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ANALYSIS OF AN ALTERNATING DIRECTION METHOD
APPLIED TO SINGULARLY PERTURBED

REACTION-DIFFUSION PROBLEMS

TORSTEN LINSS AND NIALL MADDEN

Abstract. We present an analysis of an Alternating Direction Implicit (ADI)

scheme for a linear, singularly perturbed reaction-diffusion equation. By pro-

viding an expression for the error that separates the temporal and spatial com-

ponents, we can use existing results for steady-state problems to give a suc-

cinct analysis for the time-dependent problem, and that generalizes for various

layer-adapted meshes. We report the results of numerical experiments that

support the theoretical findings. In addition, we provide a numerical compari-

son between the ADI and Euler techniques, as well details of the computational

advantage gained by parallelizing the algorithm.
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1. Introduction

We consider the problem of computing a satisfactory numerical solution to a
time-dependent singularly perturbed reaction-diffusion equation using an alternat-
ing direction finite difference method. The problem under consideration is

∂tu + Lu = f in Q := Ω× (0, T ], Ω = (0, 1)2,(1a)

where Lv := −ε2∆v + rv, f, r : Ω× (0, T ] → R, r ≥ %2 on Ω̄× [0, T ], % > 0, subject
to boundary and initial conditions

u = 0 on ∂Ω× (0, T ], u(·, 0) = 0 on Ω̄.(1b)

Solutions to (1) typically exhibit layers: narrow regions in which derivatives of the
solution are large.

Miller et al. [14] give a numerical analysis of a time-dependent reaction-diffusion
problem that is one-dimensional (in space), and show that the solution computed
on a Shishkin mesh will converge at a rate that is almost second-order. A more
general analysis based on Green’s functions is in [11]. See also [17, II.3.4.3] and
references provided there.

The analysis of numerical techniques for the two-dimensional steady-state ana-
logue of (1) has received recent attention: for example, Clavero et al. [2] provide an
analysis for a finite difference method on a piecewise uniform Shishkin mesh, while
Kellogg et al. [8] have analysed a finite difference method for various fitted meshes
used to solve coupled systems for steady reaction-diffusion problems. See also [17,
Remark II.2.10] and references given there.
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The studies of two-dimensional problems mentioned above all use spatial tensor
product meshes. When extending these techniques to time-dependent problems, it
is very natural to consider dimension splitting : at each time-step, one alternately
solves independent one dimensional problems in the x- and y-directions. This is
because it is typically much more efficient to solve, say, N tridiagonal systems of N
unknowns, than a banded system of N2 unknowns. Furthermore, the opportunities
for parallelization are easy to exploit.

Such Alternating Direction Implicit (ADI) scheme for classical problems are
presented in detail in, e.g., [12, 13, 18, 21]. Of primary interest to this study
is the work of Clavero et al. [5] who use an alternating directions technique to
semidiscretize (1) in time first. A sequence of one-dimension problems is obtained
which in turn are solved approximately by central differencing on a layer-adapted
piecewise uniform mesh—a so-called Shishkin mesh. The resulting scheme is shown
to be uniformly convergent with respect to the perturbation parameter ε with the
maximum nodal error bounded by C

(
τ + N−1

)
, where τ is the maximal time-step

size and N the number of mesh points used in each direction of the tensor product
spatial mesh, and C is a constant that is independent of ε, τ and N .

In this paper we shall present an alternative error analysis that—in a certain
sense—is simpler than that in [5]. In particular, when a Shishkin mesh is used, we
show that the nodal error is bounded by C

(
τ + N−2 ln2 N + εN−1

)
. Furthermore,

our approach makes it possible to deduce error bounds for other fitted meshes. For
example, we also show that if the graded mesh of Bakhvalov [1] is used, then the
error may be bounded as C

(
τ + N−2

)
.

ADI schemes have also been applied to other singularly perturbed problems such
as convection diffusion. For example in [4] the maximum-norm errors of a first-order
ADI method combined with simple upwinding in space are shown to be bounded
by C

(
τ + τ−1N−1 ln N

)
.

Outline. In §2 we describe the discretization of (1) both by the standard implicit
Euler method and the ADI approach. Bounds on derivatives of the solution are
summarized in §3, which is followed by a brief discussion of the mathematical
approach of [5], and then our own numerical analysis of the technique. This leads
to an expression of the error that depends on the analysis of the given method for
a steady-state problem. Then in §3.5 we can derive error bounds for particular
meshes.

The paper concludes with a report of detailed numerical experiments. For a
specially constructed test problem where the true solution is known, we investigate
separately the dependence of the error on the time and spatial discretization. We
also compare the accuracies of the ADI and Euler techniques. The paper concludes
by highlighting the speed-up that can be gained when the algorithm is implemented
on a parallel computer.

