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FOR SINGULARLY PERTURBED LINEAR DYNAMICAL

SYSTEMS

S. VALARMATHI AND JOHN J.H. MILLER

Dedicated to G. I. Shishkin on his 70th birthday

Abstract. A system of singularly perturbed ordinary differential equations of

first order with given initial conditions is considered. The leading term of each

equation is multiplied by a small positive parameter. These parameters are

assumed to be distinct and they determine the different scales in the solution

to this problem. A Shishkin piecewise–uniform mesh is constructed, which is

used, in conjunction with a classical finite difference discretization, to form a

new numerical method for solving this problem. It is proved that the numerical

approximations obtained from this method are essentially first order convergent

uniformly in all of the parameters. Numerical results are presented in support

of the theory.
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1. Introduction

We consider the initial value problem for the singularly perturbed system of
linear first order differential equations

E~u′(t) +A(t)~u(t) = ~f(t), t ∈ (0, T ], ~u(0) given.(1)

Here ~u is a column n-vector, E and A(t) are n × n matrices, E = diag(~ε), ~ε =
(ε1, . . . , εn) with 0 < εi ≤ 1 for all i = 1 . . . n. For convenience we assume the
ordering

ε1 < · · · < εn.

These n distinct parameters determine the n distinct scales in this multiscale prob-
lem. Cases with some of the parameters coincident are not considered here. We
write the problem in the operator form

~L~u = ~f, ~u(0) given,

where the operator ~L is defined by

~L = ED +A(t) and D =
d

dt
.

We assume that, for all t ∈ [0, T ], the components aij(t) of A(t) satisfy the inequal-
ities
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aii(t) >
n
∑

j 6=i

j=1

|aij(t)| for 1 ≤ i ≤ n, and aij(t) ≤ 0 for i 6= j.(2)

We take α to be any number such that

0 < α < min
t∈(0,1]

1≤i≤n

(

n
∑

j=1

aij(t)).(3)

We also assume that T ≥ 2maxi(εi)/α, which ensures that the solution domain
contains all of the layers. This condition is fulfilled if, for example, T ≥ 2/α. We in-

troduce the norms ‖ ~V ‖= max1≤k≤n |Vk| for any n-vector ~V , ‖ y ‖= sup0≤t≤T |y(t)|
for any scalar-valued function y and ‖ ~y ‖= max1≤k≤n ‖ yk ‖ for any vector-valued
function ~y. Throughout the paper C denotes a generic positive constant, which
is independent of t and of all singular perturbation and discretization parameters.
Furthermore, inequalities between vectors are understood in the componentwise
sense.

The plan of the paper is as follows. In the next section both standard and novel
bounds on the smooth and singular components of the exact solution are obtained.
The sharp estimates in Lemma 2.4 are proved by mathematical induction, while an
interesting ordering of the points ti,j is established in Lemma 2.6. In Section 3 the
appropriate piecewise-uniform Shishkin meshes are introduced, the discrete problem
is defined and the discrete maximum principle and discrete stability properties are
established. In Section 4 an expression for the local truncation error is found
and two distinct standard estimates are stated. In Section 5 parameter-uniform
estimates for the local truncation error of the smooth and singular components are
obtained in a sequence of lemmas. The section culminates with the statement and
proof of the parameter-uniform error estimate, which is the main theoretical result
of the paper. In the final section numerical results are presented in support of the
theory.

The initial value problems considered here arise in many areas of applied math-
ematics; see for example [1]. Parameter uniform numerical methods for simpler
problems of this kind, when all the singular perturbation parameters are equal,
were considered in [4]. A special case of the present problem, with n = 3, was
considered in [3]. However, the proof of the parameter uniform error estimate for
general n, which is the main goal of the present paper, is significantly more difficult.
A general introduction to parameter uniform numerical methods is given in [2] and
[7].

2. Analytical results

The operator ~L satisfies the following maximum principle

Lemma 2.1. Let A(t) satisfy (2) and (3). Let ~ψ(t) be any function in the domain

of ~L such that ~ψ(0) ≥ 0. Then ~L~ψ(t) ≥ 0 for all t ∈ (0, T ] implies that ~ψ(t) ≥ 0 for
all t ∈ [0, T ].

Proof. Let i∗, t∗ be such that ψi∗(t
∗) = mini,t ψi(t) and assume that the lemma is

false. Then ψi∗(t
∗) < 0 . From the hypotheses we have t∗ 6= 0 and ψ′

i∗(t
∗) ≤ 0.
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Thus

(~L~ψ(t∗))i∗ = εi∗ψ
′
i∗(t

∗) + ai∗,i∗(t
∗)ψi∗(t

∗) +

n
∑

j=1, j 6=i∗

ai∗,j(t
∗)ψj(t

∗)

≤ ψ∗
i (t

∗)

n
∑

j=1

ai∗,j(t
∗) < 0.

which contradicts the assumption and proves the result for ~L. �

Remark. Let Ã(t) be any principal sub-matrix of A(t) and ~̃L the corresponding

operator. To see that any ~̃L satisfies the same maximum principle as ~L, it suffices
to observe that the elements of Ã(t) satisfy a fortiori the same inequalities as those
of A(t).

