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AN ENRICHED SUBSPACE FINITE ELEMENT METHOD FOR

CONVECTION-DIFFUSION PROBLEMS

R. BRUCE KELLOGG AND CHRISTOS XENOPHONTOS

This paper is dedicated to G.I. Shishkin on the occasion of his 70th birthday

Abstract. We consider a one-dimensional convection-diffusion boundary value

problem, whose solution contains a boundary layer at the outflow boundary,

and construct a finite element method for its approximation. The finite element

space consists of piecewise polynomials on a uniform mesh but is enriched by

a finite number of functions that represent the boundary layer behavior. We

show that this method converges at the optimal rate, independently of the

singular perturbation parameter, when the error is measured in the energy

norm associated with the problem. Numerical results confirming the theory

are also presented, which also suggest that in the case of variable coefficients,

the number of enrichment functions need not be as high as the theory suggests.
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1. Introduction

Let p > 0, q > 0 be smooth functions, let ε ∈ (0, 1], and consider the problem

(1) Lu := −εu′′ + p(x)u′ + q(x)u = f(x) in (0, 1), u(0) = u(1) = 0.

It is well-known that the solution to this problem has a boundary layer at x = 1,
and that an accurate, robust numerical solution can be obtained by putting a
highly refined mesh, often called the “Shishkin mesh”, near this boundary point
[7, 9] ; see also [8] for other mesh choices used in conjunction with the high order p
and hp versions of the finite element method (FEM). In this paper we suggest an
alternate way to obtain an accurate and robust numerical method. We use a FEM
with a uniform mesh. The finite element subspace consists of the usual piecewise
polynomials subspace, enriched by a finite number of functions that represent the
boundary layer behavior. It is shown that this results in a numerical solution
with an ε-uniform error bound in the energy norm associated with the problem.
Numerical results are given to illustrate the method.

Perhaps the first use of boundary layer enrichment was given in the paper of Han
and Kellogg, [2]. Subsequent work related to this paper is found in Cheng-Temam,
[1], which also considers a singularly perturbed ordinary differential equation. The
paper [1] is restricted to an equation with constant coefficients, and uses only piece-
wise linear functions plus an enrichment function. The results are analogous to
those of the present paper. Jung and Temam [3, 4, 5] have applied enriched finite
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elements to a model singularly perturbed convection diffusion problem whose solu-
tion involves both ordinary and parabolic boundary layers. It would be interesting
to apply the enriched technique to problems with interior layers.

Section 2 gives some properties of the solution to (1) that are needed for our
error analysis. Section 3 formulates the enriched FEM and gives the error analysis.
Section 4 presents some numerical results.

We require that the functions p, q, f are sufficiently smooth. Also we assume

0 < pmin ≤ p(x) ≤ pmax < ∞,(2a)

q(x) > 0 in [0, 1],(2b)

q(x)−
1

2
p′(x) > 0 in [0, 1].(2c)

We let ‖w‖k denote the norm in the Sobolev space Hk(0, 1), and we use the
notation

‖w‖k,∞ = sup{|w(j)(x)| : x ∈ [0, 1], j = 0, · · · , k}.

We also use Dj
xw as well as w(j)(x) to denote the jth derivative of w with respect

to x. When there is no confusion, we will omit the subscript/variable and simply
write Djw or w(j). The letter C denotes a positive number that may be different
in different instances, but is always independent of ε and the mesh spacing h.

2. Solution properties

The solution properties for the problem (1) are well-known and may be found,
for example, in [7]. These properties are stated here in a form that is useful for our
analysis.

From (2b), solutions of (1) satisfy the maximum principle. Therefore the problem
(1) has a solution u, and ‖u‖0,∞ ≤ C‖f‖0,∞. For derivative bounds we cite [7,
Lemma 1.8]:

|u(k)(x)| ≤ C(f)
(

1 + ε−ke−pmin(1−x)/ε
)

.

Examining the proof one obtains

(3) |u(k)(x)| ≤ C‖f‖k,∞
(

1 + ε−ke−pmin(1−x)/ε
)

.