Notation. Given arbitrary meshes ωx : 0 = x0 < x1 < · · · < xN = 1 and ωy :
0 = y0 < y1 < · · · < yN = 1 in the x- and y-directions, one may construct the
tensor-product mesh ω := ωx × ωy. We write the mesh in the time variable as
ωt : 0 = t0 < t1 < · · · < tK = T . The mesh intervals are denoted

hi := xi − xi−1, kj := yj − yj−1, τn := tn − tn−1, τ := max
n=1,...,K

τn.

To simplify the notation we set gn
i,j := g(xi, yj , tn) for any function g ∈ C(Q̄).

Similarly, gn := g(·, ·, tn).
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In this paper, we are concerned with maximum nodal errors, so we use norms

‖gn‖ω := max
(x,y)∈ω

|gn(x, y)| and ‖g‖ωt×ω := max
n=1,...,K

‖gn‖ω.

For a matrix A ∈ RN×N , the norm ‖A‖ is the usual norm subordinate to the
maximum (vector) norm on RN .

2. Discretization

Define the second-order central difference approximation in space

Lnv := −ε2
(
δ2
xv + δ2

yv
)

+ rnv

with

[δ2
xv]i,j :=

2
hi + hi+1

(
vi+1,j − vi,j

hi+1
− vi,j − vi−1,j

hi

)
,

[δ2
yv]i,j :=

2
kj + kj+1

(
vi,j+1 − vi,j

kj+1
− vi,j − vi,j−1

kj

)
,

and the first-order backward difference

δtv
n :=

vn − vn−1

τn
.

A possible discretization of (1) is: Find Un
i,j ≈ un

ij as the solution to

[δtU
n + LnUn]i,j = fn

i,j , i, j = 1, . . . , N − 1, n = 1, . . . , K,

supplemented with the obvious discretizations of the initial and boundary condi-
tions. This implicit Euler method may be formulated as

(I + τnLn) Un = Un−1 + τnfn, n = 1, . . . , K.(2)

However we shall discretize using an alternating directions approach. Split r =
r1 + r2 and f = f1 + f2 with r1, r2 ≥ 0. Set

Ln
xv := −ε2δ2

xv + rn
1 v and Ln

yv := −ε2δ2
yv + rn

2 v.

Then an approximation can be sought as

(I + τnLn
x) Un−1/2 = Un−1 + τnfn

1 ,(
I + τnLn

y

)
Un = Un−1/2 + τnfn

2

}
, n = 1, . . . ,K.(3)

In each half-step of the algorithm, N −1 linear tridiagonal systems must be solved.
This can be done with optimal complexity by means of the Thomas algorithm.
Moreover these systems are independent of one-another, and therefore allow for
easy parallelization.

Remark 1. Note that (3) is equivalent to

(I + τnLn)Un = Un−1 + τnfn + τ2
nLn

x

(
fn
2 − Ln

yUn
)
.

Thus the schemes (2) and (3) differ by an order of τ2
n. Taking error accumulation

into account, both schemes will give the same first-order accuracy in time.

Remark 2. Second-order ADI schemes have also been constructed, for example
the method by Peaceman-Rachford [15]. It is closely related to the Crank-Nicolson
method [6]. The maximum-norm stability analysis for these higher-order methods
is very intricate, in particular when applied to singularly perturbed problems.
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3. Analysis of the method

In this section nodal error estimates are derived of the alternating directions
method (3). First, we state derivative bounds for the solution of (1) which are es-
sential in the construction of layer-adapted meshes and in the convergence analysis.

We then give a shout outline of the analysis from [5], before presenting an alter-
native approach that simplifies the analysis somewhat, and generalises more easily
to fitted meshes other than the piecewise uniform mesh of Shishkin.

3.1. Properties of the exact solution. In the course of the analysis we require
the solution to be sufficiently smooth: u ∈ C4+α(Q̄), with α ∈ (0, 1) arbitrary.
Essentially this means that the derivatives ∂k

x∂m
y ∂`

tu are Hölder continuous with an
arbitrary Hölder-exponent for k, m, ` ≥ 0 and k + m + 2` ≤ 4. For a full discussion
of these function spaces the reader is referred to [7, 10].