Lemma 2.2. Let A(t) satisfy (2) and (3). If ~ψ(t) is any function in the domain

of ~L then

‖ ~ψ(t) ‖≤ max

{

‖ ~ψ(0) ‖,
1

α
‖ ~L~ψ ‖

}

, t ∈ [0, T ]

Proof. Define the two functions

~θ±(t) = max{||~ψ(0)||,
1

α
||~L~ψ||}~e± ~ψ(t),

where ~e = (1, . . . , 1)′ is the unit column vector. Using the properties of A it is

not hard to verify that ~θ±(0) ≥ 0 and ~L~θ±(t) ≥ 0. It follows from Lemma 2.1 that
~θ±(t) ≥ 0 for all t ∈ [0, T ]. �

The Shishkin decomposition of the solution ~u of (1) is given by ~u = ~v + ~w

where ~v is the solution of ~L~v = ~f on (0, T ] with ~v(0) = A−1(0)~f(0) and ~w is the

solution of ~L~w = ~0 on (0, T ] with ~w(0) = ~u(0)−~v(0). Here ~v , ~w are, respectively,
the smooth and singular components of ~u .
We define the layer functions Bi, 1 ≤ i ≤ n, associated with the solution ~u by

Bi(t) = e−αt/εi , t ∈ [0,∞).

The following elementary properties of these layer functions, for all 1 ≤ i < j ≤ n,
should be noted:
(i) Bi(t) < Bj(t), for all t > 0.
(ii) Bi(s) > Bi(t), for all 0 ≤ s < t <∞.
(iii) Bi(0) = 1 and 0 < Bi(t) < 1 for all t > 0.
The smooth component ~v of ~u and its derivatives are estimated the following lemma,
which gives bounds showing the explicit dependence on the inhomogeneous term
and the initial condition.

Lemma 2.3. Let A(t) satisfy (2) and (3). Then there exists a constant C, inde-

pendent of ε, ~u(0) and ~f , such that

‖ ~v ‖≤ C ‖ ~f ‖, ‖ ~v′ ‖≤ C(‖ ~f ‖ + ‖ ~f ′ ‖)

and, for all 1 ≤ i ≤ n,

‖ εiv
′′
i ‖≤ C(‖ ~f ‖ + ‖ ~f ′ ‖)
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Proof. We introduce the two functions ~ψ±(t) = C||~f ||~e ± ~v(t) where ~e is the unit

column vector. Noting that ~v(0) = A−1(0)~f(0), it is not hard to see that ~ψ±(0) ≥ 0

and ~L~ψ±(t) ≥ 0. It follows from Lemma 2.1 that ~ψ±(t) ≥ 0 for all t ∈ [0, T ] and

so ‖ ~v ‖≤ C ‖ ~f ‖. To estimate the derivative we now define the two functions
~φ±(t) = C(||~f || + ||~f ′||)~e ± ~v′(t). Since ~v′(0) = 0 and ~L~v′ = ~f ′ − A′~v, it may be

verified that ~φ±(0) ≥ 0 and ~L~φ±(t) ≥ 0. Again by Lemma 2.1 we have ~φ±(t) ≥ 0,
which proves the result. Finally, differentiating the equation εiv

′
i + (A~v)i = fi and

using the estimates of ~v and ~v′, we obtain the required bound on εiv
′′
i . �

Bounds on the singular component ~w of ~u and its derivatives are contained in

Lemma 2.4. Let A(t) satisfy (2) and (3).Then there exists a constant C, such
that, for each t ∈ [0, T ] and i = 1, . . . , n,

|wi(t)| ≤ CBn(t), |w′
i(t)| ≤ C

n
∑

q=i

Bq(t)

εq
, |εiw

′′
i (t)| ≤ C

n
∑

q=1

Bq(t)

εq
.

Proof. First we obtain the bound on ~w. We define the two functions ~ψ± = CBn~e±

~w. Then clearly ~ψ±(0) ≥ 0 and L~ψ± = CL(Bn~e). Then, for i = 1, . . . , n, (L~ψ±)i =

C(
∑n

j=1 ai,j − α εi
εn
)Bn > 0. By Lemma 2.1 ~ψ± ≥ 0, which leads to the required

bound on ~w.
To establish the bound on ~w′ we begin with the nth equation in ~L~w = 0, namely

εnw
′
n + an,1w1 + · · ·+ an,nwn = 0,

from which the bound for i = n follows. We now bound w′
i for 1 ≤ i ≤ n− 1. We

define ~p = (w1, . . . , wn−1) and, taking the first n − 1 equations satisfied by ~w, we
get

