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A POSTERIORI ERROR ESTIMATION FOR A SINGULARLY

PERTURBED PROBLEM WITH TWO SMALL PARAMETERS

TORSTEN LINSS

Abstract. A singularly perturbed two-point boundary-value problem of

reaction-convection-diffusion type is considered. The problem involves two

small parameters that give rise to two boundary layers of different widths.

The problem is solved using a streamline-diffusion FEM (SDFEM).

A robust a posteriori error estimate in the maximum norm is derived. It pro-

vides computable and guaranteed upper bounds for the discretisation error.

Numerical examples are given that illustrate the theoretical findings and ver-

ify the efficiency of the error estimator on a priori adapted meshes and in an

adaptive mesh movement algorithm.

Key Words. reaction-convection-diffusion problems, finite element methods,

a posteriori error estimation, singular perturbation

1. Introduction

Consider the reaction-convection-diffusion problem of finding u ∈ C2(0, 1) ∩
C[0, 1] such that

Lu := −εdu
′′ − εcbu

′ + cu = f in (0, 1) and u(0) = u(1) = 0,(1)

where εd ∈ (0, 1] and εc ∈ [0, 1] are small parameters, while b ∈ C1(0, 1) and
c, f ∈ C(0, 1) are assumed to satisfy

b ≥ 1, c ≥ 1 and εcb
′ + c ≥ 0 in (0, 1).(2)

The positivity of b and c is essential, while the third inequality merely provides a
maximal threshold value for εc for which the analysis in the paper is valid.

The standard weak formulation of (1) is: Find u ∈ H1
0 (0, 1) such that

a(u, v) := εd(u
′, v′)− εc(bu

′, v) + (cu, v) = (f, v) =: f(v) ∀ v ∈ H1
0 (0, 1).(1′)

The solution of (1) typically exhibits two boundary layers of different widths at
the two endpoints of the domain. Because of the presence of these layers standard
numerical methods fail to give accurate approximations. Unless a prohibitively
large number of mesh points is used, the layers are not resolved, and the rate of
convergence achieved by the method is far less than that obtain in the non-singularly
perturbed case.

The goal is to construct so-called robust or uniformly convergent methods. This
means that for a fixed number of mesh points, the accuracy and rate of conver-
gence is guaranteed, irrespective of the magnitude of the perturbation parameters.
Approaches for achieving this aim include the use of meshes that contain a con-
centration of points in the region of the boundary layers. The piecewise uniform
meshes of Shishkin [18], and the graded meshes of Bakhvalov [2] are examples of
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such. The construction of these meshes depends strongly on a priori information
of the solution and its derivatives.

Adapted numerical methods for (1) were first analysed by Shishkin and
Titov [22]. They consider an exponentially fitted finite difference scheme on a
uniform mesh. This method is shown to be convergent, uniformly in the parame-
ters εd and εc, in the discrete maximum norm. The order of convergence is at least
N−2/5, where N is the number of mesh intervals.

About 25 years after the work by Shishkin and Titov a number of authors started
to investigate standard numerical methods on special layer-adapted meshes. Linß
and Roos [17] studied a first-order upwinded difference scheme on a piecewise uni-
form Shishkin mesh. Uniform convergence of O

(

N−1 lnN
)

was established. A
theory for this method on general meshes was developed in [14].

Second-order upwind schemes were considered by Roos and Uzelac [21] (using
a SDFEM approach) and by Gracia et all. [8]. Both papers establish uniform

convergence of O
(

N−2 ln2 N
)

on Shishkin meshes.
While these a priori results establish the asymptotic behaviour of the error as the

mesh is refined, it cannot give guaranteed upper bounds for the error on a particular
mesh. The constant in the error bound, though independent of the perturbation
parameters, depends on the exact solution u which in turn is unknown.

The main contribution of the present study is in establishing a posteriori error
bounds which provide upper bounds on the error of the SDFEM. These days, a pos-
teriori error estimates for classical problems, i.e. problems that are not singularly
perturbed, are well established, see for example the monographs [1] and [23]. Re-
sults are also available for the SDFEM applied to convection-diffusion problems [24].
All these analyses are set in an L2- and energy-norm framework. However, for (1)
these norms fail to capture the layers. Therefore, we are interested in maximum-
norm error bounds.

For singularly perturbed problems, a posteriori error analyses in the maxi-
mum norm have been pioneered by Kopteva both for convection-diffusion problems
in 1D [10] and for reaction-diffusion problems in 1-3D [11, 12, 7]. In the present
paper, a posteriori error bounds for a single equation with two independently small
parameters are derived for the first time. In a certain sense it generalises the 1D
results by Kopteva for both reaction-diffusion (εc = 0) and convection-diffusion
(εc = 1).

Outline. The paper is organised as follows. In § 2 we study properties of the
continuous problem (1). In particular bounds for the Greens function associated
with L are derived that are essential in the later error analysis. The SDFEM
for (1′) is introduced in § 3, while § 4 is devoted to its a posteriori error analysis.
An adaptive mesh movement algorithm is adapted from the literature in § 5. The
article closes with results of some numerical experiments.

Notation. Throughout C denotes a generic positive constant that is indepen-
dent of the parameters εd and εc and of N , the number of mesh points. We use
‖ · ‖D to denote the norm in L∞(D). When D = (0, 1) we drop the D from the
notation.

2. Properties of the continuous problem

The solution of (1) and its Green’s function can be described by means of the
two roots of the characteristic equation

−εdλ(x)
2 − εcb(x)λ(x) + c(x) = 0.(3)
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This quadratic equation defines two continuous functions λi : [0, 1] → R with λ0 < 0
and λ1 > 0 on [0, 1]:

λ0,1(x) = − 1

2εd

(

εcb(x)±
√

4εdc(x) + ε2cb(x)
2
)

.