If u ∈ C2+α(Q̄) then (1) implies

f(·, 0) = 0 on ∂Ω.(4a)

Furthermore, let u ∈ C4+α(Q̄) and r, f ∈ C2+α(Q̄). Then differentiate (1a) with
respect to time, use (1b) and (4a) to get

−ε2∆f(·, 0) = ∂tf(·, 0) on ∂Ω.(4b)

In [5] derivative bounds in terms of ε are derived under the assumption that
u ∈ C4+α(Q̄):

∣∣∂`
xu(x, y, t)

∣∣ ≤ C
{

εmin{0,2−`} + ε−`
(
e−%x/ε + e−%(1−x)/ε

)}
, ` = 0, . . . , 4,(5a)

∣∣∂`
yu(x, y, t)

∣∣ ≤ C
{

εmin{0,2−`} + ε−`
(
e−%y/ε + e−%(1−y)/ε

)}
, ` = 0, . . . , 4,(5b)

∣∣∂`
x∂m

y u(x, y, t)
∣∣ ≤ Cε−(`+m), ` + m ≤ 4,(5c)

∣∣∂`
tu(x, y, t)

∣∣ ≤ C, ` = 0, 1, 2,(5d)

for all (x, y, t) ∈ Q̄.

3.2. The analysis in [5]. Introducing the continuous operator splitting Ln =
Ln

x + Ln
y by

Ln
xv := −ε2∂2

xv + rn
1 v and Ln

yv := −ε2∂2
yv + rn

2 v,

the authors of [5] study the time semidiscretization (with constant temporal step
size τ): Find functions ūn−1/2 and ūn, n = 1, . . . , K with

(I + τLn
x) ūn−1/2 = ūn−1 + τfn

1 ,(
I + τLn

y

)
ūn = ūn−1/2 + τfn

2

}
, n = 1, . . . , K(6a)

subject to boundary and initial conditions

ūn−1/2(0, ·) = ūn−1/2(1, ·) = 0, ūn−1(·, 0) = ūn−1(·, 1) = 0 and ū0 ≡ 0.(6b)

In [5] the local error of this semidiscretization is shown to be of order τ2.
Next, in order to complete the analysis of the local error, the error of the central-

difference approximation on a Shishkin mesh applied to (6) is studied. For this
purpose—in addition to (5)—derivative bounds for two auxiliary functions ûn−1/2

and ûn are required. These are defined as solutions of

(I + τLn
x) ûn−1/2 = un−1 + τfn

1 ,(
I + τLn

y

)
ûn = ûn−1/2 + τfn

2

}
, n = 1, . . . , K(7a)
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with

ûn−1/2(0, ·) = ûn−1/2(1, ·) = 0, ûn−1(·, 0) = ûn−1(·, 1) = 0,(7b)

i.e., with the exact solution u at time level tn−1 as starting value for a single time
step. With these derivative bounds it can be established that the local error is
bounded by Cτ

(
τ + N−1

)
. Now, as shown in [3], error accumulation yields the

uniform error bound

‖u− U‖ωt×ω ≤ C
(
τ + N−1

)
.(8)

Remark 3. A detailed inspection of the analysis in [5] reveals, that by slightly
shifting the transition point in the Shishkin mesh, the local error can be bounded by
Cτ

(
τ + N−2 ln2 N + εN−1

)
. This in turn gives the convergence result

‖u− U‖ωt×ω ≤ C
(
τ + N−2 ln2 N + εN−1

)
.

Taking the maximum over ε ∈ (0, 1], we recover the uniform result (8).

Remark 4. The analysis of the asymptotic behaviour to the semidiscrete prob-
lem (7) forms the central part of the convergence analysis in [5]. This is an in-
teresting problem in its own right; for example it can be used when studying other
spatial discretisations.

In considering just the central differencing approximation, our approach avoids
the use of the auxiliary functions ûn−1/2 and ûn, thereby giving an analysis that is
more succinct.

3.3. Stability. Given the mesh ωx, consider the one-dimensional difference oper-
ator

[Λv]i := −µ
[
δ2
xv

]
i
+ civi, i = 1, . . . , N − 1,

with a constant µ > 0 and a function c.

Lemma 1. Suppose ci ≥ γ > 0, i = 0, . . . , N . Then the operator Λ satisfies a
comparison principle. That is, for any two mesh functions v, w ∈ RN+1

v0 ≤ w0,
[Λv]i ≤ [Λw]i , i = 1, . . . , N − 1,

vN ≤ wN



 =⇒ vi ≤ wi, i = 0, . . . , N.

Furthermore

max
i=0,...,N

|vi| ≤ 1
γ

max
i=1,...,N−1

|[Λv]i| ∀ v ∈ RN+1
0 :=

{
v ∈ RN+1 : v0 = vN = 0

}
,

or ‖Λ−1‖ ≤ γ−1 for short.

Proof. The matrix associated with Λ has non-positive off-diagonal entries and row
sum ci ≥ γ > 0. Therefore, the M -criterion [17, §II.2.1] applies and yields the
desired results. ¤

Set

Mn := (I + τnLn
x)

(
I + τnLn

y

)
.