Ẽ~p′ + Ã~p = ~g,

where Ẽ, Ã are the matrices obtained from E,A respectively by deleting the last
row and column, the components of ~g are gk = −ak,nwn for 1 ≤ k ≤ n − 1

and ~̃L = ẼD + Ã(t). Using the bounds already obtained for wn, w
′
n we see that

‖ ~g(t) ‖= max1≤k≤n |gk(t)| and ‖ ~g′(t) ‖ are bounded respectively by CBn(t) and

C Bn(t)
εn

. The initial condition for ~p is ~p(0) = ~u(0)− ~u0(0), where ~u0 is the solution

of the reduced problem ~u0 = A−1 ~f , and is therefore bounded by C(‖ ~u(0) ‖ + ‖
~f(0) ‖). Let ~q and ~r denote, respectively, the smooth and singular components in
the Shishkin decomposition of ~p. Then

~p = ~q + ~r

where ~̃L~q = ~g, ~q(0) = Ã−1(0)~g(0), ~̃L~r = ~0, ~r(0) = ~p(0) − ~q(0). Also, ~q′(0) = ~0.

Introducing ~ψ±(t) = CBn(t)~e ± ~q(t), it is easy to see that ~ψ±(0) = C~e ± ~q(0) ≥ ~0

and that ~̃L~ψ±(t) = CBn(t)(Ã − α
εn
Ẽ)~e ± ~g(t) ≥ CBn(t)diag(1 − ε1

εn
, . . . , 1 −

εn−1

εn
)~e ± ~g(t) > ~0 from the bound on the inhomogeneous term ~g. Thus, from

the Remark following Lemma 2.1, ~ψ±(t) ≥ ~0 or ‖ ~q(t) ‖≤ CBn(t). Defining
~θ±(t) = C Bn(t)

εn
~e ± ~q′(t), a similar argument, using the bound on ~g′, shows that

‖ ~q′(t) ‖≤ C Bn(t)
εn

, as required.
We now use mathematical induction. We assume that Lemma 2.4 is valid for

all systems with n − 1 equations. Then Lemma 2.4 applies to ~r and so, for i =
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1, . . . , n− 1,

|r′i(t)| ≤ C(
Bi(t)

εi
+ · · ·+

Bn−1(t)

εn−1
).

Combining the bounds for qi and ri we obtain

|p′i(t)| ≤ C(
Bi(t)

εi
+ · · ·+

Bn(t)

εn
).

Recalling the definition of ~p, we conclude that

|w′
i(t)| ≤ C(

Bi(t)

εi
+ · · ·+

Bn(t)

εn
).

We have thus proved that Lemma 2.4 holds for our system with n equations. Since
Lemma 2.4 is true for a system with one equation, we conclude by mathematical
induction that it is true for any system of n > 1 equations.

Finally, to estimate the second derivative, we differentiate the ith equation of

the system ~L~w = 0 to get

εkw
′′
i = −(A~w′

i +A′ ~w)i

and we see that the bound on w′′
i follows easily from the bounds on ~w and ~w′. �

Definition 2.5. For each 1 ≤ i 6= j ≤ n we define the point ti,j by

(4)
Bi(ti,j)

εi
=
Bj(ti,j)

εj
.

In the next lemma it is shown that these points exist, are uniquely defined and
have an interesting ordering. Sufficient conditions for them to lie in the domain
[0, T ] are also provided. The proof is omitted, because these results are all proved
in [3]

Lemma 2.6. For all i, j with 1 ≤ i < j ≤ n the points ti,j exist, are uniquely
defined and satisfy the following inequalities

(5) ε−1
i Bi(t) > ε−1

j Bj(t) t ∈ [0, tij)

and

(6) ε−1
i Bi(t) < ε−1

j Bj(t) t ∈ (tij ,∞).

In addition the following ordering holds

(7) ti,j < ti+1,j , if i+ 1 < j and ti,j < ti,j+1, if i < j

and

(8) εi ≤ εj/2 implies that tij ∈ (0, T ] for all i < j.

3. The discrete problem

We construct a piecewise uniform mesh with N mesh-intervals and mesh-points
{ti}

N
i=0 by dividing the interval [0, T ] into n+ 1 sub-intervals as follows

[0, T ] = [0, σ1] ∪ (σ1, σ2] ∪ . . . (σn−1, σn] ∪ (σn, T ]

Then, on the sub-interval [0, σ1], a uniform mesh with N
2n mesh-intervals is placed,

and similarly on (σi, σi+1], 1 ≤ i ≤ n−1, a uniform mesh with N
2n−i+1 mesh-intervals

and on (σn, T ] a uniform mesh with N
2 mesh-intervals. In practice it is convenient

to take N = 2nk where k is some positive power of 2. The n transition points
between the uniform meshes are defined by

σi = min{
σi+1

2
,
εi
α

lnN}
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for i = 1, . . . , n− 1 and

σn = min{
T

2
,
εn
α

lnN}.