We now give a formal asymptotic expansion of the solution. This expansion
is also given in [7, p.22], but we derive it in greater detail in order to obtain the
information contained in Lemma 1.

Let Vn−1(x) =
∑n−1

j=0 εjvj(x). Then

(4)

LVn−1 =

n−1
∑

j=0

[

− εj+1v′′j + pεjv′j + qεjvj
]

= pv′0 + qv0 +

n−1
∑

j=1

εj
[

pv′j + qvj − v′′j−1

]

− εnv′′n−1.

Define the functions vj by

pv′0 + qv0 = f, v0(0) = 0,

pv′j + qvj = v′′j−1, vj(0) = 0 for j = 1, · · · , n− 1.
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Equation (4) then gives

(5) LVn−1 = f − εnv′′n−1, Vn−1(0) = 0.

Also

(6) ‖vk‖j,∞ ≤ C.

Next we introduce the stretched variable ξ = (1 − x)/ε, so x = 1 − εξ. We
use a tilde to denote a function of ξ; thus, p̃(ξ) = p(1 − εξ). Note the formula
Lw̃ = −ε−1w̃′′ − ε−1p̃w̃′ + q̃w̃. To construct a formal expansion in functions of ξ
we use the Taylor series formulas

p(x) =

∞
∑

k=0

pk(1− x)k, q(x) =

∞
∑

k=0

qk(1 − x)k, so

p̃(ξ) =

∞
∑

k=0

pkε
kξk, q̃(ξ) =

∞
∑

k=0

qkε
kξk.

Note that p0 = p(1). It is convenient to have a notation for the remainder in these
Taylor series. We write

Rn(p)(x) = p(x)−

n
∑

k=0

pk(1 − x)k, Rn(q)(x) = q(x) −

n
∑

k=0

qk(1 − x)k.

Writing W̃ (ξ) =
∑∞

j=0 ε
jw̃j(ξ) with w̃j to be defined shortly, a formal calculation

gives

LW̃ = −

∞
∑

j=0

εj−1[w̃′′
j + p0w̃

′
j ]−

∞
∑

j=0

εj−1(p̃− p0)w̃
′
j +

∞
∑

j=0

εj q̃w̃j .

One has

(7)

∞
∑

j=0

εj−1(p̃− p0)w̃
′
j =

∞
∑

j=0

∞
∑

k=1

pkε
j+k−1ξkw̃′

j =

∞
∑

µ=0

εµ
µ
∑

j=0

pµ−j+1ξ
µ−j+1w̃′

j ,

∞
∑

j=0

εj q̃w̃j =

∞
∑

j=0

∞
∑

k=0

qkε
j+kξkw̃j =

∞
∑

µ=0

εµ
µ
∑

j=0

qµ−jξ
µ−jw̃j .

Using these expansions we obtain

LW̃ = −ε−1[w̃′′
0 + p0w̃

′
0]−

∞
∑

µ=0

εµ[w̃′′
µ+1 + p0w̃

′
µ+1]

−

∞
∑

µ=0

εµ
µ
∑

j=0

pµ−j+1ξ
µ−j+1w̃′

j +

∞
∑

µ=0

εµ
µ
∑

j=0

qµ−jξ
µ−jw̃j .

Motivated by this formal expansion we define the functions w̃ν , ν = 0, 1, · · · , by

(8)

w̃′′
0 + p0w̃

′
0 = 0,

w̃0(0) = −v0(1), w̃0(ξ) → 0 as ξ → ∞,

w̃′′
ν + p0w̃

′
ν = −

ν−1
∑

j=0

pν−jξ
ν−jw̃′

j +
ν−1
∑

j=0

qν−j−1ξ
ν−j−1w̃j , ν = 1, 2, · · · ,

w̃ν(0) = −vν(1), w̃ν(ξ) → 0 as ξ → ∞.
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With these functions, define W̃n =
∑n

ν=0 ε
νw̃ν and Wn(x) = W̃n(ξ) .

Regarding the w̃k we have

Lemma 1. w̃k(ξ) = P2k(ξ)e
−p0ξ where P2k is a polynomial of degree 2k. If p = p0

and q = q0 are constants, then w̃k(ξ) = Pk(ξ)e
−p0ξ.