The quantity λ0 describes the boundary layer at x = 0, while λ1 characterises the
layer at x = 1. Set

µ0 := max
x∈[0,1]

λ0(x) < 0 and µ1 := min
x∈[0,1]

λ1(x) > 0.

There are essentially three regimes:

|µ0| µ1

convection-diffusion εd ≪ εc = 1 O
(

ε−1
d

)

O (1)

reaction-convection-diffusion εd ≪ ε2c ≪ 1 O
(

εcε
−1
d

)

O
(

ε−1
c

)

reaction-diffusion ε2c ≪ εd ≪ 1 O
(

ε
−1/2
d

)

O
(

ε
−1/2
d

)

Remark 1. The values of λ0 and λ1 do not vary significantly on [0, 1] because

λ1(ξ)

λ1(η)
=

c(ξ)λ0(η)

c(η)λ0(ξ)
≥

{

‖b‖−1
∞ ‖c‖−1

∞ if εc > 0,

‖c‖−1/2
∞ if εc = 0,

(4)

for all ξ, η ∈ [0, 1].

2.1. Derivative bounds and layer-adapted meshes. Bounds on derivatives
of the exact solution are essential to conduct a priori error analyses of numeri-
cal methods. They are also required when designing layer-adapted meshes. The
following result from [17] provides this information.

Lemma 1. Let b, c, f ∈ Cq[0, 1] for some q ∈ N
+. Let p ∈ (0, 1) be arbitrary, but

fixed. Assume q‖b′‖εc < 1− p. Then
∣

∣

∣
u(k)(x)

∣

∣

∣
≤ C

{

1 + (−µ0)
kepµ0x + µk

1e
−pµ1(1−x)

}

, for x ∈ (0, 1)

and k = 0, . . . , q.

Remark 2. Different derivative bounds are given in [8] and [21]. They can be
recovered from Lemma 1.

This information about the layer structure can be used to design layer-adapted
meshes a priori ; see [15]. Let us consider two frequently used types of meshes.

Bakhvalov meshes [2] concentrate mesh points inside the layer by using a mesh
generating function which is essentially the inverse of the layer function. Choosing
mesh parameters K0,K1 > 0 and σ0, σ1 > 0, Bakhvalov meshes for (1) can be
generated by equidistributing the monitor function

MBa(s) := max

{

1,
K0 |µ0|

σ0
eµ0s/σ0 ,

K1µ1

σ1
e−µ1(1−s)/σ1

}

,

i.e. the mesh points xi, i = 0, . . . , N , are chosen such that
∫ xi

xi−1

MBa(s) ds = N−1

∫ 1

0

MBa(s) ds.(5)

Fig. 1 depicts a Bakhvalov mesh with 16 mesh intervals for (1).
The parameters σ0 and σ1 determine the stretching of the mesh inside the layer.

They must be chosen greater or equal to the formal order of the scheme used. The
parameter K0 and K1 determine the portion of mesh points used to resolve the
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layers. About NK0/(1+K0+K1) mesh points are placed inside the layer at x = 0,
and NK1/(1 +K0 +K1) mesh points near x = 1.

Note that (5) is equivalent to
∫ xi

0

MBa(s) ds =
i

N

∫ 1

0

MBa(s) ds, i = 0, . . . , N,

from which explicit formulae for the mesh points xi, i = 0, . . . , N , can be derived
by evaluating the integrals involved and solving for xi.

Bakhvalov’s original construction in [2] for a reaction-diffusion problem with two
layers of equal widths is geometric. The characterisation by means of equidistri-
bution is equivalent and easily extends to more complicated layer structures, in
particular when overlapping layers occure; see [15].

Shishkin meshes [18] are piecewise uniform. Fixing mesh parameters q0, q1 > 0
and σ0, σ1 > 0 with q0 + q1 < 1, we define the mesh transition points

τ0 = min

{

q0,
σ0

|µ0|
lnN

}

and τ1 = min

{

q1,
σ1

µ1
lnN

}

.

Then the intervals [0, τ0] and [1−τ1, 1] are dissected into q0N and q1N subintervals,
while [τ0, 1− τ1] is divided into (1− q0 − q1)N subintervals; see Fig. 1 for a sketch.
Usually σ0 = σ1 and q0 = q1 = 1/4 are considered in the literature.

Again, the parameters σ0 and σ1 must be chosen equal to the formal order of
the numerical method used (or greater). Note, when τ0 = σ0 |µ0|−1

lnN , then
eµ0τ0 = N−σ0 . Thus, on [τ0, 1] the magnitude of the layer term eµ0x has decayed
to the order of the method.

0 1

0 τ1 1−τ2 1

Figure 1. Bakhvalov mesh (top) and Shishkin mesh (below) for
a reaction-convection-diffusion equation. The layers at x = 0 and
x = 1 have different widths.