Clearly

0 < σ1 < · · · < σn ≤
T

2
.

This construction leads to a class of 2n piecewise uniform Shishkin meshes M~b,

where ~b denotes an n–vector with bi = 0 if σi =
σi+1

2 and bi = 1 otherwise. Note
that M~0 is a classical uniform mesh. Writing δj = tj − tj−1 we remark that

(9) δj ≤ CN−1, for any j, 1 ≤ j ≤ N.

(10)
σi
εi

≤ C lnN, for any i, 1 ≤ i ≤ n.

(11) Bi(σi) = N−1 if bi = 1.

(12) σi = 2−(j−i+1)σj+1, for i ≤ j, if bk = 0, ∀ k ∋ i ≤ k ≤ j.

On anyM~b we now consider the discrete solutions defined by the backward Euler
finite difference scheme

ED− ~U +A(t)~U = ~f, ~U(0) = ~u(0),

or in operator form
~LN ~U = ~f, ~U(0) = ~u(0),

where
~LN = ED− +A(t)

and D− is the backward difference operator

D− ~U(tj) =
~U(tj)− ~U(tj−1)

δj
.

We have the following discrete maximum principle analogous to the continuous
case.

Lemma 3.1. Let A(t) satisfy (2) and (3). Then, for any mesh function ~Ψ, the

inequalities ~Ψ(0) ≥ ~0 and L̃NΨ̃(tj) ≥ 0̃ for 1 ≤ j ≤ N, imply that ~Ψ(tj) ≥ ~0
for 0 ≤ j ≤ N.

Proof. Let i∗, j∗ be such that Vi∗(tj∗) = mini,j Vi(tj) and assume that the lemma
is false. Then Vi∗(tj∗) < 0 . From the hypotheses we have j∗ 6= 0 and Vi∗(tj∗) −
Vi∗(tj∗−1) ≤ 0. Thus

( ~LN ~V (tj∗))i∗ = εi∗
Vi∗(tj∗)− Vi∗(tj∗−1)

δj∗
+ ai∗,i∗(tj∗)Vi∗(tj∗) +

n
∑

k=1 k 6=i∗

ai∗,k(tj∗)Vk(tj∗)

≤ Vi∗(tj∗)

n
∑

k=1

ai∗,k(tj∗) < 0,

which contradicts the assumption, as required. �

An immediate consequence of this is the following discrete stability result.
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Lemma 3.2. Let A(t) satisfy (2) and (3). Then, for any mesh function ~Ψ,

‖ ~Ψ(tj) ‖ ≤ max

{

‖ ~Ψ(0) ‖,
1

α
‖ ~LN ~Ψ ‖

}

, 0 ≤ j ≤ N

Proof. Define the two functions

~Θ±(t) = max{||~Ψ(0)||,
1

α
|| ~LN ~Ψ||}~e± ~Ψ(t)

where ~e = (1, . . . , 1) is the unit vector. Using the properties of A it is not hard

to verify that ~Θ±(0) ≥ 0 and ~LN ~Θ±(tj) ≥ 0. It follows from Lemma 3.1 that
~Θ±(tj) ≥ 0 for all 0 ≤ j ≤ N . �

4. The local truncation error

From Lemma 3.2, we see that in order to bound the error ‖ ~U − ~u ‖ it suffices

to bound ~LN (~U − ~u). But this expression satisfies

~LN(~U − ~u) = ~LN (~U)− ~LN(~u) = ~f − ~LN (~u) = ~L(~u)− ~LN (~u)

= (~L− ~LN )~u = −E(D− −D)~u,

which is the local truncation of the first derivative. We have

E(D− −D)~u = E(D− −D)~v + E(D− −D)~w

and so, by the triangle inequality,

(13) ‖ ~LN (~U − ~u) ‖≤‖ E(D− −D)~v ‖ + ‖ E(D− −D)~w ‖ .

Thus, we can treat the smooth and singular components of the local truncation
error separately. In view of this we note that, for any smooth function ψ, we have
the following two distinct estimates of the local truncation error of its first derivative

(14) |(D− −D)ψ(tj)| ≤ 2max
s∈Ij

|ψ′(s)|

and

(15) |(D− −D)ψ(tj)| ≤
δj
2
max
s∈Ij

|ψ′′(s)|,

where Ij = [tj−1, tj ].

5. Error estimate

We now establish the error estimate by generalizing the approach based on
Shishkin decompositons used in [3]. For a reaction-diffusion boundary value prob-
lem in the special case n = 2 a parameter uniform numerical method was analyzed
in [6] by a similar technique and in the general case in [5] using discrete Green’s
functions.

We estimate the smooth component of the local truncation error in the following
lemma.