Proof. One has w̃0(ξ) = Ce−p0ξ, which proves the result for k = 0. From (8), w̃1

satsfies the differential equation

w̃′′
1 + p0w̃

′
1 = −p1ξw̃

′
0 + q0w̃0.

Note that the right hand side is a polynomial of degree 1 times e−p0ξ; solving the
differential equation one obtains w̃1(ξ) = P2(ξ)e

−p0ξ, which gives the result for
k = 1. The proof for k > 1 proceeds in the same way using induction and the fact
that w̃ν satisfies

w̃′′
ν + p0w̃

′
ν = π2ν−1(ξ)e

−p0ξ,

for some polynomial π2ν−1(ξ) of degree 2ν − 1. The proof in the case of constant
coefficients is similar but simpler.

From Lemma 1, we see that wk is a linear combination of the functions φ0, · · · , φ2k,
so Wn is a linear combination of the functions φ0, · · · , φ2n, where

φj(x) = (1 − x)je−p0(1−x)/ε.

This suggests that the functions φ0, · · · , φ2n be used as enrichment functions in a
finite element approximation. If it happens that p = p0 and q = q0 are constants,
then Lemma 1 suggests the use of φ0, · · · , φn as enrichment functions. Lemma 2
ahead gives a solution decomposition based on these enrichment functions.

We calculate

LW̃n =
n
∑

ν=0

ενLw̃ν = −
n
∑

ν=0

εν−1[w̃′′
ν + p̃w̃′

ν ] +
n
∑

ν=0

εν q̃w̃ν

= −

n
∑

ν=0

εν−1[w̃′′
ν + p0w̃

′
ν ]−

n
∑

ν=0

εν−1(p̃− p0)w̃
′
ν +

n
∑

ν=0

εν q̃w̃ν .

Using (8) we have

LW̃n =

n
∑

ν=1

ν−1
∑

j=0

pν−jε
ν−1ξν−jw̃′

j −

n
∑

ν=0

εν−1(p̃− p0)w̃
′
ν

−

n
∑

ν=1

ν−1
∑

j=0

qν−j−1ε
ν−1ξν−j−1w̃j +

n
∑

ν=0

εν q̃w̃ν

: = A+B.

To obtain a formula for A we use the identity
∑n

ν=1

∑ν−1
j=0 =

∑n−1
j=0

∑n
ν=j+1. In the

inner sum, set k = ν − j, so k ranges from 1 to n− j. We then get, also changing
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the summation index in the second sum from ν to j,

A =
n−1
∑

j=0

n−j
∑

k=1

pkε
j+k−1ξkw̃′

j −
n
∑

j=0

εj−1(p̃− p0)w̃
′
j

= −

n−1
∑

j=0

εj−1

[

p̃−

n−j
∑

k=0

εkξkpk

]

w̃′
j = −

n−1
∑

j=0

εj−1Rn−j(p)w̃
′
j .

A similar result holds for B: One sees that
∑n−1

ν=1

∑ν−1
j=0 =

∑n−2
j=0

∑n−1
ν=j+1. In the

inner sum, set k = ν − j − 1, so k ranges from 0 to n − j − 2. We then get, also
changing the summation index in the second sum from ν to j,

B =

n
∑

j=0

εj q̃w̃j −

n−2
∑

j=0

n−1
∑

ν=j+1

qν−j−1ε
ν−1ξν−j−1w̃j

=

n−2
∑

j=0

εj

[

q̃ −

n−j−2
∑

k=0

εkξkqk

]

w̃j + q̃(εn−1w̃n−1 + εnw̃n)

=
n−2
∑

j=0

εjRn−j−2(q)w̃j + q̃(εn−1w̃n−1 + εnw̃n).

Combining the formulas for A and B gives

(9) LW̃n = −
n−1
∑

j=0

εj−1Rn−j(p)w̃
′
j +

n−2
∑

j=0

εjRn−j−2(q)w̃j + q̃(εn−1w̃n−1 + εnw̃n).

