisfied
since

χi|T
Nu(xi)| ≤ MN−2(1 + ε−2) ≤ M

L2

N2
, i = 1, 2, . . . , N − 1.

�

4. Numerical results

The theoretical results from the previous section are now illustrated by some nu-
merical experiments. The following example from [18] is taken for the test problem:

(32) −εu′′ − uu′ + u = 0 on X, u(0) = 0, u(1) = 2.

This problem satisfies (8). Its asymptotic solution is

uA(x) = x+ 1− 2 ·
e−x/ε

1 + e−x/ε
.

For uA and the solution u of problem (32), it holds true that

|u(x)− uA(x)| ≤ Mε, x ∈ X,

see [18]. Therefore, when ε ≪ N−1, the numerical solution wN can be compared
to uN

A = (uA(xi)). This is done in Tables 1–3, which show the errors

EN = ‖uN
A − wN‖SN (L)

and the values of the numerical order of convergence

ωN = log2
EN

E2N
.

Different values of the scheme parameter θ produce almost identical results. The
results presented here are for θ = 1

2 . The values of EN are smaller when there are
more mesh points in the layer. This can be achieved by making a and L less and κ
and m∗ greater. Of course, the preceding theory requires that the mesh parameters
satisfy a ≥ 2, L∗ ≤ L ≤ lnN , 0 < κ < 1, and 0 < m∗ < b∗m0 (see (10)). In all
tables, a = 2. In Tables 1–3, all ε values, ε = 10−k for k = 4, 5, . . . , 12, produce
identical errors. This confirms that the numerical method is uniform in ε. In Tables
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Table 1. Results on SN (L∗) with m∗ = .067; ε = 10−k for k = 4, 5, . . . , 12

κ = 1/2 κ = 3/4

N EN ωN EN ωN

64 1.57E−1 .58 9.03E−2 .55
128 1.05E−1 .59 6.16E−2 .66
256 6.98E−2 .70 3.91E−2 .68
512 4.29E−2 .77 2.43E−2 .76

1024 2.51E−2 — 1.44E−2 —

Table 2. Results on SN (lnN) with m∗ = .067 and κ = 3/4;
ε = 10−k for k = 4, 5, . . . , 12

N EN ωN ηN

64 1.27E−1 .68 1.43
128 7.91E−2 .56 2.30
256 5.38E−2 .67 1.91
512 3.37E−2 .75 1.63
1024 2.00E−2 — —

1 and 2, m∗ = .067 (b∗m0 = 1/(2e2) ≈ .067667 for problem (32)). Two different
values of κ are used in Table 1.

Table 2 enables a comparison between the use of L∗ and lnN in the mesh con-
struction. It also shows that the corresponding error-estimate EN ≤ M(lnN)3/N
is too rough. If it is assumed that the error is of the form

EN ≈ MN−1(lnN)η,

for some positive constant η, then η can be found from

η ≈ ηN :=
ln(2E2N )− lnEN

ln(ln 2N)− ln(lnN)
.

As can be seen in Table 2, the values of ηN are well below 3 in this numerical
example.

It should be noted that the theoretically safe value of m∗ is small and that this
spoils the accuracy to some extent. The estimate (10) is probably too conservative.
From the form of uA it can be concluded that m∗ ∈ (0, 1) may be used in this
example. Table 3 shows the numerical results for m∗ = .8. The very good values
for the numerical order of convergence are beyond the theory presented in this
paper.

Table 3 is extended in Table 4 to include greater values of ε. Since in Table 4
ε ≪ N−1 is not generally satisfied, uA cannot be used to calculate the errors. The
double-mesh principle [3, p. 166] is used instead. In this principle, the error and
order of convergence are estimated respectively by

EN
D = ‖wN − w̄2N‖SN(L) and ωN

D = log2
EN

D

E2N
D

,

where w̄2N is the piecewise linear interpolant of the numerical solution w2N . Since
the test problem (32) is of type (2), the method from [17] can be applied to it.
However, as pointed out in (3), this method is not appropriate for all ε ∈ (0, 1].
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Table 3. Results on SN (L∗) with m∗ = .8 and κ = 3/4; ε = 10−k

for k = 4, 5, . . . , 12

N EN ωN

64 5.09E−2 .97
128 2.59E−2 .99
256 1.31E−2 .99
512 6.58E−3 1.00

1024 3.30E−3 —

Table 4. Results on SN (L∗) with m∗ = .8 and κ = 3/4

ε = 1 ε = .1 ε = .01 ε = .001

N EN
D ωN

D EN
D ωN

D EN
D ωN

D EN
D ωN

D

64 2.79E−3 .97 1.17E−2 1.74 4.33E−2 .96 4.70E−2 .93
128 1.42E−3 .98 3.49E−3 .98 2.22E−2 1.00 2.47E−2 .96
256 7.19E−4 .99 1.77E−3 .99 1.11E−2 1.02 1.27E−2 .98
512 3.61E−4 — 8.88E−4 — 5.49E−3 — 6.41E−3 —

Table 4 illustrates that an advantage of the method presented here is that it can
be used successfully for the full range of ε values.
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[14] R. Vulanović, Fourth order algorithms for a semilinear singular perturbation problem, Nu-
merical Algorithms, 16 (1997) 117–128.



BOUNDARY-SHOCK PROBLEM 579
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