Lemma 5.1. Let A(t) satisfy (2) and (3). Then, for each i = 1, . . . , n and
j = 1, . . . , N , we have

|εi(D
− −D)vi(tj)| ≤ CN−1.
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Proof. Using (15), Lemma 2.3 and (9) we obtain

|εi(D
− −D)vi(tj)| ≤ Cδj max

sǫIj
|εiv

′′
i (s)| ≤ Cδj ≤ CN−1

as required. �

For the singular component we obtain a similar estimate, but in the proof we
must distinguish between the different types of mesh. We need the following pre-
liminary lemmas.

Lemma 5.2. Let A(t) satisfy (2) and (3). Then, for each i = 1, . . . , n and
j = 1, . . . , N , on each mesh M~b, we have the estimate

|εi(D
− −D)wi(tj)| ≤ C

δj
ε1
.

Proof. From (15) and Lemma 2.4, we have

|εi(D
− −D)wi(tj)| ≤ Cδj maxsǫIj |εiw

′′
i (s)|

≤ Cδj
∑n

q=1
Bq(tj−1)

εq

≤ C
δj
ε1

as required. �

In what follows we make use of second degree polynomials of the form

pi;θ =

2
∑

k=0

(t− tθ)
k

k!
w

(k)
i (tθ),

where θ denotes a pair of integers separated by a comma.

Lemma 5.3. Let A(t) satisfy (2) and (3). Then, for each i = 1, . . . , n, j =
1, . . . , N and k = 1, . . . , n − 1, on each mesh M~b with bk = 1, there exists a
decomposition

wi =

k+1
∑

m=1

wi,m,

for which we have the following estimates for each m, 1 ≤ m ≤ k,

|εiw
′
i,m(t)| ≤ CBm(t), |εiw

′′
i,m(t)| ≤ C

Bm(t)

εm

and

|εiw
′′
i,k+1(t)| ≤ C

n
∑

q=k+1

Bq(t)

εq
.

Furthermore

|εi(D
− −D)wi(tj)| ≤ C(Bk(tj−1) +

δj
εk+1

).

Proof. Since bk = 1 we have εk ≤ εk+1/2, and so, by Lemma 2.6, tr,r+1 ∈ (0, T ] for
r = 1, . . . , k. Therefore, we can define the decomposition

wi =

k+1
∑

m=1

wi,m,

where the components wi,m, 1 ≤ m ≤ k + 1, are given by

wi,k+1 =

{

pi;k,k+1 on [0, tk,k+1)
wi otherwise
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and for each m, k ≥ m ≥ 2,

wi,m =

{

pi;m−1,m on [0, tm−1,m)

wi −
∑k+1

q=m+1 wi,q otherwise

and finally

wi,1 = wi −

k+1
∑

q=2

wi,q on [0,T].

From the above expressions we note that for eachm, 1 ≤ m ≤ k, wi,m = 0 on [tm,m+1,T].
To establish the bounds on the second derivatives we observe that:

in [tk,k+1, T ], using Lemma 2.4 and t ≥ tk,k+1, we obtain

|εiw
′′
i,k+1(t)| = |εiw

′′
i (t)| ≤ C

n
∑

q=1

Bq(t)

εq
≤ C

n
∑

q=k+1

Bq(t)

εq
;

in [0, tk,k+1], using Lemma 2.4 and t ≤ tk,k+1 , we obtain

|εiw
′′
i,k+1(t)| = |εiw

′′
i (tk,k+1)| ≤

n
∑

q=1

Bq(tk,k+1)

εq
≤

n
∑

q=k+1

Bq(tk,k+1)

εq
≤

n
∑

q=k+1

Bq(t)

εq
;

and for each m = k, . . . , 2, we see that

in [tm,m+1, T ], w
′′
i,m = 0;

in [tm−1,m, tm,m+1], using Lemma 2.4, we obtain

|εiw
′′
i,m(t)| ≤ |εiw

′′
i (t)|+

k+1
∑

q=m+1

|εiw
′′
i,q(t)| ≤ C

n
∑

q=1

Bq(t)

εq
≤ C

Bm(t)

εm
;

in [0, tm−1,m], using Lemma 2.4 and t ≤ tm−1,m, we obtain

|εiw
′′
i,m(t)| = |εiw

′′
i (tm−1,m)| ≤ C

n
∑

q=1

Bq(tm−1,m)

εq
≤ C

Bm(tm−1,m)

εm
≤ C

Bm(t)

εm
;

in [t1,2, T ], w′′
i,1 = 0;

in [0, t1,2], using Lemma 2.4,

|εiw
′′
i,1(t)| ≤ |εiw

′′
i (t)|+

k+1
∑

q=2

|εiw
′′
i,q(t)| ≤ C

n
∑

q=1

Bq(t)

εq
≤ C

B1(t)

ε1
.