If n = 1 the second sum in (9) is not present.

We now estimate the derivatives of LW̃n and LWn. One has

|Dk
xRn(p)| ≤ C(1− x)n+1−k, |Dk

xRn(q)| ≤ C(1 − x)n+1−k.

Using Lemma 1 and the inequality ξke−p0ξ ≤ C(a)e−aξ for a ∈ (0, p0), a computa-
tion gives

|Dk
ξLW̃n(ξ)| ≤ C(a)εn−1e−aξ for a ∈ (0, p0).

In terms of the unstretched variables, Wn(x) satisfies

|Dk
xLWn(x)| ≤ C(a)εn−1−ke−a(1−x)/ε for a ∈ (0, p0),(10a)

|Wn(0)| ≤ C(a)e−a/ε for a ∈ (0, p0),(10b)

Wn(1) = 0.(10c)

Combining (5) and (10) we have

(11) u = Vn−1 +Wn +Rn,

where the remainder Rn satisfies

(12)

|Dk
xLRn| ≤ Cεn + C(a)εn−1−ke−a(1−x)/ε for a ∈ (0, p0),

|Rn(0)| ≤ C(a)e−a/ε for a ∈ (0, p0),

Rn(1) = 0.
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The decomposition (11) can be put into a more convenient form by removing the
non-zero boundary condition. Let Rn,1 = (1− x)Rn(0), Rn,2 = Rn −Rn,1. Thus

(13) |R′
n,1| ≤ C|Rn,1(0)| ≤ C(a)e−a/ε for a ∈ (0, p0), DkRn,1 = 0 for k > 1.

Also Rn,2(0) = Rn,2(1) = 0, and LRn,2 = LRn +Rn(0)
(

− p(x) + (1− x)q(x)
)

. It
follows that Rn,2 satisfies, for a = p0/2,

(14)

|Dk
xLRn,2| ≤ Cεn + Cεn−1−ke−a(1−x)/ε,

Rn,2(0) = 0,

Rn,2(1) = 0.

Applying [6, Lemma 2.3] to the problem derived from (14) and satisfied by ε−nRn,2

we obtain the bound

(15) |Dk
xRn,2(x)| ≤ C[εn + εn−ke−a(1−x)/ε].

Setting rn = Vn−1 +Rn and using (6), (11), (13), (15), we have

(16) u = rn +Wn where |Dk
xrn(x)| ≤ C[1 + εn + εn−ke−a(1−x)/ε].

This leads to a solution decomposition that is used in the finite element error
analysis.

Lemma 2. There are numbers γ0, · · · , γ2n such that

u = rn +

2n
∑

j=0

γjφj ,(17a)

|Dk
xrn(x)| ≤ C[1 + εn + εn−ke−a(1−x)/ε],(17b)

‖r(k)n ‖2 ≤ C[1 + εn−k+1/2],(17c)

|γk| ≤ Cε−
1

2
k for k even, |γk| ≤ Cε−

1

2
(k−1) for k odd.(17d)

In the case of constant coefficients, (17a) is replaced by u = rn +
∑n

j=0 γjφj and

|γk| ≤ C.

Proof. We have W̃n(ξ) =
∑n

j=0 ε
jP2j(ξ)e

−p0ξ, where P2j(ξ) =
∑2j

k=0 c2j,kξ
k with

|c2j,k| ≤ C. Therefore, using (16) and the fact that ξ = ε−1(1−x), we immediately
get (17a) and (17b), with (17c) obtained by integration. The γj ’s in (17a) are given
by

γ0 = c0,0 + εc2,0 + ε2c4,0 + ...+ εnc2n,0,

γ1 = c2,1 + εc4,1 + ε2c6,1 + ...+ εn−1c2n,1,

γ2 = ε−1c2,2 + c4,2 + εc6,2 + ...+ εn−2c2n,2,

γ3 = ε−1c4,3 + c6,3 + εc8,3 + ...+ εn−3c2n,3,

γ4 = ε−2c4,4 + ε−1c6,4 + c8,4 + ...+ εn−4c2n,4,

γ5 = ε−2c6,5 + ε−1c8,5 + c10,5 + ...+ εn−5c2n,5,

...

from which (17d) follows. In the case of constant coefficients the situation is similar
(but simpler).
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3. The enriched finite element method

The solution of (1) satisfies

(18) B(u, v) =

∫ 1

0

fvdx for v ∈ H1
0 (0, 1),

where the bilinear form B is defined by

B(v, w) =

∫ 1

0

(

εv′w′ + pv′w + qvw
)

dx.