Theorem 1. Assume that r = r1 + r2 with r1 ≥ 0 and r2 ≥ 0 on Ω̄. Then
the operator Mn satisfies a comparison principle. In particular for any two mesh
functions v, w ∈ (

RN+1
0

)2

[Mnv]i,j ≤ [Mnw]i,j , i, j = 1, . . . , N − 1, =⇒ vi,j ≤ wi,j , i, j = 0, . . . , N.
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Furthermore

max
i,j=0,...,N

|vi,j | ≤ max
i,j=1,...,N

∣∣∣[Mnv]i,j
∣∣∣ for all v ∈ (

RN+1
0

)2
.

Proof. Note that

(I + τnLn
x) v = −τnε2δ2

xv + (1 + τnrn
1 )v

and
(
I + τnLn

y

)
v = −τnε2δ2

yv + (1 + τnrn
2 )v.

Lemma 1 can be applied with µ = τnε2 and c = 1 + τnrn
k ≥ 1, k = 1, 2. Thus both

operators I +τnLn
x and I +τnLn

y are inverse monotone. Consequently their product
Mn is also inverse monotone and satisfies a comparison principle.

Lemma 1 also implies that
∥∥∥(I + τnLn

x)−1
∥∥∥ ≤ 1 and

∥∥∥
(
I + τnLn

y

)−1
∥∥∥ ≤ 1.

Thus
∥∥∥(Mn)−1

∥∥∥ ≤ 1 which is equivalent to the last inequality of the theorem. ¤

3.4. Error analysis. Let ηn := Un−un denote the error of the scheme at time tn.
Then

Mnηn = ηn−1 + τn (Ln − Ln) un + τn (∂tu
n − δtu

n) + τ2
nLn

x

(
fn
2 − Ln

yun
)
.

Note that ηn ∈ (
RN+1

0

)2
. Theorem 1 and a triangle inequality yield

‖ηn‖ω ≤
∥∥ηn−1

∥∥
ω

+ τn ‖ψn‖ω + τn ‖ϕn‖ω + τ2
n ‖χn‖ω ,

where ψ, ϕ, χ ∈ (
RN+1

0

)2
solve

Mnψn = (Ln − Ln)un, Mnϕn = (∂t − δt) un and Mnχn = Ln
x

(
fn
2 − Ln

yun
)

for n = 1, . . . , K. Induction for n yields

max
n=1,...,K

‖ηn‖ω ≤ max
n=1,...,K

‖ψn‖ω + max
n=1,...,K

‖ϕn‖ω + τ max
n=1,...,K

‖χn‖ω ,(9)

since η0 ≡ 0. The three error components will be studied separately.
For the truncation error in time, a Taylor expansion and (5d) give

∣∣∣[Mnϕ]ni,j
∣∣∣ =

∣∣(∂t − δt)un
i,j

∣∣ ≤ τn

2

∥∥∂2
t u

∥∥
ωt×ω

≤ Cτ, i, j = 1, . . . , N − 1.

Thus ‖ϕn‖ ≤ Cτ , by Theorem 1.
We continue with χn.

Ln
x

(
fn
2 − Ln

yun
)

= rn
1 (fn

2 − rn
2 un) + ε2rn

1 δ2
yun − ε2δ2

x (fn
2 − rn

2 un)− ε4δ2
xδ2

yun.

Clearly

‖rn
1 (fn

2 − rn
2 un)‖ω ≤ C.

There exist ξ ∈ (xi−1, xi+1) and ζ ∈ (yj−1, yj+1) such that
∣∣(δ2

yu)n
i,j

∣∣ =
∣∣∂2

yu(xi, ζ, tn)
∣∣ ≤ Cε−2 by (5a)

and
∣∣(δ2

x (f2 − r2u))n
i,j

∣∣ =
∣∣∂2

x (f2 − r2u) (ξ, yj , tn)
∣∣ ≤ Cε−2 by (5b).
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Next, the representation
(
δ2
yg

)
i,j

=
2

kj + kj+1

(
1

kj+1

∫ yj+1

yj

∫ s

yj

∂2
yg(xi, τ)dτds

+
1
kj

∫ yj−1

yj

∫ s

yj

∂2
yg(xi, τ)dτds

)(10)

for any function g ∈ C2(Ω̄) yields∣∣∣
(
δ2
yg

)
i,j

∣∣∣ ≤
∥∥∂2

yg(xi, ·)
∥∥

[yj−1,yj+1]
.

Moreover, for any g ∈ C4(Ω̄)
(
δ2
xδ2

yg
)
i,j

=
2

kj + kj+1

(
1

kj+1

∫ yj+1

yj

∫ s

yj

δ2
x∂2

yg(xi, τ)dτds

+
1
kj

∫ yj−1

yj

∫ s

yj

δ2
x∂2

yg(xi, τ)dτds

)
.