For the bounds on the first derivatives we observe that for each m, 1 ≤ m ≤ k :
in [tm,m+1, T ], w′

i,m = 0;

in [0, tm,m+1]
∫ tm,m+1

t
εiw

′′
i,m(s)ds = εiw

′
i,m(tm,m+1)− εiw

′
i,m(t) = −εiw

′
i,m(t)

and so

|εiw
′
i,m(t)| ≤

∫ tm,m+1

t

|εiw
′′
i,m(s)|ds ≤

C

εm

∫ tm,m+1

t

Bm(s)ds ≤ CBm(t).

Finally, since

|εi(D
− −D)wi(tj)| ≤

k
∑

m=1

|εi(D
− −D)wi,m(tj)|+ |εi(D

− −D)wi,k+1(tj)|,
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using (15) on the last term and (14) on all other terms on the right hand side, we
obtain

|εi(D
− −D)wi(tj)| ≤ C(

k
∑

m=1

max
s∈Ij

|εiw
′
i,m(s)|+ δj max

s∈Ij
|εiw

′′
i,k+1(s)|).

The desired result follows by applying the bounds on the derivatives in the first
part of this lemma. �

Lemma 5.4. Let A(t) satisfy (2) and (3). Then, for each i = 1, . . . , n and
j = 1, . . . , N , on each mesh M~b, we have the estimate

|εi(D
− −D)wi(tj)| ≤ CBn(tj−1).

Proof. From (14) and Lemma 2.4, for each i = 1, . . . , n and j = 1, . . . , N , we
have

|εi(D
− −D)wi(tj)| ≤ CmaxsǫIj |εiw

′
i(s)|

≤ Cεi
∑n

q=i
Bq(tj−1)

εq

≤ CBn(tj−1)

as required. �

Using the above preliminary lemmas on appropriate subintervals we obtain the
desired estimate of the singular component of the local truncation error in the
following lemma.

Lemma 5.5. Let A(t) satisfy (2) and (3). Then, for each i = 1, . . . , n and
j = 2, . . . , N , we have the estimate

|εi(D
− −D)wi(tj)| ≤ CN−1 lnN.

Proof. Stepping out from the origin we consider each subinterval separately.
First, in the subinterval (0, σ1] we have δj ≤ CN−1σ1 and the result follows on any
mesh M~b from (10) and Lemma 5.2.

Secondly, in the subinterval (σ1, σ2] we have σ1 ≤ tj−1 and δj ≤ CN−1σ2. We
divide the 2n+1 possible meshes into 2 subclasses. On the meshes M~b with b1 = 0
the result follows from (10), (12) and Lemma 5.2. On the meshes M~b with b1 = 1
the result follows from (10), (11)and Lemma 5.3.
Thirdly, in a general subinterval (σm, σm+1] for 2 ≤ m ≤ n− 1 we have σm ≤ tj−1

and δj ≤ CN−1σm+1. We divide M~b into 3 subclasses: M0
~b

= {M~b : b1 = · · · =

bm = 0}, M r
~b
= {M~b : br = 1, br+1 = · · · = bm = 0 for some 1 ≤ r ≤ m − 1} and

Mm
~b

= {M~b : bm = 1}. On M0
~b
the result follows from (10), (12) and Lemma 5.2;

on M r
~b
from (10), (11), (12) and Lemma 5.3; on Mm

~b
from (10), (11) and Lemma

5.3.
Finally, in the subinterval (σn, T ] we have σn ≤ tj−1 and δj ≤ CN−1. We divide
M~b into 3 subclasses: M0

~b
= {M~b : b1 = · · · = bn = 0}, M r

~b
= {M~b : br = 1, br+1 =

· · · = bn = 0 for some 1 ≤ r ≤ n− 1} and Mn
~b

= {M~b : bn = 1}. On M0
~b
the result

follows from (10), (12) and Lemma 5.2; on M r
~b

from (10), (11), (12) and Lemma

5.3; on Mn
~b

from (10), (11) and Lemma 5.3. �

Let ~u denote the exact solution of (1) and ~U the discrete solution. Then, the
main result of this paper is the following ε-uniform error estimate

Theorem 5.6. Let A(t) satisfy (2) and (3). Then there exists a constant C such
that

‖ ~U − ~u ‖≤ CN−1 lnN,
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for all N > 1

Proof. This follows immediately by applying Lemmas 5.1 and 5.5 to (13) and using
Lemma 3.2. �

6. Numerical results

In order to validate the theoretical results of this paper, the numerical method
constructed above is used in this section to compute approximate solutions of two
examples of initial value problems for singularly perturbed systems of first order
ordinary differential equations. For each case the computed order of ~ε–uniform
convergence p∗ and the ~ε–uniform error constant C∗

p∗ are found using the general
methodology in [2] and [7].
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Figure 1. Numerical solution of Example 6.2 for ε4 = 2−4

3 , ε3 =
2−4

5 , ε2 = 2−4

7 , ε1 = 2−4

9 and N = 211 points
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Figure 2. Blowup of Figure 1 for t in the subdomain [0.00, 0.05]
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Table 1. Values of DN
ε , D

N , pN , p∗, CN
p∗ and C∗

p∗ for Example 6.1

with ε1 =
r

16
, ε2 =

r

4
, ε3 = r, for various values of r and N .