2.2. Stability and Green’s function estimates. By means of the Green’s func-
tion G : [0, 1]2 → R any function v ∈ H1

0 (0, 1) can be represented as

v(x) = a (v,G(x, ·)) for x ∈ (0, 1).(6)

In turn (6) can be regarded as defining the Green’s function: For fixed x ∈ (0, 1)
find G(x, ·) ∈ H1

0 (0, 1) such that (6) is satisfied for all v ∈ H1
0 (0, 1). Using the

differential operator L, we may seek, for fixed ξ ∈ (0, 1), G(·, ξ) such that

(LG(·, ξ)) (x) = δ(x− ξ) for x ∈ (0, 1), G(0, ξ) = G(1, ξ) = 0,

while for fixed x ∈ (0, 1) we have

(L∗G(x, ·)) (ξ) = δ(ξ − x) for ξ ∈ (0, 1), G(x, 0) = G(x, 1) = 0,(7)

with the adjoined operator

L∗v = −εdv
′′ + εc (bv)

′
+ cv.
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Fig. 2 depicts typical plots of the graph of G(x, ·). It is non-negative, has a maxi-
mum of order O (µ1) at x = ξ. It is monotonically increasing for ξ < x, but decreas-
ing for ξ > x. These properties will be rigorously proved now. Thereby, we gener-
alise the Green’s-function bounds by Kopteva for both convection-diffusion [10] and
for reaction-diffusion problems [11]. We do so by carefully analysing the dependence
of the Green’s function on the parameter εc.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 0

2

4

6

8

0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

14

0.2 0.4 0.6 0.8 1 0

2

4

6

8

10

12

14

16

0.2 0.4 0.6 0.8 1

Figure 2. Green’s function G(x, ·) associated with L; εd = 10−3,
εc = 1, 10−1, 10−2, 0 (from left to right).

Lemma 2. Let ξ ∈ (0, 1) be arbitrary, but fixed. Then for any two functions
v, w ∈ C[0, 1] ∩C2 ((0, ξ) ∪ (ξ, 1))

Lv ≤ Lw in (0, 1) \ {ξ}
v(0) ≤ w(0)
v(1) ≤ w(1)

−[v′](ξ) ≤ −[w′](ξ)















=⇒ v ≤ w on [0, 1].

Proof. The proof is by contradiction and follows standard arguments for maximum
principles, cf. [19]. The crucial point is the strict positivity of the reaction coefficient
c. �

Lemma 3. For i = 0, 1 and all x ∈ [0, 1]

−εdµ
2
i − εcb(x)µi + c(x) ≥ 0.

Proof. (i) We consider i = 0 first. Let x ∈ [0, 1] be arbitrary

−εdµ
2
0 − εcb(x)µ0 ≥ µ0 (−εdλ0(x)− εcb(x))

because 0 > µ0 ≥ λ0(x) for all x ∈ [0, 1]. The characteristic equation (3) yields

−εdµ
2
0 − εcb(x)µ0 ≥ −µ0λ0(x)

−1c(x)
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Using c(x) ≥ 1 and λ0(x) ≤ µ0 < 0 again, completes the proof for µ0.
(ii) Now study µ1.

−εdµ
2
1 − εcb(x)µ1 ≥ −εdλ1(x)

2 − εcb(x)λ1(x)

because 0 < µ1 ≤ λ1(x) for all x ∈ [0, 1]. Using the characteristic equation (3), we
are done. �

Theorem 1. Suppose (2) holds. Then the Green’s function G associated with L
satisfies the pointwise bounds

0 ≤ G(x, ξ) ≤ Ḡ(x, ξ) := 1

εd (µ1 − µ0)

{

eµ1(x−ξ) for 0 ≤ x ≤ ξ ≤ 1,

eµ0(x−ξ) for 0 ≤ ξ ≤ x ≤ 1

and

Gξ(x, ξ) ≥ 0 for 0 ≤ ξ < x ≤ 1,

Gξ(x, ξ) ≤ 0 for 0 ≤ x < ξ ≤ 1.

Furthermore we have the L1-norm bounds
∫ 1

0

c(ξ)G(x, ξ) dξ ≤ 1.(8)

and
∫ 1

0

|Gξ(x, ξ)| dξ ≤ 2

εd (µ1 − µ0)

and

εd

∫ 1

0

|Gξξ(x, ξ)| dξ ≤ εc

{

2‖b‖
εd (µ1 − µ0)

+

∥

∥

∥

∥

b′

c

∥

∥

∥

∥

}

+ 2 =: γ∗.

Proof. (i) Using Lemma 2 one verifies that 0 ≤ G on [0, 1]2.
Lemma 3 gives LḠ(·, ξ) ≥ 0 on (0, 1) \ {ξ}. Clearly Ḡ(0, ξ) > 0 and Ḡ(1, ξ) > 0.

The jump of Ḡx satisfies −εd
[

Ḡx(·, ξ)
]

(ξ) = 1. Application of Lemma 2 establishes
the upper bound on G.

Because G(x, 0) = G(x, 1) = 0 for x ∈ [0, 1] and G ≥ 0 on [0, 1]2 we have

Gξ(x, 0) ≥ 0 and Gξ(x, 1) ≤ 0 for x ∈ [0, 1].(9)

Integrate (7) over [0, 1] to obtain

−εd
(

Gξ(x, 1)− Gξ(x, 0)
)

+

∫ 1

0

c(ξ)G(x, ξ) dξ = 1.

By (9) we get (8).
(ii) Next we prove the monotonicity of G(x, ·). Integrating (7) over [0, ξ], we get

−εd
(

Gξ(x, ξ) − Gξ(x, 0)
)

+ εcb(ξ)G(x, ξ) = −
∫ ξ

0

c(s)G(x, s) ds ≤ 0

for ξ < x. Thus

εdGξ(x, ξ) ≥ εdGξ(x, 0) + εcb(ξ)G(x, ξ) ≥ 0 for ξ < x

because G(x, ξ) ≥ 0 and Gξ(x, 0) ≥ 0.
On the other hand, inspecting the differential equation (7), we see that v =

Gξ(x, ·) satisfies
−εdv

′ + εcbv = −(εcb
′ + c)G ≤ 0 in (ξ, 1) and v(1) ≤ 0,
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if εcb
′ + c is assumed to be positive. Application of a maximum principle for first-

order operators yields v ≤ 0 on [x, 1].
Finally, for fixed x ∈ (0, 1),

∫ 1

0

|Gξ(x, ξ)| dξ =

∫ x

0

Gξ(x, ξ) dξ −
∫ x

0

Gξ(x, ξ) dξ = 2G(x, x)

because of the sign of Gξ. Recalling the first proposition of the theorem, we get the
L1-norm bound on Gξ.