Use an integral representation for δ2
x similar to (10) to get∣∣∣

(
δ2
yδ2

xg
)
i,j

∣∣∣ ≤
∥∥∂2

x∂2
yg

∥∥
[xi−1,xi+1]×[yj−1,yj+1]

.

This yields ∣∣∣
(
δ2
xδ2

yu
)n

i,j

∣∣∣ ≤ C
∥∥∂2

x∂2
yu

∥∥ ≤ Cε−4, by (5c).

Collecting the above bounds, we obtain∥∥Ln
x

(
fn
2 − Ln

yun
)∥∥

ω
≤ C.

Finally, Theorem 1 yields ‖χ‖ω ≤ C.
Note, the error components ϕ and χ have been bounded without using any

property of the spatial mesh. Thus these bounds hold for arbitrary meshes. Re-
calling (9), we arrive at our main general error bound.

Theorem 2. Let the assumptions of Theorem 1 hold true. Then the error of the
alternating-direction method (3) applied to (1) satisfies

max
n=1,...,K

‖Un − un‖ω ≤ Cτ + max
n=1,...,K

‖ψn‖ω ,

where ψn ∈ (
RN+1

0

)2 solves Mnψn = (Ln − Ln)un on ω.

3.5. Layer-adapted meshes.
Bakhvalov meshes [1]. These meshes are based on user-chosen mesh parameters
σ > 0 and q ∈ (0, 1/2), where the grid points are xi = i/N if σε ≥ %q, while when
σε < %q one sets

xi =





ϑ(i/N) for i ≤ N/2,

1− ϑ(1− i/N) for i > N/2,

with a mesh generating function ϑ defined by

ϑ(ξ) =





χ(ξ) := −σε

%
ln

(
1− ξ

q

)
for ξ ∈ [0, τ ],

π(ξ) := χ(τ) + χ′(τ)(ξ − τ) for ξ ∈ [τ, 1/2].

The transition point τ is determined by the equation (1−2τ)χ′(τ) = 1−2χ(τ). Thus
the tangent to the graph of χ at

(
τ, χ(τ)

)
passes through (1/2, 1/2). This defines the
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mesh on [0, 1/2] and it is extended to [0, 1] by reflection about (x, ξ) = (1/2, 1/2).
The resulting mesh generating function ϕ lies in C1[0, 1].

An easy adaptation of the truncation-error analysis in [1] (see also the appendix
in [8]) together with the derivative bounds (5a) and (5b) gives

∣∣(Ln − Ln)un
i,j

∣∣ = ε2
∣∣(δ2

x − ∂2
x + δ2

y − ∂2
y

)
un

i,j

∣∣ ≤ CN−2.

Theorem 1 yields ‖ψn‖ω ≤ CN−2.
Thus in view of Theorem 2 the error of our discretization on Bakhvalov meshes

satisfies

‖U − u‖ωt×ω ≤ C
(
τ + N−2

)
.(11)

Shishkin meshes [20]. These meshes are constructed as follows. Choose mesh
parameters σ > 0 and q ∈ (0, 1/2). Define the transition point

λ := min
{

q,
σε

%
ln N

}
.

Assuming that qN is an integer, we divide each of the two intervals [0, λ] and
[1− λ, 1] uniformly into qN subintervals and [λ, 1− λ] into (1− 2q)N subintervals
of equal length. A typical choice would be q = 1/4 and N divisible by 4. The mesh
generating function for a Shishkin mesh is piecewise linear and continuous.

For these meshes we have
∣∣(Ln − Ln)un

i,j

∣∣ = ε2
∣∣(δ2

x − ∂2
x + δ2

y − ∂2
y

)
un

i,j

∣∣ ≤ C
(
N−2 ln2 N + εN−1

)
;

see, e.g., [14, 8]. Thus,

‖ψn‖ω ≤ C
(
N−2 ln2 N + εN−1

)
.(12)

Application of Theorem 1 gives the error bound

‖U − u‖ωt×ω ≤ C
(
τ + N−2 ln2 N + εN−1

)
.(13)

Remark 5. In view of results for stationary problems [2, 8, 14], one might expect
instead of (12) that the following sharper bound would hold:

‖ψn‖ω ≤ CN−2 ln2 N.

However, we have not succeeded in obtaining such a result for this class of prob-
lem by using the usual mathematical techniques for stationary problems; neither the
piecewise linear barrier-function technique from [14] nor the strong stability tech-
nique from [19]. The reason for this is that the maximum norm of the Green’s
function for I + τnLN

x is not bounded by Cε−1, but by Cτ
−1/2
n ε−1.

Alternatively other layer-adapted meshes may be used, for example those of van
Veldhuizen [22] or the generalized Shishkin meshes of Roos and Linß [16].