Number of mesh points N
r 256 512 1024 2048 4096 8192 16384 32768 65536

2−1 0.903-3 0.429-3 0.235-3 0.134-3 0.814-4 0.408-4 0.204-4 0.102-4 0.511-5

2−2 0.104-2 0.560-3 0.292-3 0.152-3 0.839-4 0.419-4 0.229-4 0.124-4 0.668-5

2−3 0.106-2 0.566-3 0.296-3 0.154-3 0.803-4 0.423-4 0.231-4 0.125-4 0.675-5

2−4 0.106-2 0.569-3 0.297-3 0.155-3 0.809-4 0.425-4 0.232-4 0.126-4 0.678-5

2−5 0.106-2 0.570-3 0.298-3 0.156-3 0.811-4 0.426-4 0.233-4 0.126-4 0.679-5

2−6 0.106-2 0.570-3 0.298-3 0.156-3 0.812-4 0.427-4 0.233-4 0.126-4 0.680-5

2−7 0.107-2 0.571-3 0.299-3 0.156-3 0.813-4 0.427-4 0.233-4 0.126-4 0.681-5

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2−20 0.107-2 0.571-3 0.299-3 0.156-3 0.813-4 0.427-4 0.233-4 0.126-4 0.681-5

DN 0.107-2 0.571-3 0.299-3 0.156-3 0.839-4 0.427-4 0.233-4 0.126-4 0.681-5

pN 0.873+0 0.935+0 0.937+0 0.894+0 0.974+0 0.873+0 0.884+0 0.893+0

CN
0.873 0.162+0 0.159+0 0.153+0 0.146+0 0.144+0 0.134+0 0.134+0 0.133+0 0.131+0

The computed order of convergence p∗ = 0.873
The computed error constant C∗

p∗ = 0.162

Table 2. Values of DN
ε , D

N , pN , p∗, CN
p∗ and C∗

p∗ for Example 6.1

with ε1 =
r

7
, ε2 =

r

5
, ε3 =

r

3
, for various values of r and N .

Number of mesh points N
r 256 512 1024 2048 4096 8192 16384 32768 65536

2−0 0.125-2 0.645-3 0.327-3 0.165-3 0.827-4 0.414-4 0.207-4 0.104-4 0.519-5

2−1 0.182-2 0.123-2 0.672-3 0.341-3 0.172-3 0.862-4 0.432-4 0.216-4 0.108-4

2−3 0.188-2 0.114-2 0.665-3 0.382-3 0.214-3 0.118-3 0.646-4 0.350-4 0.189-4

2−5 0.189-2 0.114-2 0.669-3 0.384-3 0.215-3 0.119-3 0.649-4 0.352-4 0.190-4

2−7 0.189-2 0.114-2 0.670-3 0.384-3 0.215-3 0.119-3 0.650-4 0.353-4 0.190-4

2−9 0.189-2 0.115-2 0.671-3 0.384-3 0.215-3 0.119-3 0.650-4 0.353-4 0.190-4

2−11 0.189-2 0.115-2 0.671-3 0.384-3 0.215-3 0.119-3 0.651-4 0.353-4 0.190-4

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2−19 0.189-2 0.115-2 0.671-3 0.384-3 0.215-3 0.119-3 0.651-4 0.353-4 0.190-4

DN 0.189-2 0.123-2 0.672-3 0.384-3 0.215-3 0.119-3 0.651-4 0.353-4 0.190-4

pN 0.617+0 0.875+0 0.806+0 0.836+0 0.856+0 0.871+0 0.883+0 0.892+0

CN
0.617 0.109+0 0.109+0 0.907-1 0.796-1 0.684-1 0.579-1 0.486-1 0.404-1 0.334-1

The computed order of convergence p∗ = 0.617
The computed error constant C∗

p∗ = 0.109

Example 6.1.

ε1u1
′(t) + 4u1(t)− u2(t)− u3(t) = t

ε2u2
′(t)− u1(t) + 4u2(t)− u3(t) = 1

ε3u3
′(t)− u1(t)− u2(t) + 4u3(t) = 1 + t2







∀ t ∈ (0, 1]

u1(0) = 0, u2(0) = 0, u3(0) = 0.

This is solved for α = 1.9, two different sets of values of ε1, ε2, ε3 and N =
2q, q = 7, · · · , 16. The results are presented in Table 1 and Table 2.
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Table 3. Values of DN
ε , D

N , pN , p∗, CN
p∗ and C∗

p∗ for Example 6.2

with ε1 =
r

64
, ε2 =

r

16
, ε3 =

r

4
, ε4 = r, for various values of r and

N .