The last inequality of the theorem follows upon integrating (7) and using the
bound for G and Gξ established before. �

Remark 3. The function Ḡ attains its maximum for x = ξ. Because λ0 is contin-
uous there exists a x∗ ∈ [0, 1] with λ0(x

∗) = µ0. Therefore

1

εd (µ1 − µ0)
≤ − 1

εdλ0(x∗)
=

λ1(x
∗)

c(x∗)
≤ Cµ1, by (4).

If εc = 0 this estimate can be sharpened to

1

εd (µ1 − µ0)
≤ µ1

2
≤ 1

2
√
εd

since µ1 = −µ0 ≤ 1/
√
εd.

3. Discretisation

Starting from the weak formulation (1′) we shall consider finite-element discreti-
sations with piecewise linear trial and test functions. Let ω̄N : 0 = x0 < x1 <
· · · < xN = 1 be an arbitrary mesh on [0, 1] with N mesh intervals Ii = (xi−1, xi)
of length hi := xi − xi−1. Set V

N = S0
1 (ω̄N ) ∩H1

0 (0, 1), where

S0
1 (ω̄N ) :=

{

v ∈ C[0, 1] : v|Ii ∈ Π1 for i = 0, . . . , N − 1
}

denotes the space of piecewise linear continuous splines.
A standard FEM approximation for (1′) is: Find uN ∈ V N such that

a
(

uN , vN
)

= f
(

vN
)

∀ vN ∈ V N .

Typically the integrals involved in this discretisation cannot be evaluated exactly
and have to be approximated using quadrature. Special quadrature rules will give
different FEM methods.

Here we shall consider the following unstabilised FEM. Find uN ∈ V N such that

aFE

(

uN , vN
)

= fFE

(

vN
)

for all vN ∈ V N(10)

with

aFE (w, v) := εd (w
′, v′) +

(

(−εcbw
′ + cw)I , v

)

and fFE (v) :=
(

f I , v
)

.

Here (·, ·) is the standard L2 scalar product and ϕI is the piecewise linear interpolant
of ϕ, i.e., that function ϕI ∈ S0

1 (ω̄N ) with ϕI(xi) = ϕ(xi) for i = 0, . . . , N .
It is well known that for singularly perturbed problems stabilisation is essential.

We follow Hughes and Brooks [9] and use streamline-diffusion stabilisation, i.e. we
add weighted residuals to (1′):

a (u, v)−
N
∑

i=1

τi (Lu− f, εcv
′)Ii = f (v) .(11)

Here (·, ·)D indicates that integration is restricted to D. The parameters τi ≥ 0,
i = 1, . . . , N , are user chosen and will be fixed later. This kind of stabilisation
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is consistent with (1′) because if the solution of (1′) is in H2(0, 1) then it also
solves (11).

Again, integrals have to be approximated by quadrature. Using the interpolation
idea above we arrive at the following discretisation. Find uN ∈ V N such that

aSD

(

uN , vN
)

= fSD

(

vN
)

∀ vN ∈ V N(12)

where

aSD (w, v) := aFE (w, v) + εc

N
∑

i=1

τi
(

(εcbw
′ − cw)I , v′

)

Ii

and

fSD (v) := fFE (v)− εc

N
∑

i=1

τi
(

f I , v′
)

Ii
.

Note that w′′ ≡ 0 in Ii, i = 1, . . . , N , for w ∈ V N .

4. A posteriori error analysis

The analysis starts from the representation (6). It is similar to that in [16] for
a reaction-diffusion problem, but the presence of a convection term and also of
extra stabilisation terms complicates the analysis. The analysis in [10] deals with
a convection term too, but in the context of difference schemes. Moreover, in [10]
the W 1,1 norm of the Green’s function is uniformly bounded, because therein the
special case εc = 1 is considered. For the two-parameter problem considered here,
the W 1,1 norm of G depends on negative powers of the perturbation parameters.
This requires extra attention.

We consider the SDFEM (12). (Results for the unstabilised FEM (10) can be
obtained by setting all τi = 0.) Fix x ∈ (0, 1) and set Γ := G(x, ·). By (1′),

(

u− uN
)

(x) = a
(

u− uN ,Γ
)

= f(Γ)− a
(

uN ,Γ
)

= −εd
(

(uN )′,Γ′
)

+ (q,Γ) ,(13)

where here and throughout the remainder of the paper

q := f − cuN + εcb
(

uN
)′
.(14)

Clearly q may have discontinuities at the mesh points because uN ∈ S0
1 . Therefore

we set

q+i = lim
x↓xi

q(x) and q−i = lim
x↑xi

q(x)

for all mesh nodes xi. Furthermore, let qi−1/2 denote the value of q in the midpoint
of Ii.

On the other hand, by (12),

0 = aSD

(

uN ,ΓI
)

− fSD

(

ΓI
)

= εd
(

(uN )′, (ΓI)′
)

−
(

qI ,ΓI
)

+ εc

N
∑

i=1

τi
(

qI , (ΓI)′
)

Ii
.