4. Numerical results

We present the results of numerical experiments for two example problems, with
the goal of demonstrating the veracity of Theorem 2, and its application to the
meshes described in §3.5. Furthermore, we consider issues of a parallel implemen-
tation when the algorithm is applied on computers with different architectures.
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4.1. Example 1. For our first test case we construct a problem based on an
example from [9], that exhibits boundary and corner layers, and for which the
solution is known:

ut(x, y, t)− ε2∆u(x, y, t) + u(x, y, t) = f(x, y, t) (x, y, t) ∈ Ω× (0, 1],(14a)

with boundary and initial conditions

u(x, y, 0) = 0 on ∂Ω× (0, T ], u(·, 0) = 0 on Ω̄.(14b)

We choose f so that the solution is

u(x, y, t) = (1− e−t)
(

cos
πx

2
− e−x/ε − e−1/ε

1− e−1/ε

)(
1− y − e−y/ε − e−1/ε

1− e−1/ε

)
.

This will satisfy the compatibility conditions (4). We choose to use the splitting

r1 = r, r2 ≡ 0, f1 = f and f2 ≡ 0.

Note that in general, it is computationally advantageous to take either r1 or r2 to
be identically zero so that the same factorization of the associated linear system
can be used at each time step.

To indicate the dependence of the numerical solution on the perturbation pa-
rameter ε, the number K of mesh intervals in time and the number N of mesh
intervals in each space directions, we write U = UK,N

ε .
In this section we concentrate on the Bakhvalov mesh described in §3.5, and in

particular in verifying separately the rates of convergence with respect to τ and
N in (11) as was done, for example, in [11]. To that end, we first apply the ADI
scheme to problem (14) for ε = 1, 10−1, 10−2, . . . , 10−8 on a mesh with K equally
sized time steps and N = 2K intervals in the Bakhvalov mesh. This allows us to
verify that the error is independent of the parameter ε. Furthermore, because the
scheme is second-order in space, and first-order in time, we expect the temporal
component of the error to dominate. The results are summarized in Table 1, though
to save space we show only the cases ε = 1, 10−2, 10−4, 10−6 and 10−8.

The computed error and rate of convergence are denoted

EN
ε =

∥∥∥uε − UK(N),N
ε

∥∥∥
ωt×ω

, %N
ε = log2

(EN
ε /E2N

ε

)
.

It is clear that, for sufficiently small ε, the error is essentially independent of this
parameter. Furthermore, the rates of convergence are as predicted.

ε = 1 ε = 10−2 ε = 10−4 ε = 10−6 ε = 10−8

N EN
ε %N

ε EN
ε %N

ε EN
ε %N

ε EN
ε %N

ε EN
ε %N

ε

32 6.15e-3 0.82 1.15e-2 1.00 1.18e-2 1.01 1.18e-2 1.01 1.18e-2 1.01
64 3.49e-3 0.90 5.74e-3 1.01 5.89e-3 1.00 5.89e-3 1.00 5.89e-3 1.00

128 1.87e-3 0.95 2.86e-3 1.00 2.93e-3 1.00 2.93e-3 1.00 2.93e-3 1.00
256 9.70e-4 0.97 1.42e-3 1.00 1.46e-3 1.00 1.46e-3 1.00 1.46e-3 1.00
512 4.94e-4 0.99 7.11e-4 1.00 7.31e-4 1.00 7.31e-4 1.00 7.31e-4 1.00

1024 2.49e-4 0.99 3.55e-4 1.00 3.65e-4 1.00 3.65e-4 1.00 3.65e-4 1.00
2048 1.25e-4 1.00 1.77e-4 1.00 1.83e-4 1.00 1.83e-4 1.00 1.83e-4 1.00
4096 6.28e-5 — 8.87e-5 — 9.13e-5 — 9.13e-5 — 9.13e-5 —

Table 1. Errors in the ADI scheme on a Bakhvalov mesh with
K(N) = N/2 intervals, applied to (14)

For Table 2 we take K = N2. Now the spatial error should dominate. Indeed
this is the case and we observe that, not only is the method robust with respect to
ε, the scheme is second-order convergent with respect to N .
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ε = 1 ε = 10−2 ε = 10−4 ε = 10−6 ε = 10−8

N EN
ε %N

ε EN
ε %N

ε EN
ε %N

ε EN
ε %N

ε EN
ε %N

ε

16 4.90e-4 1.97 3.61e-3 1.83 3.65e-3 1.83 3.65e-3 1.83 3.65e-3 1.83
32 1.25e-4 1.99 1.01e-3 1.94 1.03e-3 1.94 1.03e-3 1.94 1.03e-3 1.94
64 3.14e-5 2.00 2.64e-4 1.99 2.67e-4 1.99 2.67e-4 1.99 2.67e-4 1.99