For the FEM we pick an N -dimensional subspace S ⊂ H1
0 (0, 1). The finite element

solution uN ∈ S is defined to be the function which satisfies

(19) B(uN , v) =

∫ 1

0

fvdx for v ∈ S.

Equation (19) gives a linear system of N equations in N unknowns.
The inequality (2c) implies

(20) B(v, v) ≥ c

∫ 1

0

(

εv′2 + v2
)

dx,

and (20) in turn implies the nonsingularity of the system (19). We let uN denote
the solution to (19).

We shall use the norms ‖v‖1,ε and ‖v‖1,ε,ε−1 defined by

‖v‖21,ε =

∫ 1

0

[εv′2 + v2]dx,

‖v‖21,ε,ε−1 =

∫ 1

0

[εv′2 + ε−1v2]dx.

The inequality (20) gives B(v, v) ≥ c‖v‖21,ε. Also one has

(21)
|B(v, w)| ≤ C‖v‖1‖w‖1,ε,

|B(v, w)| ≤ C‖v‖1,ε,ε−1‖w‖1,ε.

Subtracting (19) from (18) one obtains B(u−uN , v) = 0 for v ∈ S. This implies
B(v − uN , v − uN) = B(v − u, v − uN). So

c‖v − uN‖21,ε ≤ B(v − u, v − uN ) for v ∈ S.

From this inequality and the first inequality of (21) we obtain

‖v − uN‖1,ε ≤ C‖v − u‖
1/2
1 ‖v − uN‖

1/2
1,ε ,

so

‖v − uN‖1,ε ≤ C‖v − u‖1.

Hence

‖u− uN‖1,ε ≤ ‖u− v‖1,ε + ‖v − uN‖1,ε ≤ C‖u− v‖1.

A similar argument gives ‖u−uN‖1,ε ≤ C‖u−v‖1,ε,ε−1. Collecting these inequalities
and taking the supremum over v ∈ S, we obtain

‖u− uN‖1,ε ≤ C inf
v∈S

‖u− v‖1,(22a)

‖u− uN‖1,ε ≤ C inf
v∈S

‖u− v‖1,ε,ε−1 .(22b)
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Let M > 0 be an integer, let h = M−1, and let VM,ℓ be the space of piecewise
polynomials of degree ℓ on a uniform mesh of width h, which vanish at x = 0, 1.
Thus, VM,ℓ has dimension ℓM − 1 and has the approximation property

(23) inf
v∈VM,ℓ

{

‖w − v‖0 + h‖w − v‖1
}

≤ Chℓ+1‖w‖ℓ+1 for w ∈ Hℓ+1(0, 1).

Let n be a positive integer and let

SM,ℓ,n = VM,ℓ + {φ0, · · · , φ2n}, n = 0, 1, · · · .

Thus, SM,ℓ,n has dimension N = ℓM + 2n, n = 0, 1, · · · . The space SM,ℓ,n is our
“enriched” finite element space. The following theorem gives our error estimate.
The proof uses the solution decomposition (17a) but with n replaced by n+1; that

is, u = rn+1 +
∑2n+2

j=0 γjφj . To use (23) one needs rn+1 ∈ Hℓ+1(0, 1), and from

(17c), this requires n ≥ ℓ.

Theorem 1. Let n ≥ ℓ. Let u be the solution of (18) and uN ∈ SM,ℓ,n the solution

of (19). We have

(24) ‖u− uN‖1,ε ≤ Chℓ,

with C ∈ R a positive constant independent of M = h−1 and ε.