Adding this equation to (13), we get a general representation for the error:

(

u− uN
)

(x) =
(

q − qI ,Γ
)

+
(

qI ,Γ− ΓI
)

+ εc

N
∑

i=1

τi
(

qI , (ΓI)′
)

Ii
.(15)



A POSTERIORI ERROR ESTIMATION FOR A TWO-PARAMETER PROBLEM 499

The three terms on the right-hand side will be bounded separately. We shall restrict
ourselves to the case εc > 0. The reaction-diffusion case εc = 0 was studied
in [11, 16].
(i). A Hölder inequality gives

∣

∣

(

q − qI ,Γ
)
∣

∣ ≤
∥

∥q − qI
∥

∥ = max
i=1,...,N

∥

∥q − qI
∥

∥

Ii
,(16)

because ‖Γ‖1 ≤ 1 by (8).
(ii). Consider the second term in (15). Again a Hölder inequality gives

∣

∣

∣

(

qI ,Γ− ΓI
)

Ii

∣

∣

∣
≤

∥

∥qI
∥

∥

Ii

∥

∥Γ− ΓI
∥

∥

1,Ii
.

We have
∥

∥Γ− ΓI
∥

∥

1,Ii
≤ hi

2
‖Γ′‖1,Ii

and

∥

∥Γ− ΓI
∥

∥

1,Ii
≤ h2

i

8
‖Γ′′‖1,Ii =

h2
i

8εd
‖εc(bΓ)′ + cΓ− δ(x − ·)‖1,Ii ≤

h2
i

8εd
Ni

with

Ni := εc ‖b‖Ii ‖Γ
′‖1,Ii + ‖(εcb′ + c) Γ‖1,Ii + ‖δ(x− ·)‖1,Ii .

Hence

∣

∣

∣

(

qI ,Γ− ΓI
)

Ii

∣

∣

∣
≤

∥

∥qI
∥

∥

Ii
min

{

h2
i

8εd
,

hi

2εc ‖b‖Ii

}

Ni,

because εc ‖b‖Ii ‖Γ
′‖1,Ii ≤ Ni.

Summing for i = 1, . . . , N and using Theorem 1, we obtain

∣

∣

(

qI ,Γ− ΓI
)∣

∣ ≤ γ∗ max
i=1,...,N

[

∥

∥qI
∥

∥

Ii
min

{

h2
i

8εd
,

hi

2εc ‖b‖Ii

}]

.(17)

Note γ∗ was defined in Theorem 1.
(iii). Finally, we bound the last term in (15). Note that (ΓI)′ is constant on each
Ii. Therefore

∥

∥(ΓI)′
∥

∥

1,Ii
≤ ‖Γ′‖1,Ii and

εc

∣

∣

∣

∣

∣

N
∑

i=1

τi
(

qI , (ΓI)′
)

Ii

∣

∣

∣

∣

∣

≤ εc

N
∑

i=1

τi
∥

∥qI
∥

∥

Ii
‖Γ′‖1,Ii ≤

2εc
εd (µ1 − µ0)

max
i=1,...,N

τi ‖q‖Ii ,

(18)

by Theorem 1. Comparison with (17) suggests to choose the stabilisation parame-
ters as follows.

τi = τ∗
εd (µ1 − µ0) γ

∗

εc
min

{

h2
i

8εd
,

hi

2εc ‖b‖Ii

}

,(19)

with some constant τ∗ ≥ 0.

Remark 4. If εc = 1 then εd (µ1 − µ0) γ
∗ε−1

c ≤ C and (19) is the standard rec-
ommended choice for the streamline-diffusion parameter from the literature, see
e.g. [20].

Collecting (15)-(18), we arrive at our main result.
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Theorem 2. Suppose (2) is satisfied. Let the stabilisation parameters be chosen
according to (19). Then the error of the SDFEM (12) satisfies

∥

∥u− uN
∥

∥ ≤ η1 + η2,

where ηk := max
i=1,...,N

ηk,i, k = 1, 2,

η1,i :=
∥

∥q − qI
∥

∥

Ii
and η2,i := (1 + 2τ∗)γ∗

∥

∥qI
∥

∥

Ii
min

{

h2
i

8εd
,

hi

2εc ‖b‖Ii

}

.

Remark 5. The error has been bounded in terms of the numerical solution uN and
of the data of the problem. The first part of the error bound can be further expanded
using (14):

η1,i ≤
∥

∥f − f I
∥

∥

Ii
+
∥

∥cuN − (cuN )I
∥

∥

Ii
+ εc

∥

∥b− bI
∥

∥

Ii

∣

∣uN
i − uN

i−1

∣

∣

hi
(20)

Apparently, sampling of the data is inevitable. However, instead of sampling (20)
it seems advisable to directly sample η1,i:

η1,i ≈ η̃1,i :=
∣

∣

∣

(

q − qI
)

i−1/2

∣

∣

∣
=

1

2

∣

∣q−i − 2qi−1/2 + q+i−1

∣

∣ .(21)

This avoids the use of a triangle inequality and therefore gives in general sharper
upper bounds for the error. Note that the additional errors introduced in (21) are
of higher order and decay rapidly when the mesh is refined.

5. An adaptive algorithm

We shall now consider a simple mesh movement algorithm, originally due to
de Boor [5], which starts with a uniform mesh and aims to construct a mesh that
solves the following equidistribution problem

Mihi =
1

N

N
∑

j=1

Mjhj for i = 1, . . . , N,(22)

where we choose the monitor function M = M(uN , ω̄N) in the algorithm from the
a posteriori error estimate of Theorem 2 and Remark 5:

Mi :=
√

η̃1;i + η2;i.

Note. Taking the square root here is essential because the method is of second
order.

The equidistribution principle (22) does not need to be enforced strictly. The
de Boor algorithm we are going to describe now can be stopped when the weakend
equidistribution principle

Mihi ≤
C0

N

N
∑

j=1

Mjhj for i = 1, . . . , N,

with a user-chosen constant C0 > 1 is satisfied. We will see that C0 = 1.1 produces
suitable layer-adapted meshes and requires quite few iterations.
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Algorithm:

1. Initialisation: Fix N and choose the constant C0 > 1. The initial mesh

ω̄
(0)
N is uniform with mesh size 1/N .