128 7.86e-6 2.00 6.65e-5 2.00 6.72e-5 2.00 6.72e-5 2.00 6.72e-5 2.00
256 1.96e-6 2.00 1.67e-5 2.00 1.68e-5 2.00 1.68e-5 2.00 1.68e-5 2.00
512 4.91e-7 — 4.17e-6 — 4.21e-6 — 4.21e-6 — 4.21e-6 —

Table 2. Errors in the ADI scheme on a Bakhvalov mesh with
K(N) = N2 intervals, applied to (14)

Finally, we wish to make a direct comparison between the errors in the com-
puted solutions to (14) using the ADI scheme (3) and the standard two-dimensional
scheme (2). For this experiment (and all subsequent ones) we will balance the tem-
poral and spatial errors by taking N to be O(

√
K). More precisely, to ensure that

N is divisible by 4, we take N = 4b√Kc.
The results of Table 3 show the errors when the solution is computed using the

ADI scheme (3), the standard Euler scheme (2), and the difference between the
two. Let ŨK,N

ε be the solution computed using the Euler scheme, and

ĒK
ε =

∥∥∥uε − UK,4b√Kc
ε

∥∥∥
ωt×ω

, ẼK
ε =

∥∥∥uε − ŨK,4b√Kc
ε

∥∥∥
ωt×ω

,

D̃K
ε =

∥∥∥UK,4b√Kc
ε − ŨK,4b√Kc

ε

∥∥∥
ωt×ω

, %̃K
ε = log2

(
D̃K

ε /D̃2K
ε

)
.

¿From Table 3 we see that for small ε the accuracy of the two methods is very
similar, and furthermore that the difference in time is first-order (see Remark 1).

ε = 1 ε = 10−4, 10−5, . . . , 10−8

K N ĒK
ε ẼK

ε D̃K
ε %̃K

ε ĒK,N
ε ẼK,N

ε D̃K,N
ε %̃K,N

ε

16 16 6.13e-3 2.46e-5 6.11e-3 0.82 1.30e-2 1.15e-2 3.32e-3 0.71
32 20 3.47e-3 1.20e-5 3.46e-3 0.90 6.88e-3 6.00e-3 2.03e-3 0.84
64 32 1.87e-3 6.03e-6 1.86e-3 0.95 3.47e-3 3.00e-3 1.14e-3 0.98

128 44 9.69e-4 3.00e-6 9.66e-4 0.97 1.78e-3 1.52e-3 5.76e-4 0.96
256 64 4.94e-4 1.50e-6 4.93e-4 0.99 8.83e-4 7.56e-4 2.96e-4 0.97
512 88 2.49e-4 7.49e-7 2.49e-4 0.99 4.49e-4 3.82e-4 1.51e-4 0.99

1024 128 1.25e-4 3.75e-7 1.25e-4 1.00 2.22e-4 1.90e-4 7.57e-5 1.00
2048 180 6.28e-5 1.87e-7 6.26e-5 1.00 1.11e-4 9.50e-5 3.79e-5 1.00
4096 256 3.14e-5 9.37e-8 3.14e-5 — 5.56e-5 4.75e-5 1.90e-5 —

Table 3. Comparing the Euler (2) and ADI (3) discritizations on
a Bakhvalov mesh for Example (14)

4.2. Example 2. For our second example, we study a more typical problem, but
for which the true solution is unknown:

(15a) ut(x, y, t)− ε2∆u(x, y, t) + (1 + y)u(x, y, t) = x
(
1−√x

)
sin

(
πy2

)
+ t

(x, y, t) ∈ Ω× (0, 1],

with boundary and initial conditions

u(x, y, 0) = 0 on ∂Ω× (0, T ], u(·, 0) = 0 on Ω̄.(15b)

Again, the data satisfies the compatibility condition (4a), but not (4b).
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The exact solution to the test problem is not available, so we estimate the ac-
curacy of the numerical solution by comparing it to the numerical solution of the
Richardson extrapolation method, which is of higher order: Let UK,N

ε be the so-
lution of the difference scheme on the original mesh and Ũ4K,2N

ε that on the mesh
obtained by uniformly bisecting the spatial mesh and using 4 times as many time
steps. Asymptotically Ũ4K,2N

ε is 4 times as accurate as UK,N
ε . Therefore the ex-

trapolated solution is

ŮK,N
ε :=

4Ũ4K,2N
ε − UK,N

ε

3
.

We estimate the error for fixed K, N and ε

∥∥uε − UK,N
ε

∥∥
ω
≈ ηK,N

ε :=
∥∥UK,N

ε − ŮK,N
ε

∥∥
ωt×ω

=
4
3

∥∥UK,N
ε − Ũ4K,2N

ε

∥∥
ωt×ω

.