Proof. Note that φj(x) = φj(1 − εξ) = εjξje−p0ξ, so Dk
xφj(x) = εj−kDk

ξ (ξ
je−p0ξ)

and

(25) ‖Dk
xφj‖0 ≤ Cεj−k

[
∫ ∞

0

ξ2je−2p0ξεdξ

]1/2

≤ Cεj−k+ 1

2 .

Let v ∈ VM,ℓ be a good approximation to rn+1 in the sense of (23), and let s =
∑2n

0 γiφi + v ∈ SM,ℓ,n. Using (17c), (17d), and (25) we have

‖u− s‖0 ≤ ‖γ2n+1φ2n+1‖0 + ‖γ2n+2φ2n+2‖0 + ‖rn+1 − v‖0

≤ C[εn+3/2 + hℓ+1],

‖u′ − s′‖0 ≤ C[εn+1/2 + hℓ].

Therefore ‖u− s‖1 ≤ C[εn+1/2 + hℓ]. From (22a) we obtain

‖u− uN‖1,ε ≤ C[εn+1/2 + hℓ].

Since n ≥ ℓ, this gives (24) in the case ε ≤ h.
To treat the case ε ≥ h, let v ∈ VM,ℓ be a good approximation to γ2n+1φ2n+1 +

γ2n+2φ2n+2 + rn+1 in the sense of (23), and let s =
∑2n

0 γiφi + v ∈ SM,ℓ,n. Using
(17c), (17d), and (25) we have

‖u− s‖0 ≤ Chℓ+1
[

‖γ2n+1φ2n+1‖ℓ+1 + ‖γ2n+2φ2n+2‖ℓ+1 + ‖rn+1‖ℓ+1

]

≤ C[1 + εn−ℓ+1/2]hℓ+1,

‖u′ − s′‖0 ≤ C[1 + εn−ℓ−1/2]hℓ.

Therefore

(26) ‖u− s‖1,ε,ε−1 ≤ C
[

εn−ℓhℓ+1 + ε−1/2hℓ+1 + εn−ℓhℓ + ε1/2hℓ

]

From (22b) we obtain

(27) ‖u− uN‖1,ε ≤ C
[

1 + εn−ℓ
]

hℓ,
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Since n ≥ ℓ this gives (24) in the case ε ≥ h.

Remark 1. The following remarks, related to Theorem 1, are in order:

• For the variable coefficient case, the condition n ≥ ℓ means that if piecewise

linear polynomials are used then at least three enrichment functions should

be added. However, in the numerical experiments, given in the following

section, we find that optimal convergence rates and satisfactory errors are

attained with only one enrichment function.

• From Lemma 2, if the coefficients p, q are constant, one can replace SM,ℓ,n

by the space VM,ℓ+{φ0, · · · , φn}. This means that the number of enrichment

functions that should be added is equal to the degree of the approximating

piecewise polynomials.

The above remarks will be illustrated in the following section.

4. Numerical experiments

In this section we present the results of numerical computations for two model
problems: one with constant coefficients and another with variable coefficients. In
both cases we will show convergence plots of the percentage relative error in the
energy norm,

Error = 100×
‖u− uN‖1,ε

‖u‖1,ε
,

versus the number of degrees of freedom N , in a log-log scale.

4.1. The constant coefficient case. We consider the problem (1), with p(x) =
q(x) = f(x) = 1 which allows us to obtain its exact solution and thus, the results
we report are reliable. It is well known that the standard h version FEM with
piecewise linear basis functions on a uniform mesh yields an approximation that
contains oscillations. If, however, we enrich the finite element space with the func-
tion φ0(x) = e−(1−x)/ε, then the situation changes dramatically. Figure 1 shows the
plot of the true and approximate/enriched solutions, as well as the error between
them at the nodes. We see that there are no oscillations and the absolute error at
the nodes is of the order O(h2). (Other values for ε gave the same results.)
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Figure 1. Left: Plot of u(x) and uN (x) for ε = 10−3 and h =
1/32, with uN the enriched FE solution. Right: Error at the nodes.
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Figure 2 shows the robustness and optimal convergence rate O(h) of the enriched
method, for various values of ε.
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Figure 2. Convergence of the enriched finite element solution ob-
tained with piecewise linear functions plus one enrichment function
on a uniform mesh.