2. For k = 0, 1, . . . , given the mesh ω̄(k), compute the discrete solution uN,(k)

by means of the SDFEM (12) on this mesh. Set h
(k)
i = x

(k)
i −x

(k)
i−1 for each

i. Let the piecewise-constant monitor function M̃ (k) be defined by

M̃ (k)(x) := M
(k)
i := Mi

(

uN,(k), ω̄
(k)
N

)

for x ∈
(

x
(k)
i−1, x

(k)
i

)

Then the total integral of the monitor function M (k) is

J (k) :=

∫ 1

0

M̃ (k)(x) dx =

N
∑

i=1

M
(k)
i h

(k)
i .

3. Test mesh: If

max
i=1,...,N

M
(k)
i h

(k)
i ≤ C0J

(k)N−1,(23)

then go to Step 5. Otherwise, continue to Step 4.
4. Generate a new mesh by equidistributing the monitor function M̃ (k) of the

current computed solution: Choose the new mesh ω̄
(k+1)
N such that

∫

I
(k+1)
i

M (k)(x) dx = J (k)/N, i = 0, . . . , N.

(Since
∫ x

0 M (k)(t) dt is increasing in x, the above relation clearly determines

the x
(k+1)
i uniquely.) Return to Step 2.

5. Set ω̄∗
N = ω̄

(k)
N and uN,∗ = uN,(k) then stop.

Remark 6. This algorithm with an arc-length monitor function, i.e., with

Mi =

√

√

√

√α+

(

uN
i+1 − uN

i

)2

h2
i+1

, α = const > 0,

was applied to singularly perturbed problems by Beckett and Mackenzie [3, 4] and
by Kopteva and Stynes [13]. For an inverse monotone 1st-order upwind difference
scheme and εc = 1, the algorithm is studied in detail in [13]. The stopping criteria
is shown to be met after O (1/εd) iterations. Chadra and Kopteva [6] analyse the
de Boor algorithm applied to central differencing for a reaction-diffusion problem
(εc = 0).

No attempt has been made yet to analyse the above algorithm for the SDFEM
applied to the general reaction-convection-diffusion problem (1).

6. Numerical results

We now consider the test problem

−εdu
′′(x) − εcu

′(x) + u(x) = e1−x, for x ∈ (0, 1), u(0) = u(1) = 0(24)

in order to illustrate the results of our theoretical findings and to study numerically
the magnitude of the two components of our error estimator. We shall also verify
how sharp the a posteriori error estimate is. The streamline-diffusion stabilisation
is chosen according to (19) with τ∗ = 1.

The exact solution of (24) is easily computed, however the continuous maximum
norm of the error has to be approximated. Let ˜̄ωN be the mesh obtained by three
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N χN pN η̃N1 ηN2 ηN πN ̺N

210 6.45e-05 2.00 2.87e-06 3.07e-04 3.10e-04 2.00 4.80
211 1.61e-05 2.00 7.18e-07 7.68e-05 7.75e-05 2.00 4.80
212 4.03e-06 2.00 1.80e-07 1.92e-05 1.94e-05 2.00 4.80
213 1.01e-06 1.99 4.49e-08 4.80e-06 4.85e-06 2.00 4.80
214 2.54e-07 1.97 1.12e-08 1.20e-06 1.21e-06 2.00 4.76
215 6.49e-08 1.94 2.81e-09 3.00e-07 3.03e-07 2.00 4.67
216 1.69e-08 1.98 7.02e-10 7.50e-08 7.57e-08 2.00 4.48
217 4.29e-09 2.00 1.75e-10 1.88e-08 1.89e-08 2.00 4.41
218 1.07e-09 2.00 4.39e-11 4.69e-09 4.73e-09 2.00 4.41
219 2.68e-10 2.00 1.10e-11 1.17e-09 1.18e-09 2.00 4.41
220 6.71e-11 — 2.74e-12 2.93e-10 2.96e-10 — 4.41

Table 1. The SDFEM for (24) on a Bakhvalov mesh, εd = 10−8,
εc = 10−3.

N χN pN η̃N1 ηN2 ηN πN ̺N

210 3.73e-03 1.72 1.24e-06 2.55e-02 2.55e-02 1.63 6.83
211 1.13e-03 1.75 3.09e-07 8.25e-03 8.25e-03 1.80 7.30
212 3.37e-04 1.77 7.69e-08 2.37e-03 2.37e-03 1.76 7.03
213 9.88e-05 1.79 1.91e-08 6.98e-04 6.98e-04 1.78 7.07
214 2.86e-05 1.80 4.77e-09 2.03e-04 2.03e-04 1.80 7.09
215 8.22e-06 1.81 1.19e-09 5.84e-05 5.84e-05 1.81 7.10
216 2.34e-06 1.83 2.95e-10 1.66e-05 1.66e-05 1.82 7.11
217 6.60e-07 1.84 7.35e-11 4.69e-06 4.69e-06 1.83 7.11
218 1.85e-07 1.84 1.83e-11 1.32e-06 1.32e-06 1.84 7.11
219 5.15e-08 1.85 4.55e-12 3.66e-07 3.66e-07 1.85 7.11
220 1.43e-08 — 1.13e-12 1.02e-07 1.02e-07 — 7.11

Table 2. The SDFEM for (24) on a Shishkin mesh, εd = 10−8,
εc = 10−3.

times bisecting ω̄N . Hence, we put an extra seven, evenly distributed points in each
of the intervals of ω̄N . Then we approximate

‖u− uN‖ ≈ χN := ‖u− uN‖ ˜̄ωN
.