Rather than presenting results for various values of ε, as we done above, we present
the ε-uniform errors, estimated by

ηK,N := max
µ=0,−1,...,−8

ηK,N
10µ .

In these experiments we again use the splitting r1 = r, r2 ≡ 0, f1 = f and f2 ≡ 0,
which satisfies the assumptions of our analysis. Following the observations in §4.1,
we balance spatial and temporal accuracy by taking N = 4b√Kc. The resulting
method is formally of first order in K. The numerical rates of convergence are
computed using the standard formula

%K = log2

(
η̃K/η̃2K

)
, where η̃K := ηK,4b√Kc.

In Table 4 we present the results for both Shishkin and Bakhvalov meshes, veri-
fying both (11) and (13).

Shishkin mesh Bakhvalov mesh
K N error rate error rate

16 16 2.480e-2 0.03 1.490e-2 0.77
32 20 2.424e-2 0.45 8.733e-3 0.87
64 32 1.775e-2 0.50 4.764e-3 0.93

128 44 1.251e-2 0.73 2.502e-3 0.96
256 64 7.550e-3 0.66 1.284e-3 0.98
512 88 4.785e-3 0.75 6.513e-4 0.99

1024 128 2.854e-3 0.77 3.278e-4 0.99
2048 180 1.669e-3 0.79 1.645e-4 1.00
4096 256 9.637e-4 — 8.241e-5 —

Table 4. The ADI scheme on layer-adapted meshes for test problem (15)

4.3. Speed up of parallel algorithm. In each half step of the algorithm N − 1
decoupled tridiagonal linear system have to be solved. This can be done in parallel.
In this section we evaluate the efficiency of a parallel implementation. To this end
we consider (3) with f1 = 1 + ty, r1 = 1 + (1 + y)x, f2 = r2 = 0 and homogeneous
initial and boundary conditions. We give results for three different architectures:

• PC with 4 dual-core AMD Opteron 885 running at 2.6GHz,
• PC with 2 Intel Xeon quad-core E5430 running at 2.66GHz and
• SGI Altix 4700 with 128 Intel Itanium, at 1.6GHz, of which we use up to

64 CPUs.
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Tables 5-7 display the results of our experiments. The first column in each
table gives the number of processors (#p) used and is followed by the execution
time (in sec) and the speed up compared to a single processor. The discretization
parameters N and K are chosen such that the number of floating point operations
is approximately constant. The execution times are essentially proportional to the
number K of time steps. Therefore to measure the speed up K can be arbitrary.
We have chosen K large enough to be able to neglect the time for initializations.

N = 4096 N = 8192 N = 16384
#p K = 1024 K = 256 K = 64

1 2770.613 — 3804.458 — 4586.329 —
2 1435.968 1.93 1944.529 1.96 2441.954 1.88
4 744.734 3.72 1056.552 3.60 1316.491 3.48
8 441.500 6.28 612.680 6.21 801.864 5.72

Table 5. Four dual-core AMD Opteron 885, 2.6GHz

N = 4096 N = 8192 N = 16384
#p K = 1024 K = 256 K = 64

1 1148.302 — 1157.759 — 1242.505 —
2 575.995 1.99 580.589 1.99 624.769 1.99
4 298.216 3.85 299.897 3.86 318.920 3.90
8 163.358 7.03 169.671 6.82 235.230 5.28

Table 6. Two Intel Xeon quad-core E5430, 2.66GHz

N = 4096 N = 8192 N = 16384
#p K = 1024 K = 256 K = 64

1 2008.069 — 2196.300 — 2587.116 —
2 1006.552 2.00 1100.634 2.00 1240.626 2.09
4 512.595 3.92 552.724 3.97 616.088 4.20
8 260.792 7.70 279.759 7.85 316.437 8.18
16 139.389 14.41 142.038 15.46 162.278 15.94
32 83.056 24.18 85.385 26.72 97.808 26.45
64 66.566 30.31 56.585 38.81 69.013 37.49

Table 7. Altix 4700 (128 Intel Itanium, 1.6GHz)

The experiments demonstrate that a parallel implementation of the algorithm
yields a signification speed up and reduction in execution time. However, limitations
of the program used are apparent. On the two PCs (Tables 5 and 6) the maximum
speed up is, depending on the discretization size, 5 to 7 compared to the optimal
value of 8 given by the number of processors available.

For the Altix, a massively parallel main frame computer, the speed up for 8 pro-
cessors is close to 8. The optimal number of processors to be used on this machine
is about 32. For more than 64 processors (we have tested 96 and 128 processors)
the execution time increases which is due to more time needed to synchronize the
caches of all processors.
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