When the finite element space consists of piecewise quadratics, Lemma 2 suggests
that we should add the two enrichment functions

φ0(x) = e−(1−x)/ε , φ1(x) = (1 − x)e−(1−x)/ε.

Figure 3 shows the convergence of this method, and again we see that it is robust
with optimal rate O(h2).
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Figure 3. Convergence of the enriched finite element solution ob-
tained with piecewise quadratics plus two enrichment functions on
a uniform mesh.
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4.2. The variable coefficient case. We now turn our attention to a variable
coefficient problem (1), in which p(x) = (x + 1), q(x) = 3/2 and f(x) chosen so
that the exact solution is known. Theorem 1 states that if the finite element space
consists of piecewise linear basis functions on a uniform mesh, then we should add
at least 3 enrichment functions φj . Nevertheless, we wish to examine the effect
of adding just one enrichment function (as was done for the constant coefficient
case). Based on the data of the problem, we enrich the space with the function
φ0(x) = e−2(1−x)/ε and in Figure 4 we show the plot of the exact and approximate
solution obtained with this method, as well as the error between them at the nodes,
for ε = 10−3, h = 1/32 ; other values of ε gave similar results. We do not observe
any oscillations in the solution, but when we look at the error at the nodes we
see that some oscillations are present, although of very small scale and appearing
throughout the interval (0, 1). This suggests that their presence is not due to the
boundary layer, and if one wishes, one can “post-process” the approximate solution
(by, for example, averaging) to smooth them out, something that falls outside the
scope of the present article. Figure 5 shows the performance of this method for
various values of ε. It is clear that the method is robust with optimal rate O(h),
even though only one enrichment function was added to the finite element space.
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Figure 4. Left: Plot of u(x) and uN (x) for ε = 10−3 and h =
1/32, with uN the enriched FE solution ( by one function). Right:
Error at the nodes.

Next, we would like to see what effect (if any) the addition of a second enrichment
function would have. To this end, we enrich the finite element space with the
functions φ0(x) = e−2(1−x)/ε and φ1(x) = (1−x)e−2(1−x)/ε, and repeat the previous
computations. Figure 6 shows the plot of the exact and approximate solution
obtained with this method, as well as the error between them at the nodes, for
ε = 10−3, h = 1/32. There is no significant difference between Figures 4 and 6,
hence it seems that adding only one enrichment function is sufficient, even for the
variable coefficient case. Figure 7 shows the performance of the method for various
values of ε, and again the robustness and optimal convergence rate are clearly
visible.

As a final experiment, we would like to see what happens when a third enrichment
function is added to the subspace, as Theorem 1 requires. Since two enrichment
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Figure 5. Convergence of the enriched finite element solution ob-
tained with piecewise linear functions plus one enrichment function
on a uniform mesh.
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Figure 6. Left: Plot of u(x) and uN (x) for ε = 10−3 and h =
1/32, with uN the enriched FE solution (by two functions). Right:
Error at the nodes.

functions do not yield better results than using just one, this last computation
would, in some sense, test the sharpness of the result stated in Theorem 1. The
third enrichment function is given by φ2(x) = (1− x)2e−2(1−x)/ε, and Figures 8–9
show the results of this computation. It is clear, from these figures, that a third
enrichment function is not required. Moreover, by comparing Figures 4, 6 and 8,
we see that the error at the nodes does not decrease as the number of enrichment
functions increases – in fact it seems to be (slightly) increasing. This, we believe,
is due to the fact that the coefficient matrix in the linear system becomes ill-
conditioned (for small values of ε) as the number of enrichement functions increases.
Concluding, we find that the “best” results are obtained with only one enrichment
function.
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Figure 7. Convergence of the enriched finite element solution ob-
tained with piecewise linear functions plus two enrichment func-
tions on a uniform mesh.
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Figure 8. Left: Plot of u(x) and uN (x) for ε = 10−3 and
h = 1/32, with uN the enriched FE solution (by three functions).
Right: Error at the nodes.
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