In view of Remark 5 we use the error estimator ηN := η̃N1 + ηN2 . The efficiency of
the error estimator is evaluated by computing the quantities ̺N := ηN/χN . We
also estimate the rates of convergence using standard formulae:

pN := log2
(

χN/χ2N
)

and πN := log2
(

ηN/η2N
)

.

6.1. Reaction-convection-diffusion. For our first experiments we take εd =
10−8 and εc = 10−3. Two layers of different widths form: one of width O

(

ε−5
)

at

x = 0 and the other at x = 1 which is of width O
(

ε−3
)

.
Table 1 contains the results of our test computations for a Bakhvalov mesh with

parameters σ0 = σ1 = 3 and K0 = K1 = 1. With this choice approximately a
quarter of the mesh points is used to resolve each of the two layers. The table lists,
from left to right, the number N of mesh intervals, the maximum-norm error, the
two components of the error estimator, the upper error bound of Theorem 2 and,
finally, the efficiency index ̺N . The errors χN and the error estimates ηN behave
like O

(

N−2
)

.
In Table 2 we give results for a Shishkin mesh with σ0 = σ1 = 3 and q0 =

q1 = 1/4. Again a quarter of the mesh points is used to resolve either layer. The
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N χN pN η̃N1 ηN2 ηN πN ̺N KN

210 2.05e-05 2.02 1.32e-05 1.02e-04 1.15e-04 2.17 5.62 15
211 5.05e-06 1.94 2.19e-06 2.35e-05 2.57e-05 2.16 5.09 14
212 1.31e-06 1.96 2.69e-07 5.51e-06 5.77e-06 2.05 4.40 7
213 3.37e-07 1.81 1.32e-07 1.26e-06 1.40e-06 1.72 4.14 8
214 9.63e-08 1.76 8.00e-08 3.44e-07 4.24e-07 2.12 4.40 5
215 2.84e-08 1.73 1.39e-08 8.34e-08 9.73e-08 1.82 3.43 6
216 8.57e-09 1.99 5.66e-09 2.20e-08 2.76e-08 2.04 3.22 4
217 2.16e-09 1.97 1.51e-09 5.19e-09 6.70e-09 1.99 3.09 4
218 5.51e-10 1.98 4.98e-10 1.19e-09 1.69e-09 2.12 3.06 3
219 1.39e-10 1.99 1.25e-10 2.62e-10 3.87e-10 1.97 2.77 3
220 3.52e-11 — 3.64e-11 6.22e-11 9.86e-11 — 2.80 3

Table 3. The SDFEM with adaptive mesh movement for (24),
εd = 10−8, εc = 10−3.

errors χN and ηN2 and ηN behave like O
(

N−2 ln2 N
)

. In contrast η̃N1 behaves like

O
(

N−2
)

. It can be concluded that ηN2 is the dominant term in the error estimator.

Both for the Bakhvalov mesh and for the Shishkin mesh the efficiency index ̺N

is moderate (≈ 5 and ≈ 7).
Next consider the adaptive algorithm of § 5 with C0 = 1.1; see Table 3. The last

column of the table contains the iteration count for the algorithm. The order of
convergence is close to 2, while the efficiency index for the finest meshes is smaller
than 3.

6.2. Convection-diffusion. Next, we chose εd = 10−8 and εc = 1. This time
only one layer of different width O

(

10−8
)

forms at x = 0. The parameters in the

construction of the meshes are chosen as above when εc = 10−3 was considered.
For the Bakhvalov mesh (Table 4), convergence of second order is observed as in

the first test case. Also the two components η̃N1 and ηN2 are proportional to N−2.
In the case of the Shishkin mesh (Table 5), convergence is spoiled by the typical
logarithmic factor. Again it turns out that ηN2 is the dominating part of the error
estimator, while η̃N1 becomes negligible for large N .

Table 6 illustrates the effectiveness of the adaptive algorithm from §5 in the
convection dominated regime.

N χN pN η̃N1 ηN2 ηN πN ̺N

210 1.27e-05 2.00 1.29e-06 6.05e-05 6.18e-05 2.00 4.87
211 3.17e-06 2.00 3.24e-07 1.51e-05 1.54e-05 2.00 4.87
212 7.92e-07 2.00 8.10e-08 3.78e-06 3.86e-06 2.00 4.87
213 1.98e-07 2.00 2.02e-08 9.46e-07 9.66e-07 2.00 4.87
214 4.95e-08 2.00 5.06e-09 2.36e-07 2.41e-07 2.00 4.88
215 1.24e-08 2.00 1.27e-09 5.91e-08 6.04e-08 2.00 4.88
216 3.10e-09 2.00 3.16e-10 1.48e-08 1.51e-08 2.00 4.88
217 7.74e-10 2.00 7.91e-11 3.69e-09 3.77e-09 2.00 4.87
218 1.94e-10 2.00 1.98e-11 9.23e-10 9.43e-10 2.00 4.87
219 4.84e-11 2.00 4.94e-12 2.31e-10 2.36e-10 2.00 4.87
220 1.21e-11 — 1.24e-12 5.77e-11 5.90e-11 — 4.87

Table 4. The SDFEM for (24) on a Bakhvalov mesh, εd = 10−8,
εc = 1.
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N χN pN η̃N1 ηN2 ηN πN ̺N

210 1.63e-03 1.72 7.29e-07 1.11e-02 1.11e-02 1.70 6.85
211 4.93e-04 1.75 1.82e-07 3.44e-03 3.44e-03 1.73 6.98
212 1.47e-04 1.77 4.56e-08 1.03e-03 1.03e-03 1.76 7.05
213 4.30e-05 1.79 1.14e-08 3.05e-04 3.05e-04 1.78 7.09
214 1.25e-05 1.80 2.85e-09 8.87e-05 8.87e-05 1.80 7.11
215 3.58e-06 1.81 7.12e-10 2.55e-05 2.55e-05 1.81 7.12
216 1.02e-06 1.83 1.78e-10 7.26e-06 7.26e-06 1.82 7.13
217 2.87e-07 1.84 4.45e-11 2.05e-06 2.05e-06 1.83 7.13
218 8.06e-08 1.84 1.11e-11 5.75e-07 5.75e-07 1.84 7.13
219 2.24e-08 1.85 2.78e-12 1.60e-07 1.60e-07 1.85 7.14
220 6.22e-09 — 6.95e-13 4.44e-08 4.44e-08 — 7.14

Table 5. The SDFEM for (24) on a Shishkin mesh, εd = 10−8,
εc = 1.