Number of mesh points N
r 256 512 1024 2048 4096 8192 16384 32768 65536

2−1 0.937-3 0.462-3 0.232-3 0.141-3 0.764-4 0.383-4 0.192-4 0.960-5 0.480-5

2−2 0.105-2 0.591-3 0.319-3 0.170-3 0.843-4 0.400-4 0.217-4 0.118-4 0.634-5

2−3 0.104-2 0.584-3 0.316-3 0.164-3 0.837-4 0.424-4 0.215-4 0.116-4 0.627-5

2−4 0.104-2 0.581-3 0.314-3 0.163-3 0.832-4 0.421-4 0.213-4 0.116-4 0.623-5

2−5 0.103-2 0.579-3 0.313-3 0.163-3 0.829-4 0.420-4 0.213-4 0.115-4 0.621-5

2−6 0.103-2 0.578-3 0.313-3 0.162-3 0.828-4 0.419-4 0.213-4 0.115-4 0.621-5

2−7 0.103-2 0.578-3 0.312-3 0.162-3 0.827-4 0.419-4 0.212-4 0.115-4 0.620-5

2−8 0.103-2 0.578-3 0.312-3 0.162-3 0.827-4 0.418-4 0.212-4 0.115-4 0.620-5

2−9 0.103-2 0.577-3 0.312-3 0.162-3 0.827-4 0.418-4 0.212-4 0.115-4 0.620-5

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2−20 0.103-2 0.577-3 0.312-3 0.162-3 0.827-4 0.418-4 0.212-4 0.115-4 0.620-5

DN 0.105-2 0.591-3 0.319-3 0.170-3 0.843-4 0.424-4 0.217-4 0.118-4 0.634-5

pN 0.831+0 0.890+0 0.910+0 0.101+1 0.992+0 0.967+0 0.883+0 0.893+0

CN
0.831 0.135+0 0.135+0 0.130+0 0.123+0 0.109+0 0.972-1 0.884-1 0.853-1 0.817-1

The computed order of convergence p∗ = 0.831
The computed error constant C∗

p∗ = 0.135

Table 4. Values of DN
ε , D

N , pN , p∗, CN
p∗ and C∗

p∗ for Example 6.2

with ε1 =
r

9
, ε2 =

r

7
, ε3 =

r

5
, ε4 =

r

3
, for various values of r and

N .

Number of mesh points N
r 256 512 1024 2048 4096 8192 16384 32768 65536

2−0 0.107-2 0.557-3 0.284-3 0.144-3 0.721-4 0.361-4 0.181-4 0.905-5 0.453-5

2−2 0.272-2 0.194-2 0.104-2 0.542-3 0.277-3 0.140-3 0.702-4 0.352-4 0.176-4

2−4 0.264-2 0.167-2 0.103-2 0.612-3 0.348-3 0.194-3 0.107-3 0.582-4 0.314-4

2−6 0.263-2 0.166-2 0.103-2 0.611-3 0.347-3 0.194-3 0.107-3 0.580-4 0.313-4

2−8 0.263-2 0.166-2 0.103-2 0.611-3 0.347-3 0.194-3 0.107-3 0.580-4 0.313-4

2−10 0.263-2 0.166-2 0.103-2 0.611-3 0.347-3 0.194-3 0.107-3 0.580-4 0.313-4

2−12 0.263-2 0.166-2 0.103-2 0.610-3 0.347-3 0.194-3 0.107-3 0.580-4 0.313-4

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2−19 0.263-2 0.166-2 0.103-2 0.610-3 0.347-3 0.194-3 0.107-3 0.580-4 0.313-4

DN 0.272-2 0.194-2 0.104-2 0.614-3 0.349-3 0.195-3 0.107-3 0.583-4 0.324-4

pN 0.488+0 0.894+0 0.765+0 0.816+0 0.841+0 0.861+0 0.879+0 0.847+0

CN
0.488 0.101+0 0.101+0 0.764-1 0.631-1 0.503-1 0.394-1 0.304-1 0.232-1 0.181-1

The computed order of convergence p∗ = 0.488
The computed error constant C∗

p∗ = 0.101

Example 6.2.

ε1u1
′(t) + (5 + e−t)u1(t)− tu2(t)− u3(t)− u4(t) = t

ε2u2
′(t)− u1(t) + (4 + t2)u2(t)− u3(t)− u4(t) = 1

ε3u3
′(t)− u1(t)− u2(t) + 5u3(t)− (1 + t)u4(t) = 1 + t2

ε4u4
′(t)− tu1(t)− tu2(t)− u3(t) + 5u4(t) = 1− t















∀ t ∈ (0, 1]

u1(0) = 0, u2(0) = 0, u3(0) = 0, u4(0) = 0.

This is solved for α = 0.9, two different sets of values of ε1, ε2, ε3, ε4 and
N = 2q, q = 7, · · · , 16. The results are presented in Table 3 and Table 4 and plots
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of the numerical solution for a particular choice of the set of values of ε1, ε2, ε3, ε4
and of N are given in the two figures.
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