N χN pN η̃N1 ηN2 ηN πN ̺N KN

210 4.87e-06 2.04 9.36e-06 1.61e-05 2.55e-05 2.02 5.22 14
211 1.19e-06 1.80 2.42e-06 3.86e-06 6.28e-06 1.91 5.29 14
212 3.41e-07 2.19 6.17e-07 1.05e-06 1.67e-06 2.07 4.90 5
213 7.47e-08 1.76 1.56e-07 2.43e-07 3.99e-07 1.90 5.34 13
214 2.21e-08 1.86 3.92e-08 6.74e-08 1.07e-07 1.97 4.83 5
215 6.07e-09 2.30 9.84e-09 1.75e-08 2.73e-08 2.05 4.50 5
216 1.23e-09 1.90 2.46e-09 4.15e-09 6.61e-09 1.95 5.37 9
217 3.30e-10 2.04 6.16e-10 1.09e-09 1.71e-09 2.06 5.18 4
218 8.06e-11 1.99 1.54e-10 2.55e-10 4.09e-10 1.96 5.08 4
219 2.02e-11 1.98 3.86e-11 6.69e-11 1.05e-10 2.05 5.21 6
220 5.14e-12 — 9.66e-12 1.58e-11 2.54e-11 — 4.95 6

Table 6. The SDFEM with adaptive mesh movement for (24),
εd = 10−8, εc = 1.

N χN pN η̃N1 ηN2 ηN πN ̺N KN

210 2.90e-05 3.31 1.03e-05 1.95e-04 2.05e-04 0.82 7.09 100
211 2.93e-06 2.41 1.36e-06 1.15e-04 1.16e-04 3.86 39.70 100
212 5.51e-07 1.41 4.14e-07 7.56e-06 7.98e-06 2.40 14.47 100
213 2.08e-07 2.38 1.19e-07 1.39e-06 1.51e-06 3.16 7.25 100
214 3.99e-08 1.89 2.00e-08 1.49e-07 1.69e-07 2.07 4.23 22
215 1.08e-08 1.56 5.37e-09 3.48e-08 4.01e-08 2.02 3.72 3
216 3.67e-09 1.93 1.53e-09 8.38e-09 9.91e-09 1.94 2.70 3
217 9.65e-10 1.81 5.01e-10 2.09e-09 2.59e-09 1.85 2.68 3
218 2.75e-10 1.90 1.99e-10 5.21e-10 7.19e-10 1.95 2.62 3
219 7.38e-11 1.85 5.55e-11 1.30e-10 1.86e-10 1.84 2.52 3
220 2.04e-11 — 1.91e-11 3.26e-11 5.17e-11 — 2.53 2

Table 7. The SDFEM with adaptive mesh movement for (24),
εd = 10−8, εc = 10−5.

6.3. Reaction-diffusion. Finally, we consider the case of small convection: εd =
10−8 and εc = 10−5. Two layers of different width O

(

10−4
)

form at both end
points of the domain.

For both the Bakhvalov mesh and the Shishkin mesh, similar behaviour is ob-
served as for the two other parameter regimes.

For the adaptive procedure, Table 7 illustrates difficulties for “small” values ofN .
The algorithm fails to meet the stopping criterion (23) within 100 iterations. This
can be improved
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N χN pN η̃N1 ηN2 ηN πN ̺N KN

210 1.21e-05 2.59 3.03e-06 6.57e-05 6.88e-05 1.81 5.68 8
211 2.01e-06 1.57 1.02e-06 1.86e-05 1.96e-05 2.19 9.77 4
212 6.76e-07 2.46 2.63e-07 4.02e-06 4.29e-06 1.77 6.34 4
213 1.22e-07 1.82 7.57e-08 1.18e-06 1.25e-06 2.71 10.22 3
214 3.48e-08 1.19 1.47e-08 1.76e-07 1.91e-07 1.47 5.49 3
215 1.52e-08 2.41 4.93e-09 6.39e-08 6.88e-08 2.48 4.52 2
216 2.87e-09 2.13 1.33e-09 1.10e-08 1.24e-08 2.09 4.30 2
217 6.58e-10 2.03 3.72e-10 2.54e-09 2.91e-09 2.03 4.43 2
218 1.61e-10 2.01 9.37e-11 6.19e-10 7.13e-10 2.00 4.43 2
219 4.00e-11 2.00 2.50e-11 1.54e-10 1.79e-10 2.00 4.46 2
220 1.00e-11 — 6.34e-12 3.82e-11 4.46e-11 — 4.46 2

Table 8. Modified monitor M̂i and relaxed equidistribution C0 = 1.5.

(a) by relaxing the equidistribution principle by chosing C0 = 1.5 and

(b) by modifying the monitor and use M̂i :=
√

h2
i + η̃1;i + η2;i instead of Mi.

Incorporating the local mesh sizes yields a damping of the mesh movement.

The effect of these modifications, i.e. fewer iterations, is illustrated by the numbers
in Table 8.
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